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ABSTRACT

Precision medicine (PM) is an approach that aims to tailor treatments based on patient profiles (patients’
biometric characteristics). In PM practice, treatment performance is typically evaluated through simulation
models or clinical trials. Although these two methods have differences in sampling subjects and requirements,
both are based on a sequential sampling process and require determining a stopping time for sampling to
ensure that, with a prespecified confidence level, the best treatment is correctly identified for each patient
profile. In this research, we propose unified stopping rules applicable to both simulation and clinical
trial-based PM sampling processes. Specifically, we adapt the generalized likelihood ratio (GLR) test to
determine when samples collected are sufficient and calibrate it using mixture martingales with a peeling
method. Our stopping rules are theoretically grounded and can be integrated with different types of sampling
strategies. Numerical experiments on synthetic problems and a case study demonstrate their effectiveness.

1 INTRODUCTION

Precision medicine is an emerging research area in healthcare. Conventionally, most medical treatments
are designed for the “average patient” as a one-size-fits-all approach. However, since treatment outcomes
usually depend heavily on individual patient profiles (patients’ biometric characteristics such as age, gender,
blood pressure, heart rate, BMI index, genetic information, etc.), this generalized approach may lead to
significant variability in treatment effectiveness, yielding high efficacy in some patients but low or negligible
effects in others. In contrast, PM seeks to tailor treatments to individual patient profiles. For each profile,
PM aims to identify the most effective treatment from a predefined set of treatment alternatives. By doing
so, PM can significantly increase the likelihood of achieving best treatment outcomes for all patients. Figure
1 provides a visual representation of this concept, where each color represents a group of patients with the
same profiles.

To identify the best treatment for each patient profile, PM must first evaluate the performance of
different treatment-profile combinations. This evaluation is typically conducted using one of two primary
methods: simulation models or clinical trials. In simulation model-based methods, sampling subjects are
simulation models of the diseases, and treatment performance is assessed through multiple simulation
runs. Each time, the experimenter needs to specify both the patient profile and the treatment for testing in
order to implement the simulation run. In clinical trials, the sampling subjects are patient volunteers, and
treatment performance is evaluated using data collected from these trials. Since the profiles of the patients
participating in the trials are beyond the experimenter’s control, each time, the experimenter only needs to
select a treatment for testing based on the given patient profile.

Despite their differences in sampling subjects and requirements, both the simulation model and clinical
trial-based methods can be viewed as a sequential sampling process aimed at learning the best treatment
for each patient profile from noisy samples. For this sampling process, on the one hand, we hope to use
as few samples as possible to reduce resource consumption, as both simulation and clinical trial samples
are costly. On the other hand, sufficient information must still be gathered to make high-quality treatment
decisions. This trade-off raises a fundamental question for both methods: how early can we terminate the
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Figure 1: Illustration of precision medicine.

sampling process while still ensuring with a certain level of confidence the correct selection of the best
treatment for every patient profile?

Similar problems have been considered in the literature. In the simulation environment, they are
typically studied based on the contextual ranking and selection (CR&S) model and addressed using the
indifference-zone (IZ) method. Shen et al. (2021) developed two-stage IZ procedures for treatment selection
based on two probability of correct selection (PCS)-related measures: the expected PCS and the minimum
PCS across all contexts (profiles). Keslin et al. (2022) decomposed the CR&S problem into several
individual R&S problems, which could be solved using standard IZ methods such as the KN procedure
(Kim and Nelson 2001). These IZ methods can provide quality guarantees for identifying the best treatment
under each profile. However, their stopping rules must be integrated with certain types of two-stage or
elimination-based sampling strategies. These sampling strategies have not been optimized to improve
pairwise comparison efficiency, which often results in conservative stopping conditions that require an
excessive number of samples before termination. This conservativeness of IZ-based methods has been
noted in the literature, as observed in Branke et al. (2007).

