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ABSTRACT 

This research aimed to develop a methodology and framework to calibrate microscopic simulation models 
that drive behaviors to reproduce safety conflicts observed in real-world environments. The Intelligent 
Driver Model (IDM) was selected as the car-following algorithm to be utilized in the External Driver Model 
(EDM) Application Programming Interface (API) in VISSIM to better represent real-world driving 
behavior. The calibration method starts with an experiment design in the statistical software JMP Pro 16, 
which provided 84 simulation runs, each with a distinct combination of the 11 EDM input variables. After 

84 runs each with a unique variable configuration, the traffic trajectory was analyzed using the FHWA’s 
Surrogate Safety Assessment Model (SSAM) to generate counts of crossing, rear-end, and lane-change 
conflicts. It is concluded that the proposed calibration method can closely match the conflict counts derived 
from real-world conditions. 

1 INTRODUCTION 

Safety is a critical aspect of transportation engineering, especially with rising public travel and vehicle 

ownership. Comparing safety performances for design decisions is a priority for engineering firms and 
transportation departments. Historically, empirical methods have been used to observe traffic conflicts 
through photographs and reports on the characteristics of conflict-prone intersections (Parker and Zegeer 
1989). This type of approach is called traffic conflict techniques for safety (Parker and Zegeer 1989), and 
the goal is to identify such conflicts defined by the scenarios or events that can develop into a collision ( 
Lund Institute of Technology 1977). However, this process is time-consuming, costly, and requires careful 

examination to cover the details (Parker and Zegeer 1989). In the last twenty years, surrogate safety 
measures have been proposed and applied in microscopic simulation to replace expensive crash studies and 
reconstructions (Essa and Sayed 2020; Parker and Zegeer 1989). 
 Using microsimulation software such as PTV VISSIM and its trajectory output for surrogate safety 
analysis in FHWA’s SSAM has become a popular proposed method for researchers to identify safety issues 
within a roadway network (Argade 2014; Kim et al. 2018; Li et al. 2013; Vasconcelos et al. 2014). However, 

such an effort also resulted in criticism and concerns over the validation and calibration of such a claimed 
correlation between simulated conflicts and crashes (Essa and Sayed 2020; So et al. 2015). Some 
researchers hoped to use a calibration method to adjust driving behaviors for the safety studies to increase 
the modeling accuracy (So et al. 2015). 
 In a small city projected to double in growth over the next five years, increasing diversity in driver 
behavior is expected due to migration. Capturing this variation in VISSIM's default parameters, particularly 

in car-following scenarios, will be challenging. The Wiedemann model in VISSIM assumes that vehicle 
inputs are influenced solely by transient stimuli, not by planned decisions or driving preferences like 
acceleration and aggression. (Abdelhalim and Abbas 2022). Inaccurate modeling of driving behavior can 
lead to exponential growth of issues and limited safety assessments, resulting in damages, injuries, and 
fatalities. Accurately modeling driving aggressions and their relationship to crashes is essential. 
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 This paper presents a method for calibrating driver aggression using SSAM and VISSIM’s EDM API 
to improve simulations of driver behavior and associated conflicts for safety studies. The IDM car-
following algorithm was chosen for its capacity to adjust desired speed and acceleration, effectively 

simulating aggressive driving behavior (Abdelhalim and Abbas 2022; Kesting et al. 2010; Shi 2019; Treiber 
et al. 2000; Treiber et al. 2007). 
 The following sections will outline the methodology selection process and highlight the gap in easily 
calibrated and accurate driver behavior modeling for safety assessment in microsimulation. Adjustments in 
the VISSIM microsimulation software for implementing an advanced car-following model will be detailed. 
The calibration procedure includes creating a roadway network in VISSIM, designing experiments using 

JMP Pro 16, compiling trajectory outputs, conducting SSAM analysis, fitting the final model, and 
performing sensitivity analysis. Each step will be discussed in detail, along with an introduction to 
VISSIM's EDM interface and the IDM car-following algorithm. Ultimately, a set of calibrated parameters 
will be generated to reflect driver aggression and vehicle conflicts. 

2 STATE OF THE ART 

VISSIM is a powerful microscopic traffic simulation tool that has not been widely used for safety analysis. 

