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ABSTRACT

This research aimed to develop a methodology and framework to calibrate microscopic simulation models
that drive behaviors to reproduce safety conflicts observed in real-world environments. The Intelligent
Driver Model (IDM) was selected as the car-following algorithm to be utilized in the External Driver Model
(EDM) Application Programming Interface (API) in VISSIM to better represent real-world driving
behavior. The calibration method starts with an experiment design in the statistical software JMP Pro 16,
which provided 84 simulation runs, each with a distinct combination of the 11 EDM input variables. After
84 runs each with a unique variable configuration, the traffic trajectory was analyzed using the FHWA’s
Surrogate Safety Assessment Model (SSAM) to generate counts of crossing, rear-end, and lane-change
conflicts. It is concluded that the proposed calibration method can closely match the conflict counts derived
from real-world conditions.

1 INTRODUCTION

Safety is a critical aspect of transportation engineering, especially with rising public travel and vehicle
ownership. Comparing safety performances for design decisions is a priority for engineering firms and
transportation departments. Historically, empirical methods have been used to observe traffic conflicts
through photographs and reports on the characteristics of conflict-prone intersections (Parker and Zegeer
1989). This type of approach is called traffic conflict techniques for safety (Parker and Zegeer 1989), and
the goal is to identify such conflicts defined by the scenarios or events that can develop into a collision (
Lund Institute of Technology 1977). However, this process is time-consuming, costly, and requires careful
examination to cover the details (Parker and Zegeer 1989). In the last twenty years, surrogate safety
measures have been proposed and applied in microscopic simulation to replace expensive crash studies and
reconstructions (Essa and Sayed 2020; Parker and Zegeer 1989).

Using microsimulation software such as PTV VISSIM and its trajectory output for surrogate safety
analysis in FHWA’s SSAM has become a popular proposed method for researchers to identify safety issues
within a roadway network (Argade 2014; Kim et al. 2018; Li et al. 2013; Vasconcelos et al. 2014). However,
such an effort also resulted in criticism and concerns over the validation and calibration of such a claimed
correlation between simulated conflicts and crashes (Essa and Sayed 2020; So et al. 2015). Some
researchers hoped to use a calibration method to adjust driving behaviors for the safety studies to increase
the modeling accuracy (So et al. 2015).

In a small city projected to double in growth over the next five years, increasing diversity in driver
behavior is expected due to migration. Capturing this variation in VISSIM's default parameters, particularly
in car-following scenarios, will be challenging. The Wiedemann model in VISSIM assumes that vehicle
inputs are influenced solely by transient stimuli, not by planned decisions or driving preferences like
acceleration and aggression. (Abdelhalim and Abbas 2022). Inaccurate modeling of driving behavior can
lead to exponential growth of issues and limited safety assessments, resulting in damages, injuries, and
fatalities. Accurately modeling driving aggressions and their relationship to crashes is essential.
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This paper presents a method for calibrating driver aggression using SSAM and VISSIM’s EDM API
to improve simulations of driver behavior and associated conflicts for safety studies. The IDM car-
following algorithm was chosen for its capacity to adjust desired speed and acceleration, effectively
simulating aggressive driving behavior (Abdelhalim and Abbas 2022; Kesting et al. 2010; Shi 2019; Treiber
et al. 2000; Treiber et al. 2007).

The following sections will outline the methodology selection process and highlight the gap in easily
calibrated and accurate driver behavior modeling for safety assessment in microsimulation. Adjustments in
the VISSIM microsimulation software for implementing an advanced car-following model will be detailed.
The calibration procedure includes creating a roadway network in VISSIM, designing experiments using
JMP Pro 16, compiling trajectory outputs, conducting SSAM analysis, fitting the final model, and
performing sensitivity analysis. Each step will be discussed in detail, along with an introduction to
VISSIM's EDM interface and the IDM car-following algorithm. Ultimately, a set of calibrated parameters
will be generated to reflect driver aggression and vehicle conflicts.