In the clinical trial environment, related research is conducted within the contextual best-arm identification
(BAI) model. Simchi-Levi et al. (2024) developed a stopping rule for the experimental design problem with
randomly arriving contexts. Kato and Ariu (2024a) designed a stopping rule for identifying the treatment
with the largest mean marginalized over the contextual distribution. Despite differences in problem settings,
these stopping rules are designed under the assumption that the samples of the treatments follow a one-
parameter exponential distribution family, typically normal distributions with known variances. However,
the sampling variances of the treatments are typically unknown in practice. As a result, when such stopping
rules are applied in real-world environments, they tend to underestimate the uncertainty of the samples and
terminate the sampling process too early, leading to the selection of treatments that fail to meet the desired
quality levels.
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In this research, we develop stopping rules for the PM sampling process that are applicable in both the
simulation and clinical trial environments. These stopping rules aim to identify the best treatment under
each profile with a certain level of quality guarantee. To do it, we first employ two PCS-based quality
measures that can reasonably summarize the PCS (i.e., our confidence) over the entire profile space, and
seek to make sure that they reach the pre-specified level upon termination of the sampling process. We
then utilize the generalized likelihood ratio (GLR) test to determine when the desired confidence level has
been achieved. For each of the two quality measures, we calibrate the corresponding stopping thresholds.
Once all the GLR statistics exceed the respective thresholds, the stopping rule is triggered and the sampling
process terminates. To calibrate these thresholds, we derive new time-uniform concentration inequalities
for both the sample mean and sample variance using mixture martingales and a peeling method. These
concentrations allow us to quantify the deviation of estimators across all time stages, thus calibrating our
stopping rules.

The development of the stopping rules in this research is nontrivial due to the need to incorporate
sample variances into the GLR statistics. Unlike cases where variances are known, using sample variances
makes the GLR statistics significantly less tractable. The sample variances generate additional uncertainty
on the statistics and complicate their distributional properties over time. Calibrating the stopping rules
requires confidence regions on both the sample mean and sample variance.

Another notable feature of our stopping rules is that they can be integrated to any static or adaptive PM
sampling strategy, including those that have been extensively studied in the literature. In the simulation
environment, Du et al. (2024) derive asymptotic optimality conditions for sampling strategies and propose a
sampling algorithm within the Optimal Computing Budget Allocation (OCBA) framework. Li et al. (2020)
develop a dynamic sampling policy under an approximate dynamic programming framework, while Shi
et al. (2023) introduce a Top-Two Thompson Sampling policy. In the clinical trial environment, Alban et al.
(2021) propose a sequential sampling algorithm, fEVI, based on the Expected Value of Information method
and Kato et al. (2024b) propose an adaptive sampling strategy called PLAS. These sampling strategies are
often supported by theoretical results about their superior properties, such as consistency and asymptotic
optimality. When combined with these efficient sampling processes, our stopping rules have the potential
to terminate earlier, saving samples while still maintaining the statistical guarantees. This is in contrast to
IZ-type procedures developed in simulation environments (Shen et al. 2021; Keslin et al. 2022), which
rely on less efficient elimination-based sampling. More importantly, our stopping rules remain flexible
and adaptable to potential future developments of even more efficient sampling strategies (e.g., optimal
strategies instead of asymptotic optimal ones), to allow for further reductions in sample usage.

The rest of the paper is organized as follows. In Section 2, we formulate the PM problem as a sampling
process with stopping times. Section 3 defines the stopping rules for the two PCS-based measures using
GLR statistics and calibrated thresholds. Section 4 presents numerical experiments, including synthetic
problem instances and a case study. Section 5 concludes the paper.

2 PROBLEM FORMULATION

Suppose there are k treatments alternatives {1,2, ...,k} for the disease and m patient profiles {xxx1,xxx2, ...,xxxm}
in total. A possible profile is denoted as the random vector XXX = (X1, ...,Xd)

T, where XXX has support
X ∈ Rd and each component Xi corresponds to a specific biometric characteristic under consideration.
Let yi(xxx j) represent the mean performance of treatment i under profile xxx j, which is unknown and can be
estimated by noisy samples from simulation or clinical trials, i = 1, ...,k, j = 1, ...,m. These samples are
assumed to follow the normal distribution N(yi(xxx j),σ

2
i (xxx j), where the variances σ2

i (xxx j) are also unknown.
The assumption that treatment performance follows a normal distribution is common in the clinical trials
literature (Jiménez-Luna et al. 2020; Forster et al. 2021). The goal of PM is to identify the best treatment
i∗(xxx j) ∈ argmaxi∈{1,...,k}yi(xxx j) for each patient profile xxx j. We further assume that i∗(xxx j) is unique for each
xxx j, which is also a common assumption in clinical trials (Robertson et al. 2023).
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For a sampling process based on either simulation models or clinical trials, suppose t represents the
sampling time and the sampling process ends at time t = τ . We use the sample mean yt,i(xxx j) to estimate
the performance of treatment i for profile xxx j at time t. When the sampling process ends, we select
îτ(xxx j) = argmaxi∈{1,...,k}yτ,i(xxx j) as the estimated best treatment for profile xxx j. In practice, the total number
of samples that can be used is finite, making it impossible to ensure that the estimated best treatment îτ(xxx j)
always equals to the true best treatment i∗(xxx j). Then, a common quality measure for the selected treatment
is the probability of correct selection (PCS) for the best treatment. Given profile xxx j and ending time τ ,
PCS is expressed as:

PCS(xxx j) = P
(
îτ(xxx j) = i∗(xxx j)

)
= P

(
∩k

i=1,i ̸=i∗(xxx j)

(
yτ,i∗(xxx j)(xxx j)> yτ,i(xxx j)

))
,

where the probability is taken with respect to the randomness of the samples.
Ultimately, we aim for the PCS to not be limited to a specific profile xxx j but instead to be summarized

across all possible profiles. To achieve this, we consider two PCS-based measures, PCSE and PCSA, defined
as follows:

PCSE = E(PCS(XXX)) =
m

∑
j=1

p jPCS(xxx j),

PCSA = P
(
∀xxx ∈ X , îτ(xxx) = i∗(xxx)

)
.

These two measures have been commonly used in the literature (Gao et al. 2019; Shi et al. 2023; Simchi-
Levi et al. 2024). The measure PCSE is the expectation of the PCS over the profile space, where p j
denotes the probability of profile XXX = xxx j. It provides an average assessment of the PCS across all patient
profiles. PCSA corresponds to the probability that the best treatment is correctly selected simultaneously
for all profiles. This is a natural measure to use because the best treatment being correctly selected for
each profile directly describes the event we are interested in. It is obvious that PCSE ≥ PCSA, with PCSA
setting a higher standard on the quality of the correct selection over the profile space.

Our goal is to design stopping rules for the sampling process that guarantee a pre-specified level of
PCSE or PCSA. Suppose at time t, the decision maker chooses to sample treatment it under profile xxx jt
according to some sampling strategy. Note that in the case of simulation models, xxx jt is part of the sampling
decision made by the experimenter, while in clinical trials, xxx jt represents the profile of the volunteer who
participates in the trial at that time. The observed outcome is denoted as Yt,it (xxx jt ). We define the filtration
Ft as the σ -algebra generated by the sequence (Y1,i1(xxx j1),Y2,i2(xxx j2), ...,Yt,it (xxx jt )), which contains all the
information gathered up to time t. The stopping time τ will be a random variable adapted to the filtration
(Ft)t∈N, i.e., the decision to terminate sampling is based solely on the information accumulated up to that
time point.

Let τE
α denote the stopping time that guarantees PCSE to meet the confidence level 1 − α , i.e.,

PCSE ≥ 1−α . In other words, the selection error should be controlled such that
m

∑
j=1

p jP
(
îτE

α
(xxx j) ̸= i∗(xxx j)

)
≤ α. (1)

Similarly, let τA
α denote the stopping time that guarantees PCSA to meet the confidence level 1−α , i.e.,

PCSA ≥ 1−α . It means that the selection error should be controlled such that

P
(
∃xxx ∈ X , îτA

α
(xxx) ̸= i∗(xxx)

)
≤ α. (2)

Note that the stopping times τE
α and τA

α depend on the sampling strategy, and in this research, we
only consider sampling strategies for τE

α and τA
α to satisfy that P(τE

α < +∞) = 1 and P(τA
α < +∞) = 1

respectively.
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3 STOPPING RULES

In this section, we develop stopping rules for the PM sampling process based on PCSE and PCSA. In
Section 3.1, we construct the generalized likelihood ratio (GLR) statistic and propose a general stopping
criterion. Section 3.2 further calibrates the stopping thresholds and proves the statistical guarantees.