2 STATE OF THE ART

VISSIM is a powerful microscopic traffic simulation tool that has not been widely used for safety analysis.
Recently, its combination with SSAM has become an effective platform for researchers to identify safety
threats using existing traffic data. This combination also allows for quantitative comparisons of different
roadway designs and configurations. (Argade 2014; Kim et al. 2018). Many research efforts have utilized
this VISSIM and SSAM combination for analyzing different roadside access management methods.
(Argade 2014; Kim et al. 2018), innovative traffic patterns (Vasconcelos et al. 2014), and intersection
control systems (Li et al. 2013). While not entirely accepted by the consultant industry, much research has
shown promising safety analysis results (Abdelhalim and Abbas 2022; Fan et al. 2013). However, tools
such as the SSAM could not be utilized to their full potential if the data used was not calibrated to represent
the safety conditions of the local highway system accurately (Essa and Sayed 2015; Huang et al. 2013;
Katrakazas et al. 2018; Fan et al. 2013). Research using SSAM to analyze safety conditions has been limited
due to inadequate calibration and inaccurate representation of driving behaviors. (Essa and Sayed 2015,
2020; Huang et al. 2013; Katrakazas et al. 2018; Fan et al. 2013).

SSAM analyzes the trajectory of vehicles in the network and uses the proximity model to predict the
closeness to the accident by Time to Collision (TTC) and Post-Encroachment Time (PET) (Abdelhalim and
Abbas 2022; Pu and Joshi 2008). TTC and PET are parameters that represent conflicts, which is a surrogate
of crashes (So et al. 2015). However, as a new post-processing analysis platform for the existing
microsimulation tools, SSAM received mixed reviews from scholars (So et al. 2015). The mixed impression
came down to the modeling inaccuracy in the default microsimulation settings that require extensive
calibration (Essa and Sayed 2020), the inability of VISSIM to violate traffic laws as in real life (Huang et
al. 2013), the feasibility of analysis accuracy improvement using calibration (Essa and Sayed 2015), or even
simply the question of whether the act of using VISSIM data for the SSAM analysis is statistically relevant
because of the random nature of the driving behaviors (Fan et al. 2013). On the other hand, many studies
have also laid out the solution to those problems, such as the fact that, with purposeful calibrations, the
VISSIM and SSAM combination has promising improvements in its safety prediction accuracy (Essa and
Sayed 2015; Huang et al. 2013; Katrakazas et al. 2018; Fan et al. 2013).

SSAM is sensitive to modeling inaccuracies and requires careful calibration. One proposed method
involves two steps: first, calibrating the average delay per vehicle using observed speed data, and then
adjusting the VISSIM Wiedemann driver model parameters based on rear-end conflict results (Essa and
Sayed 2015). The author found that while calibration improved accuracy at one intersection, only a few
driver model characteristics were transferable (Essa and Sayed 2015). The untransferable parameters may
need calibration per intersection or could remain unchanged using system defaults. A study in Croatia also
found that the VISSIM default Wiedemann 74, calibrated in Germany, was unsuitable for their area
(Otkovi¢ et al. 2020). These transferability conclusions affirmed the conclusions drawn by other authors as
well (Abdelhalim and Abbas July 31, 2022; Fan et al. 2013).
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Due to the limited transferability of the default VISSIM Wiedemann driver model parameters, many
researchers opted to calibrate the simulation model for individual intersections or networks rather than
creating a universal method. Some focused on calibrating driver behaviors based on specific simulation
outcomes, like SSAM-determined conflicts (Otkovic¢ et al. 2020). Other researchers preferred using an extra
calibration step for the speed and delay (Essa and Sayed 2015), and some even used a complex function to
analyze the calibration results (Katrakazas et al. 2018). Al calibration approaches have been examined, but
they fall short in conducting sensitivity analysis to identify the most influential parameters affecting
responses (Al-Msari et al. 2024).

Research has primarily focused on calibrating the Wiedemann driver model in VISSIM, but there is
also literature on using VISSIM’s EDM API to enhance driver following behavior modeling and employ
the VISSIM and SSAM combination for quantitative validation (Abdelhalim and Abbas July 31, 2022; Li
et al. 2013). The EDM replaces the car-following algorithm of the Wiedemann 74 or 99 model in the
VISSIM microscopic simulation (Abdelhalim and Abbas July 31, 2022). This allows for a more accurate
representation of driver aggression in vehicle-following scenarios compared to the default Wiedemann
models. Notably, the EDM has been used to apply a driver model algorithm that calibrates itself based on
SSAM results (Abdelhalim and Abbas July 31, 2022). The research introduced an innovative method
showing the SSAM's capability in safety analysis through a new driver model, though its transferability to
other locations remains uncertain. VISSIM’s EDM API (Shi 2019) provides an easy-to-calibrate alternative
to the Wiedemann model for car-following, as it can incorporate other driver models like IDM to better
mimic driving behaviors (Abdelhalim and Abbas July 31, 2022; Kesting et al. 2010). Improved driver
aggression calibration allows state or local officials to estimate potential crashes when comparing roadway
designs or analyzing existing roads, bypassing costly crash studies. (Argade 2014).