3.1 The GLR Statistic

The generalized likelihood ratio (GLR) test method was originally introduced in Chernoff (1959). We extend
it to the PM sampling process. Let Nt,i(xxx) = ∑

t
s=1 111{is = i,xxx js = xxx} represent the total number of samples

allocated to treatment i and profile xxx up to time t. The sample mean yt,i(xxx)=
1

Nt,i(xxx) ∑
t
s=1 111{is = i,xxx js = xxx}Yt,i(xxx)

and the sample variance S2
t,i(xxx)=

1
Nt,i(xxx)−1 ∑

t
s=1 111{is = i,xxx js = xxx}(Yt,i(xxx)−yt,i(xxx))

2 for treatment i under profile

xxx at time t, and the estimated best treatment is given by ît(xxx) = argmaxi∈{1,...,k}yt,i(xxx). For any treatment
i ̸= ît(xxx), the GLR statistic Zi(xxx, t) quantifies the evidence against i being the best treatment under profile
xxx at time t. It is defined as the log-likelihood ratio comparing yi(xxx) and yît(xxx)(xxx):

Zi(xxx, t) = log
maxθît (xxx)

(xxx)≥θi(xxx)Pθît (xxx)
(xxx)(Y t,ît(xxx)(xxx))Pθi(xxx)(Y t,i(xxx))

maxθît (xxx)
(xxx)≤θi(xxx)Pθît (xxx)

(xxx)(Y t,ît(xxx)(xxx))Pθi(xxx)(Y t,i(xxx))
,

where Y t,i(xxx) = (Yt,i(xxx) : il = i, l ≤ t) denotes the vector of all observed samples for treatment i under
profile xxx up to time t, and P

θi(xxx)∼N (yt,i(xxx),σ2
i (xxx))

(Y t,i(xxx)) is the likelihood of Nt,i(xxx) i.i.d. samples. For any
i ∈ {1, ...,k} and xxx ∈X , the maximum likelihood estimate of its unknown mean is its sample mean yt,i(xxx).
It can be calculated, under normal sampling distributions,

Zi(xxx, t) = inf
u∈[yt,i(xxx),yt,ît (xxx)

(xxx)]

[
log

Pyt,ît (xxx)
(xxx)(Y t,ît(xxx)(xxx))

Pu(Y t,ît(xxx)(xxx))
+ log

Pyt,i(xxx)(Y t,i(xxx))

Pu(Y t,i(xxx))

]
= inf

u∈[yt,i(xxx),yt,ît (xxx)
(xxx)]

∑
c∈{i,ît(xxx)}

Nt,c(xxx)d(yt,c(xxx),u),

where d(x,y) = (x−y)2

2σ2 is defined as the KL-divergence between two normal distributions N (x,σ2) and
N (y,σ2). We plug sample variances S2

t,i(xxx) to replace the unknown variances σ2
i (xxx) for each i ̸= ît(xxx),

which yields

Zs
i (xxx, t) = inf

u∈[yt,i(xxx),yt,ît (xxx)
(xxx)]

∑
c∈{i,ît(xxx)}

Nt,c(xxx)
(yt,c(xxx)−u)2

2S2
t,c(xxx)

=
1
2

(yt,i(xxx)− yt,ît(xxx)(xxx))
2

S2
t,i(xxx)

Nt,i(xxx)
+

S2
t,ît (xxx)

(xxx)

Nt,ît (xxx)
(xxx)

.

Intuitively, for a given profile xxx and time t, a larger statistic Zs
i (xxx, t) indicates that treatment i is less

likely to be the best under this profile at that time. Therefore, it is possible to design thresholds such that
when Zs

i (xxx, t) exceeds its corresponding threshold for all i ̸= ît(xxx), PCSE and PCSA become large enough.
Typically, these thresholds depend on t and α and are chosen to be on the order of α . In the PM setting
with multiple profiles, we define the threshold for treatment i as φi(NNNt ,α,xxx), a function of confidence level
α , profile xxx and NNNt (the vector containing all the sample numbers Nt,i(xxx j)).

When all statistics Zs
i (xxx, t) exceed their corresponding thresholds, the stopping rule is triggered and

the sampling process stops. Given these statistics and thresholds, the general form of the stopping rule is
given by

τα = inf{t ∈ N|∀xxx ∈ X ,∀i ̸= ît(xxx),Zs
i (xxx, t)> φi(NNNt ,α,xxx)}. (3)
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For different measures PCSE and PCSA, their stopping times τE
α and τA

α are different, and so are their
thresholds φi in (3). We let φ E

i be the thresholds for τE
α and φ A

i be the thresholds for τA
α . These thresholds

will be calibrated in the next subsection using newly developed concentration inequalities.

3.2 The Calibrated Thresholds

We first consider PCSE. The error probability for each profile needs to be controlled. Therefore, we propose
to bound the term P

(
τE

α <+∞, îτE
α
(xxx) ̸= i∗(xxx)

)
for each possible profile xxx. We first have

P
(
τ

E
α <+∞, îτE

α
(xxx) ̸= i∗(xxx)

)
≤ P

(
∃t ∈ N,∃i ̸= i∗(xxx), i = ît(xxx),Zs

i∗(xxx)(xxx, t)> φ
E
i∗(xxx)(NNNt ,α,xxx)

)
.

Since the GLR statistic satisfies, for all i ̸= i∗(xxx) and i = ît(xxx),

Zs
i∗(xxx)(xxx, t)≤ ∑

c∈{i,i∗(xxx)}
Nt,c(xxx)

(yt,c(xxx)− yc(xxx))2

2S2
t,c(xxx)

,

we further obtain the upper bound for P
(
τE

α <+∞, îτE
α
(xxx) ̸= i∗(xxx)

)
as

P

(
∃t ∈ N,∃i ̸= i∗(xxx), ∑

c∈{i,i∗(xxx)}
Nt,c(xxx)

(yt,c(xxx)− yc(xxx))2

2S2
t,c(xxx)

> φ
E
i∗(xxx)(NNNt ,α,xxx)

)
. (4)

Similarly, for PCSA and τA
α , we propose to control the term P

(
τA

α <+∞,∃xxx ∈ X , îτA
α
(xxx) ̸= i∗(xxx)

)
to

ensure (2). It can be upper bounded by

P

(
∃t ∈ N,∃xxx ∈ X ,∃i ̸= i∗(xxx), ∑

c∈{i,i∗(xxx)}
Nt,c(xxx)

(yt,c(xxx)− yc(xxx))2

2S2
t,c(xxx)

> φ
A
i∗(xxx)(NNNt ,α,xxx)

)
. (5)

The event described in the probability measure in either (4) or (5) represents a false selection of
identifying treatment i ̸= i∗(xxx) as the best treatment. The threshold φi must be set sufficiently large to
control the probability of such false selections uniformly throughout the time. We propose to determine
these thresholds by tracking the time-uniform concentration behavior of the summation term

∑
c∈{i,i∗(xxx)}

Nt,c(xxx)
(yt,c(xxx)− yc(xxx))2

2S2
t,c(xxx)

. (6)

This summation term can be treated to have captured both the deviation of sample mean, represented

by (yt,c(xxx)−yc(xxx))2

σ2
c (xxx)

, and the deviation of the sample variance, represented by S2
t,c(xxx)

σ2
c (xxx)

, for c ∈ {i, i∗(xxx)}. Given

a significance level α , let Pc(xxx) be the maximum value for (yt,c(xxx)−yc(xxx))2

σ2
c (xxx)

and Qc(xxx) be the minimum value

for S2
t,c(xxx)

σ2
c (xxx)

, for c ∈ {i, i∗(xxx)}. Then, the thresholds φi for profile xxx can be determined as

∑
c∈{i,i∗(xxx)}

Nt,c(xxx)
2

Pc(xxx)
Qc(xxx)

.

We derive a time-uniform tail concentration inequality on the sample mean to determine Pc(xxx) and a
time-uniform lower tail concentration inequality on the sample variance to determine Qc(xxx). The derivations
utilize the mixture martingales constructed in Kaufmann and Koolen (2021) and Howard et al. (2020),
along with a peeling method used by Jourdan et al. (2023).
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For the concentration on the sample mean, let s > 1 and ζ be the Riemann ζ function. Let µ̂t be the
sample mean of t i.i.d. normal samples parameters (µ,σ2). Then, for all V > 1, we have

P
(
∃t ∈ N,

|µ̂t −µ|
σ

>
V√

t

)
≤ exp

(
s log(2s+ log t)− f (s)+

1
2

log(V 2)− 1
2

V 2 +
1
2

)
,

where f (s) = s log(2s)− s− log(ζ (s)).
For the concentration on the sample variance, let η > 0 and σ̂2

t+1 be the sample variance of t +1 i.i.d.
normal samples with parameters (µ,σ2). Then, for all V ∈ (0,1), we have

P

(
∃t ∈ N,

σ̂2
t+1

σ2 ≤V

)
≤
(

1+
log(t)

log(1+η)

)s

ζ (s)e−
t

2(1+η) (V−log(V )−1)
.