The use of VISSIM and SSAM for safety analysis faces issues such as insufficient calibration, non-
standardized calibration methods, and the inability to accurately represent driving behaviors. Thus, a
surrogate analysis method with greater accuracy and easier calibration is needed.

3 METHODOLOGY

The research methodology included three key components: (1) observing safety-critical conflicts in real-
world scenarios, (2) developing a simulation model for the case study, and (3) calibrating driving behavior
parameters to replicate observed conflicts. The simulation comprised a VISSIM model of a 5-mile circular
road network in Blacksburg with peak-hour traffic, Ring-Barrier Controllers to emulate Signal Phase and
Timing (SPaT) data, and an IDM model for car-following behavior using VISSIM’s EDM API.

To validate the methodology, we employed a statistical analysis model (JMP Pro 16) and designed
experiments with 11 IDM independent variables for VISSIM runs. A VBScript automated the loading of a
Dynamic Link Library (DLL) for 84 continuous runs. The SSAM converted VISSIM trajectory data into
conflict counts, and JMP Pro 16 was used for fitting, sensitivity analysis, and calibrating IDM values to
generate targeted conflict counts from near-conflict data.

3.1 Roadway Network

The experiment used a 5-mile loop roadway based on research showing that looped networks effectively
represent vehicle-to-vehicle interactions, similar to real traffic. Notable studies using this setup focused on
phantom traffic and the role of autonomous vehicles in alleviating such issues (Stern et al. 2018; Sugiyama
et al. 2008; Tadaki et al. 2013). To calibrate vehicular conflict detection, a loop road network was modeled
in VISSIM, based on the roadway network in Blacksburg, VA. This network includes a mix of rural
principal arterials, urban minor arterials, major collectors, and minor collectors (Federal Highway
Administration 2000).

Blacksburg, a college town with diverse growth prospects, is the chosen location. The network layout
is illustrated in Figure 1. Turning volumes and SPaT data for the VISSIM setup were sourced from
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Blacksburg and VDOT. Data from Blacksburg covers intersections 1 to 8, while VDOT provides
information on the US-460 bypass and Southgate Drive Interchange (Figure 1).

Figure 1: Roadway Network’s Satellite Imagery and the VISSIM Network (Blacksburg, VA, 2019).

The timing plan from Blacksburg and VDOT is utilized to reflect actual field conditions. Data for
modeling the 5-mile roadway network were collected between 2018 and 2023 to accurately represent
current traffic. The 5 PM to 6 PM peak hour was selected due to the typically high traffic volume, which
increases the likelihood of collisions. To simplify the simulation, minor intersections without traffic
controllers were excluded, as specific turning counts could not be determined. Additionally, driveways,
turnouts, bus stops, and facility entrances were not included due to a lack of data.

3.2 Mathematical Model

The mathematical expression of the open-source code modified for this experiment is the IDM, a time-
continuous car-following function commonly used in traffic engineering research (Shi 2019; Treiber et al.
August 30, 2000; Treiber et al. 2007). The IDM functions are shown below in Equations 1 and 2. The a;py
is the acceleration calculated from the IDM and fed back into the VISSIM API at each time step. The
s, v, Av are the VISSIM parameters following distance, vehicle speed, and vehicle speed differential (from
the surrounding vehicles) being input into the IDM from the EDM API. Besides a free acceleration
component denoted by “0” that generally has a value of “4”, the meaning of the rest of the parameters is
shown below (Table 1). Below is IDM Equation (1):

appy (s, v,Av) = % =a[l- (1)6 - (M)Z] (1

N

IDM Equation (2):
VAV

2vab 2)