Combining these results, we can establish stopping rules of the PM sampling process for measures
PCSE and PCSA.
Theorem 1 For all t ∈N+, let NNNt,∗ = (Nt,ît(xxx1)

(xxx1), ...,Nt,ît(xxxm)
(xxxm))

T and NNNt,i = (Nt,i(xxx1), ...,Nt,i(xxxm))
T for

all i = 1, ...,k. Define g(x) = x− log(x) for x > 0 and h(s) = 1+2[log(ζ (s))+ s− s log(2s)] for s > 1. Let
N(xxx) be a function that maps the profile space X to N+, with the vector NNN = (N(xxx1), ...,N(xxxm))

T .
Let η > 0,s> 1 and ζ be the Riemann ζ function. For any NNN ∈Nm×1 and α ∈ (0,1), define γE

µ (NNN,α)> 0
and γE

σ (NNN,α)> 0 such that

g(γE
µ (NNN,α)) = h(s)+2log

(
4k
α

)
+2log(E[(2s+ log(N(XXX)))s]),

E
[

e−
N(XXX)

2(1+η) (g(γ
E
σ (NNN,α))−1)

(
1+

log(N(XXX))

log(1+η)

)s]
=

α

4kζ (s)
,

where the expectation is taken with respect to the distribution of XXX . The thresholds

φ
E
i (NNNt ,α,xxx) =

γE
µ (NNNt,i,α)Nt,i(xxx)

2γE
σ (NNNt,i,α)

(
Nt,i(xxx)−1

) + γE
µ (NNNt,∗,α)Nt,ît(xxx)(xxx)

2γE
σ (NNNt,∗,α)

(
Nt,ît(xxx)(xxx)−1

) ,
combined the stopping rule (3), ensure that PCSE ≥ 1−α .
Theorem 2 Let η > 0,s > 1 and ζ be the Riemann ζ function. For any t ∈ N+ and α ∈ (0,1), define
γA

µ (t,α)> 0 and γA
σ (t,α)> 0 such that

g(γA
µ (t,α)) = h(s)+2log

(
4m(k−1)

α

)
+2s log(2s+ log(t)),

g(γA
σ (t,α)) = 1+

2(1+η)

t

[
s log(1+

log(t)
log(1+η)

)+ log(ζ (s))+ log
(

4m(k−1)
α

)]
.

The thresholds

φ
A
i (NNNt ,α,xxx) = ∑

c∈{i,ît(xxx)}

γA
µ (Nt,c(xxx),α)Nt,c(xxx)

2γA
σ (Nt,c(xxx),α)

(
Nt,c(xxx)−1

) ,
combined the stopping rule (3), ensure that PCSA ≥ 1−α .
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4 NUMERICAL EXPERIMENTS

We conduct numerical experiments to evaluate the performance of the proposed stopping rules τE
α for PCSE

and τA
α for PCSA. We will test them on two synthetic problems in Section 4.1 and a case study in Section

4.2.
Since our stopping rules need to be combined with a sampling strategy, in the tests, we choose the

Contextual Optimal Computing Budget Allocation (C-OCBA) Algorithm proposed in Gao et al. (2019).
C-OCBA is an adaptive sampling strategy that aims to select the best treatment for each profile and can
be shown to be asymptotically optimal. For the synthetic problems, we also combine our stopping rules
with the equal allocation (EA) strategy, where the samples are simply equally allocated to each pair of
treatment and profile.

For comparison, we also evaluate the performance of two IZ-type procedures, which can also offer
statistical guarantees for identifying the best treatment under each profile. These procedures differ in their
mechanisms and the types of guarantees they provide:

• Two-Stage Indifference-Zone Procedure (TS-IZ). Shen et al. (2021) introduced a two-stage procedure
for selecting the best treatment for each profile. This procedure has two versions, TS and TS+,
where TS assumes homogeneous variances across treatment-profile pairs, while TS+ is based on
heterogeneous variances. For both TS and TS+, in the first stage, each treatment-profile pair is
allocated with a small number of samples to estimate sample variances. The second stage then
determines the required number of additional samples for each treatment-profile pair based on these
variance estimates and selects the best treatment for each profile based on their sample means.
This procedure provides guarantees for PCSE and a new measure minxxx∈X PCS(xxx). In the tests, the
performance of TS-IZ is evaluated based on PCSE.