s*(v,Av) = so + vT +

33 EDM Script, Experiment Design, and Variables

The EDM utilized in this research is a set of open-source scripts (Shi 2019) that utilized the IDM in its
algorithm for calculating the VISSIM’s virtual drivers’ behavioral response to the change in the input
EDM’s parameters. This open-source C++ script builds a DLL for VISSIM’s EDM API, using 11 major
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input parameters for user calibration (Table 1). These parameters allow users to replace VISSIM’s default
Wiedemann 74 or 99 car-following model with behavior calculated by the IDM algorithm. In an experiment
designed in JMP Pro 16, these parameters were assigned reasonable ranges, resulting in 84 distinct
parameter combinations for the EDM scripts, leading to 84 VISSIM simulation runs. Each combination
corresponds to one simulation run due to the lack of stochastic nature of the same random seed, ensuring
identical outcomes with the same VISSIM file and inputs. The "turning indicator" parameter, with
designated values of “-1,” “2,” and a corrected “0” instead of “0.5,” was handled accordingly in JMP Pro
16. A script was also created to automate the compilation of these 84 DLLs.

Table 1: EDM input variables and possible range.

Possible Range
Independent Variables Low High
desired acceleration 0 8.5
desired lane angle -1.57 1.57
active lane change -1 1
rel target lane -1 1
desired velocity 5 35
turning_indicator -1 2
a=IDM max_acceleration 0 8.5
b =1IDM max_deceleration 0 10
v(Q =IDM desired velocity 5 35
S0 = jam_distance 0 10
T = safe time headway 0 3

Below are the explanations for each of the variables. Most of the variables below either describe a
desired state to be in or describe an active desire to complete a certain driving movement.
“desired_acceleration” is an EDM default variable that has a unit of m/s?. This variable corresponds to the
desired acceleration of the driver at the current time step (Rahal et al. 2017). A range of “0” to “8.5” was
used for this variable because an acceleration of 8.5 is about the quickest acceleration to be expected of
street vehicles. “desired lane angle” is another default EDM variable that has a unit of rad. It is the desired
lane angle relative to the middle of the lane (Rahal et al. 2017) (Table 1). A positive value in rad would be
a state of desiring to turn to the left, and a negative value indicates a desire to turn right, while a “0” value
denotes no desire to turn either left or right concerning the middle of the lane (Rahal et al. 2017). A range
of “-1.57” to “1.57” rad is used for it equates to about 90 degrees turn to the left and the right.
“active_lane change” is an EDM default variable that has no unit, but it simply indicates the direction of
the active lane change movement or a desired lane change movement (Rahal et al. 2017). A “+1” value
would indicate an active leftward lane change, a “0” value means no lane change, and a “-1”” value means
an active rightward lane change (Rahal et al. 2017). “rel target lane” is a default EDM variable that has no
unit, but similar to the previous variable, it indicates a desired lane to be in.

For example, one lane to the left would be “+1”, one lane to the right would be “-1”, and a “0” value
would indicate the current lane is the desired lane (Rahal et al. 2017). “Desired_velocity” is another default
EDM variable in a unit of m/s. It straightforwardly indicates the travel speed the driver desires to run
during the current time step (Rahal et al. 2017). A range of “5” to “35” was used because a speed of 11 mph
to 78 mph could be expected in the roadway network. “turning_indicator” is a default EDM parameter
similar to the “active_lane change” parameter mentioned previously. “turning_indicator” has no unit. A
value of “+1” indicates the left turn signal is on, a value of “-1” indicates the right turn signal is on, a value
of “0” indicates no signal was used in the lane change, and a value of “2” indicates both indicators or the
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hazard light was used (Rahal et al. 2017). It is noted that the turning indicator variable not only allows the
VISSIM visualization during the simulation run to show blinkers used by the ego vehicle, but it also allows
other drivers to notice and respond to the use of the blinkers (Rahal et al. 2017). “vehicle color” is a default
EDM variable neglected in this experiment due to its insignificance in affecting driver behaviors under the
no-driver-error default settings in VISSIM.

The IDM variables are added to the default EDM by researcher Yunpeng Shi in the open-source script
used in this experiment (Shi 2019). These IDM variables are essentially the Kesting and Treiber IDM
variables incorporated into the script (Kesting et al. 2010). “IDM_max_acceleration” or “a” as noted in the
original open-source script, is an IDM variable with a unit of m/s?. “IDM_max_deceleration”, or “b” as
noted in the original open-source script, is an IDM variable with a unit of m/s2. Both “a” and “b” are
positive values used for the IDM calculations to determine the acceleration and the following distance at
the current time step (Kesting et al. 2010; Shi 2019). For “a”, a range between “0” to “8.5” like the one
given to the “desired acceleration” is given. For “b”, a range between “0” to “10” was given due to the
slightly higher deceleration that could be expected from street vehicles than that of their acceleration.
“IDM_desired_velocity” or “v0”, is another IDM variable with a unit of m/s like the “desired velocity”.
Thus, a similar range between “5”” and “35” is given. “jam_distance” or “S0” is an IDM variable with a unit
of meters. A range between “0” and “10” was given since following a vehicle with as much as two-car-
length distance is acceptable. “safe_time headway” or “T” is the final IDM variable with a unit of seconds.
A range between “0” and “3” is used in this experiment because the “3-second rule” is a commonly
recommended car-following rule when driving at 65 mph.

Once the user changes the input parameters to their desired numbers and the vehicle class according to
the desired VISSIM vehicle class in the C++ script, the script is then developed into a DLL file ready for
VISSIM’s API to call. For this experiment, all vehicle classes, including the passenger cars, buses, and
Heavy Goods Vehicle (HGV) classes, used the external driver. However, in a scenario where the other
vehicle classes are added, the scripts are easily modifiable by changing a single parameter “vehicle type”
to the corresponding vehicle classes. During the simulation run, VISSIM will supply the EDM with
information such as the vehicle ID, lane number, total distance traveled (or odometer), lane angle, velocity,
acceleration, length, and weight at every time step. The algorithm in the DLL will take these values and
supply VISSIM with the updated values after the parameters run through the IDM model at each of the time
steps incrementally (Rahal et al. 2017; Shi 2019).

4 RESULTS AND DISCUSSION

The following section will focus on the calibration process from the simulation output parameters and a
discussion of the calibration results. The calibration process consists of four parts: (1) Create 84 simulation
runs generating 84 distinct trajectory files (.trj) using a script file, (2) Input the trajectory files in SSAM to
translate the files into conflict types and conflict counts for each of the runs, (3) Input the conflict types and
their counts for each run into their corresponding response variable in JMP Pro 16 for model fitting, and
(4) Fine-tune each parameter within the acceptable ranges to match the pre-determined conflict count
translated from the real-world data. After the DLL generation, a script file was written for the VISSIM
interface to initiate the EDM API, load all the DLLs consecutively, and run the simulations consecutively.

After the 84 simulation runs, the trajectory data was examined by the SSAM and output three types of
conflicts and their counts. The SSAM was then used to identify incidents where the vehicle’s trajectory was
in proximity to the other vehicles. TTC and PET were used to describe such proximity. TTC is the time
before two vehicles in the roadway network collide if they continue in their trajectory. PET is the time
between one vehicle occupying a specific location in the roadway network and the next vehicle arriving at
the same location (Pu and Joshi May 2008). The TTC and PET were then used as a filter to identify the
most critical conflicts among all the conflicts, specifically those with 0 seconds (equal to collision) or 0.1
seconds of TTC or PET. The crossing, rear end, and lane change conflicts of each scenario or trajectory file
were compared against the VISSIM default as well as the EDM’s default trajectory output. TTC thresholds
were set at “0” to ““1.5” seconds, while PET thresholds were set at “0” to “4.9” seconds. The conflict data
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taken into consideration were 55,394 crossing conflicts, 434,143 rear-end conflicts, and 43,157 lane change
conflicts. All of these factors came from the sum of the conflicts in all 84 simulation runs. Various levels
of conflict severity were scattered throughout the roadway network used in this investigation (Figure 2).