• KN Indifference-Zone Procedure (KN-IZ). Keslin et al. (2022) proposed a method for the CR&S
problem by decomposing it into a number of independent R&S subproblems, each corresponding to
a specific context. The KN procedure (Kim and Nelson 2001) is then used to select the best design
for each context. This method is applicable to the PM problem, where the KN procedure allocates
samples to independently select the best treatment (design) while ensuring a PCS guarantee for the
selected treatment within each profile (context). These individual PCS guarantees jointly contribute
to an overall guarantee across the profile space. The performance of KN-IZ is evaluated under both
PCSE and PCSA.

4.1 Synthetic Problems

We compare TS-IZ, KN-IZ and our stopping rules on the following two synthetic problems:

• Problem 1. Consider a problem with k = 5 treatments and m = 10 profiles. For each profile xxx j ( j =
1, . . . ,10), the mean performance of treatment i (i = 1, . . . ,5) is given by yi(xxx j) = i(1+0.05( j−1)).
The variance of the samples for treatment-profile pair (i,xxx j) is given by σ2

i (xxx j) = 1+0.3i+0.3 j.
The indifference-zone (IZ) parameter is set as δ = 1.

• Problem 2. Consider a problem with k = 10 treatments and m = 10 profiles, where the means
of the treatments are derived from the Branin function, a widely used benchmark function. Let
zi = 1.5(i−1)−5 for i = 1, ...,10 be 10 treatments and x j = j−1 for j = 1, ...,10 be 10 profiles.
For each profile x j ( j = 1, . . . ,10), the mean performance of treatment i (i = 1, . . . ,10) is given by
yi(x j)=−(x j−bz2

i +czi−r)2−10(1−v)cos(zi)−10, where the coefficients are set as b= 5.1
4π2 , c= 5

π
,

r = 6, and v = 1
8π

. The variance of the samples for treatment-profile pair (i,x j) is given by σ2
i (x j) =

10−0.05i j. The probability of each profile p j ∈ {0.03,0.07,0.2,0.1,0.15,0.2,0.02,0.08,0.1,0.05}.
The IZ parameter is set as δ = 1.
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For the C-OCBA and EA sampling strategies, we initialize the number of sampling replications as
n0 = 5, while for the two IZ-based methods, we set n0 = 20. The confidence level is set at 1−α = 95%. The
results are presented in Tables 1 and 2. From the two tables, we observe that our stopping rules consistently
achieve the prespecified confidence level, regardless of the sampling strategy they are combined with.
When combined with C-OCBA, our stopping rules exhibit less conservativeness compared with the two
IZ-based procedures, in the sense that their PCSE and PCSA tend to be lower.

Table 1: Performance comparisons on problem 1.

τE
α τA

α

Method PCSE Avg. SSize ± 95% CI Method PCSA Avg. SSize ± 95% CI

C-OCBA 0.99 3,903 ± 160 C-OCBA 0.99 12,794 ± 92
KN-IZ 0.99 10,830 ± 47 KN-IZ 1 20,040 ± 87
TS-IZ 0.99 12,837 ± 43 EA 1 51,269 ± 676

EA 1 44,610 ± 622

Table 2: Performance comparisons on problem 2.

τE
α τA

α

Method PCSE Avg. SSize ± 95% CI Method PCSA Avg. SSize ± 95% CI

C-OCBA 0.99 4,409 ± 928 C-OCBA 0.99 16,605 ± 2,645
KN-IZ 1 142,196 ± 407 KN-IZ 1 245,637 ± 704
TS-IZ 1 180,389 ± 382 EA 0.99 343,013 ± 6,713

EA 0.99 292,553 ± 6,254

Regarding the samples used, when combined with C-OCBA, our stopping rules require fewer samples
than the two IZ-based procedures. This efficiency gain arises because the computation of our stopping rules
is independent of the sampling strategy, which allows us to fully utilize the efficient sample allocation (if
any) of the sampling strategy to compare different treatments more effectively.