Prices Fork Road, the east-west running arterial on the top part of the roadway network, showed the
highest concentration of conflicts of all severity levels, while the southern part of the roadway network
experienced the least number of conflicts. Also, from the concentration of the conflicts on Prices Fork Road,
it is worth mentioning that there is a possible correlation between the number of vehicles and the number
of surrogate conflicts. On the US-460 bypass, the north-south running freeway on the left side of the
roadway network barely has any conflicts. This is because of a lack of vehicles on the freeway US-460
compared to the vehicles traveling on the arterial Prices Fork Road.

|_rrc<-os coor [
| T7C<-10 Color |
| T7C<-15 Coor | ]

Figure 2: Conflict map visualization by SSAM.

Since the conflicts happened throughout the 84 simulation runs and were all projected as a summary of
the conflicts, the concentration of the conflicts may seem as if it is higher than normal (Figure 2). To further
explain the number of conflicts in individual VISSIM runs, the following is the data acquired from the
SSAM after the analysis and the filtration of the included unnecessary trajectory conflicts. The table only
shows the SSAM conflict summary data from the 27th to the 37th run as an example (Table 2). All 84 lines
of data were loaded into JMP Pro 16 for final model fitting and calibration target-matching. Before the J]MP
model fitting and sensitivity analysis, the visual inspection indicates a high fluctuation of all three types of
conflicts throughout the 11 simulation runs because of the change in EDM driver model parameters.

Table 2: EDM input variables and corresponding VISSIM conflicts.

active

desire | _ rel_ turnin

d_ lane | targ | Desire | g Lane
Desire | lane chang | etlan | dveloc | indicat Crossi | Rear | Chang
d a angle e e ity or a b [v0 [SO | T ng End | e
4.25 1.57 1 0 35 2 85110 |35 |10 |0 226 2492 | 215
0 1.57 1 -1 20 -1 0 10 {20 |0 0 135 1592 | 130
8.5 1.57 1 1 35 -1 0 10 |35 |10 | 1.5 137 2196 | 96
8.5 -1.57 1 -1 5 0 8510 |20 |10 |O 495 34 123
0 0 1 -1 35 0 0 0 |35]5 1.5 | 138 2061 | 110
0 -1.57 1 1 5 -1 0 10 | 5 5 1.5 | 146 2053 | 112
4.25 -1.57 0 1 5 -1 8510 [20 10 O 318 1821 | 212
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0 -1.57 -1 1 35 2 0 5 5 0 3 135 1592 | 130
0 0 0 -1 5 0 85|10 |35 |5 1.5 | 579 536 617
4.25 1.57 -1 1 20 -1 8.5 35 |0 1.5 ] 259 64 127
8.5 -1.57 -1 1 35 2 0 35 |5 0 146 2053 | 112

Comparing the 1st, 7th, and 10th runs in Table 2, the IDM deceleration parameter seems to have a large
impact on the rear-end conflicts. In real life, decelerating too slow or too fast could result in a rear-end
collision. Similarly, in the VISSIM simulation, if the drivers dictated by the EDM parameters brake too fast
or do not have enough braking, it will likely result in more collisions. The first simulation run above has
the most amount of rear-end conflicts as well as the highest IDM maximum deceleration of 10 m/s?, which
is approximately the highest deceleration possible on a street-legal vehicle. The violent braking is likely the
cause of such conflicts. The seventh simulation run has the lowest IDM maximum deceleration of 0 m/s?.
By not having enough braking in a car-following episode, the vehicles will likely collide with each other in
the event of turning into another street or in a roundabout. Thus, while the deceleration parameter changed,
the number of rear-end conflicts did not dramatically decrease.

However, when compared to the tenth simulation run, the previous two experiment runs had
deceleration values that were too extreme. A maximum deceleration value of 5 m/s? is like that of
moderate to hard braking in daily commutes. In the tenth run, the rear-end conflict count dropped
dramatically to only 64, indicating a more modest braking behavior will likely result in fewer rear-end
conflicts.

These visual inspections of the simulation data, however, could not replace the statistical analysis.
While visual inspections could indicate possible correlations between a singular driver model parameter
and a single VISSIM surrogate conflict output parameter, it is impossible to determine the exact correlation
or the impact of other driver model parameters on this correlation. For example, how would the increase in
safe-time headway impact the correlation between the IDM maximum deceleration and the rear-end
conflicts? JMP Pro 16 was used to examine the output of all 84 simulation runs based on its experiment
design, and it reports all trends or correlations observed. A model fitting is completed producing the
visualization of the model-fitting results in (Figure 3) and (Figure 4). All three response parameters show
statistically significant correlations to the 11 input variables under 95% confidence intervals with the lane
change being the response variable with the highest R-square value.

> —
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T Vd kY] e
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Rear End Predicted RMSE=7067.4 R5q=0.97
PValue=0.1280

Figure 3: Crossing and rear end conflicts model goodness of fit.

1286



Hong and Abbas

After the model fitting, a sensitivity analysis was performed. As shown below in Figure 5 and Figure
6, each of the 11 input parameters has demonstrated its influence on each response variable. The correlation
profiles shown for all 11 driver model variables and 3 conflict response variables revealed correlations that
were impossible to discover visually. When moving the parameter value needle on one of the eleven
parameter’s correlation profilers, the rest of the correlation profilers’ profile changes as the needle moves.
This evidence confirmed the findings of the visual inspection above: the impact of one parameter on the
correlation between other parameters. Also, the correlation profilers confirmed the finding that the IDM
max deceleration value has a significant impact on the rear-end conflict count (Figure 6).

6000 .
5000 /

4000 /

3000 /

2000 %

Lane Change Actual

1000 4

0
-1000 O 1000 2000 3000 4000 5000 6000
Lane Change Predicted RMSE=422.88
R5q=0.98564 PValue=0.0204

Figure 4: Lane change conflicts model goodness of fit.

The next step is to use the slider for each of the 11 parameters in the sensitivity analysis to change their
values and observe the change in the response variables crossing, rear-end, as well as lane change conflicts.
The curves show the correlation trends of each input parameter, changing their shapes with the movement
of the sliders and indicating the cooperative influence of the 11 input parameters together. It is important
to note that the inputs for “active lane change”, “rel target lane”, and “turning indicator” are only
acceptable as they are integers. For this experiment, a conflict count target is 280 crossing conflicts, 270
rear-end conflicts, and 55 lane-change conflicts. The sliders for each input variable were adjusted so that
all three response variables from the new input variables would be matched to those of the calibration target.

The purpose of such calibration is to find a set of driving behavior parameters in the car-following
episodes to best represent the driving behavior of a roadway network. After the simulation runs, SSAM,
and the sensitivity analysis, the value of each parameter that is most effective in detecting conflicts and
potential collisions was found. The effectiveness is determined by a good match between the calibration
targeting conflict counts and the simulation conflict count based on the sensitivity analysis. Shown below
are the calibrated parameters to best represent the targeted calibration values in (Figure 5) and (Figure 6).
A crossing, rear-end, and lane-change conflict count of 281.35, 272.33, and 55.71 are within acceptable
proximity to the calibration targets of 280, 270, and 55.

One benefit of such a calibration process is that it is mostly automatic, sans the SSAM’s involvement
and the sensitivity analysis in JMP Pro 16 due to their inability to support an API interface for automatic
processing. In the event of a future application utilizing such calibration in a different locality, the scripts
only need to be modified slightly to accommodate the setup on different computers, software versions, and
roadway networks.
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Figure 5: Calibrated EDM default input parameters.
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Figure 6: Calibrated IDM input parameters.

It is safe to conclude that the calibration method this experiment proposes effectively matches the
surrogate conflicts translated from the real-world collision data. All potential crossing, rear-end, and lane
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change collision detections are optimized during this calibration. However, determining whether this
calibration method has the adaptability to represent the surrogate of collisions in different localities or
internationally still requires future research and development. With the availability of traffic turning
volumes and SPaT data from different agencies, it is possible to come up with improvements on various
steps of this calibration method and develop this method to be universally applicable to all roadway
networks.

5 CONCLUSIONS

In this paper, a method of calibrating the VISSIM’s EDM’s car-following behaviors to best identify
potential collisions through the surrogate conflict analysis of the microsimulation trajectories was
introduced. The calibration methodology developed in this research can be applied to any adequately
established simulation network model for other simulation tools with slight changes in the scripts and
settings. This calibration method provides sufficient evidence to produce an accurate result matching real-
world target metrics. With the availability of the calibration data, this method can be improved to
accommodate more roadway networks. This methodology can potentially be used by researchers,
engineering consultants, and officials to calibrate their microscopic simulation’s car-following models to
identify and alleviate safety-critical situations.
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