This intuition is illustrated in Figure 2, which shows the sample allocations on 5 treatments in profile 1
in Problem 1. In this problem, the best and second-best treatments under profile 1 are respective treatments
i = 1,2 respectively. As can be observed, when the sampling process ends, C-OCBA primarily allocates
samples to these two treatments, which is an efficient sample allocation to distinguish the treatments. In
contrast, both KN-IZ and TS-IZ allocate a large number of samples to the other three inferior treatments.
This allocation is less efficient since these treatments can be confidently identified as non-best with few
samples. Specifically, TS-IZ is significantly less efficient as it utilizes only sample variance information
without leveraging sample mean. Due to the effective allocation strategy of C-OCBA, our stopping rules
can terminate early and save samples. If combined with even more efficient sampling strategies, our method
could further reduce sample usage.

Additionally, in Problem 2, C-OCBA requires significantly fewer samples than the two IZ-based
procedures. This is because, in Problem 2, the minimum performance differences among treatments vary
across profiles, and the IZ parameter is set based on the smallest differences. As a result, in profiles with
larger performance gaps, the IZ-based procedures will consume a large number of samples.

4.2 PM for Esophageal Cancer Prevention

Esophageal cancer is a highly aggressive malignancy with significant morbidity and mortality around the
world. Early intervention strategies, guided by precision medicine (PM), have the potential to improve
patient outcomes by tailoring prevention and treatment plans based on individual risk profiles. In this case
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Figure 2: Sample allocations on 5 treatments in profile 1 in Problem 1.

study, we apply our proposed stopping rules to a simulation-assisted PM framework for esophageal cancer
prevention. This case has also been studied in Shen et al. (2021) and Li et al. (2024). We test it in the
simulation environment. The Markov Simulation Model for this disease is firstly proposed by (Hur et al.
2004) and can also be seen in Shen et al. (2021).

We consider four treatments and eight patient profiles. This setting is consistent with medical applications
(Alban et al. 2021). Our method is evaluated against TS-IZ and KN-IZ under PCSE, and against KN-IZ under
PCSA. The four treatment options include: (1) endoscopic surveillance only, (2) aspirin chemoprevention
with endoscopic surveillance, (3) statin chemoprevention with endoscopic surveillance, and (4) combined
aspirin and statin chemoprevention with endoscopic surveillance. Each treatment differs in both drug
efficacy and associated complications, including their types and annual incidence rates. The effects of
aspirin, statin and their combination are set at 0.54, 0.53, and 0.78, respectively, according to Kastelein
et al. (2011). The complications’ coefficients are set the same as Shen et al. (2021).

Patient profiles are defined by age groups ([55, 60, 65, 70]) and risk levels ([2.5%, 5%]), which
represents the annual progression rate of Barrett’s Esophagus to Esophageal Adenocarcinoma. The IZ
parameter is set as δ = 0.1. We conduct experiments with 250 replications to compute PCSE and PCSA.
The other parameter settings for the procedures remain the same as those used in the synthetic problems.
The results are summarized in Table 3.

Table 3: Performance comparison of stopping rules and IZ methods of case study.

τE
α τA

α

Method PCSE Avg. SSize ± 95% CI Method PCSA Avg. SSize ± 95% CI

C-OCBA 0.99 271,163 ± 9,988 C-OCBA 0.99 340,644 ± 11,257
KN-IZ 0.98 581,597 ± 18,174 KN-IZ 0.96 1,054,615 ± 32,976
TS-IZ 0.98 632,948 ± 18,874

From Table 3, we observe that our stopping rules achieve the predefined confidence level in this case
study. When combined with the C-OCBA sampling strategy, their performances remain consistent with the
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results from synthetic problems. In precision medicine applications, the simulation models are typically
complicated, requiring a long time to run for one replication. Using our stopping rules combined with a
high efficiency sampling strategy can significantly reduce the sample size required and save computational
resources in practice. Further, in the clinical trial environment, we anticipate that our method can similarly
achieve a lower sample size to meet the desired confidence level compared with IZ-based methods.

5 CONCLUSION

In this paper, we develop stopping rules for the PM sampling process. These rules effectively terminate the
sampling process once the prespecified confidence level is met. Combined with efficient sampling strategies,
our approach achieves high sampling efficiency while maintaining statistical guarantees for best treatment
selection over the profile space. Through numerical experiments, we demonstrate the effectiveness of our
stopping rules.

Although our stopping rules exhibit significant sample reductions for the PM sampling process compared
to IZ-based procedures, the empirical error is still much lower than α . This conservation has been commonly
seen in the literature. It is an important future research direction to optimize the calibration of stopping
thresholds. Additionally, extending these stopping rules to PM applications with larger profile spaces is of
interest.
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