Recently, its combination with SSAM has become an effective platform for researchers to identify safety 
threats using existing traffic data. This combination also allows for quantitative comparisons of different 
roadway designs and configurations. (Argade 2014; Kim et al. 2018). Many research efforts have utilized 
this VISSIM and SSAM combination for analyzing different roadside access management methods. 
(Argade 2014; Kim et al. 2018), innovative traffic patterns (Vasconcelos et al. 2014), and intersection 
control systems (Li et al. 2013). While not entirely accepted by the consultant industry, much research has 

shown promising safety analysis results (Abdelhalim and Abbas 2022; Fan et al. 2013). However, tools 
such as the SSAM could not be utilized to their full potential if the data used was not calibrated to represent 
the safety conditions of the local highway system accurately (Essa and Sayed 2015; Huang et al. 2013; 
Katrakazas et al. 2018; Fan et al. 2013). Research using SSAM to analyze safety conditions has been limited 
due to inadequate calibration and inaccurate representation of driving behaviors. (Essa and Sayed 2015, 
2020; Huang et al. 2013; Katrakazas et al. 2018; Fan et al. 2013). 

 SSAM analyzes the trajectory of vehicles in the network and uses the proximity model to predict the 
closeness to the accident by Time to Collision (TTC) and Post-Encroachment Time (PET) (Abdelhalim and 
Abbas 2022; Pu and Joshi 2008). TTC and PET are parameters that represent conflicts, which is a surrogate 
of crashes (So et al. 2015). However, as a new post-processing analysis platform for the existing 
microsimulation tools, SSAM received mixed reviews from scholars (So et al. 2015). The mixed impression 
came down to the modeling inaccuracy in the default microsimulation settings that require extensive 

calibration (Essa and Sayed 2020), the inability of VISSIM to violate traffic laws as in real life (Huang et 
al. 2013), the feasibility of analysis accuracy improvement using calibration (Essa and Sayed 2015), or even 
simply the question of whether the act of using VISSIM data for the SSAM analysis is statistically relevant 
because of the random nature of the driving behaviors (Fan et al. 2013). On the other hand, many studies 
have also laid out the solution to those problems, such as the fact that, with purposeful calibrations, the 
VISSIM and SSAM combination has promising improvements in its safety prediction accuracy (Essa and 

Sayed 2015; Huang et al. 2013; Katrakazas et al. 2018; Fan et al. 2013). 
 SSAM is sensitive to modeling inaccuracies and requires careful calibration. One proposed method 
involves two steps: first, calibrating the average delay per vehicle using observed speed data, and then 
adjusting the VISSIM Wiedemann driver model parameters based on rear-end conflict results (Essa and 
Sayed 2015). The author found that while calibration improved accuracy at one intersection, only a few 
driver model characteristics were transferable (Essa and Sayed 2015). The untransferable parameters may 

need calibration per intersection or could remain unchanged using system defaults. A study in Croatia also 
found that the VISSIM default Wiedemann 74, calibrated in Germany, was unsuitable for their area 
(Otković et al. 2020). These transferability conclusions affirmed the conclusions drawn by other authors as 
well (Abdelhalim and Abbas July 31, 2022; Fan et al. 2013).  
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 Due to the limited transferability of the default VISSIM Wiedemann driver model parameters, many 
researchers opted to calibrate the simulation model for individual intersections or networks rather than 
creating a universal method. Some focused on calibrating driver behaviors based on specific simulation 

outcomes, like SSAM-determined conflicts (Otković et al. 2020). Other researchers preferred using an extra 
calibration step for the speed and delay (Essa and Sayed 2015), and some even used a complex function to 
analyze the calibration results (Katrakazas et al. 2018). AI calibration approaches have been examined, but 
they fall short in conducting sensitivity analysis to identify the most influential parameters affecting 
responses (Al-Msari et al. 2024). 
 Research has primarily focused on calibrating the Wiedemann driver model in VISSIM, but there is 

also literature on using VISSIM’s EDM API to enhance driver following behavior modeling and employ 
the VISSIM and SSAM combination for quantitative validation (Abdelhalim and Abbas July 31, 2022; Li 
et al. 2013). The EDM replaces the car-following algorithm of the Wiedemann 74 or 99 model in the 
VISSIM microscopic simulation (Abdelhalim and Abbas July 31, 2022). This allows for a more accurate 
representation of driver aggression in vehicle-following scenarios compared to the default Wiedemann 
models. Notably, the EDM has been used to apply a driver model algorithm that calibrates itself based on 

SSAM results (Abdelhalim and Abbas July 31, 2022). The research introduced an innovative method 
showing the SSAM's capability in safety analysis through a new driver model, though its transferability to 
other locations remains uncertain. VISSIM’s EDM API (Shi 2019) provides an easy-to-calibrate alternative 
to the Wiedemann model for car-following, as it can incorporate other driver models like IDM to better 
mimic driving behaviors (Abdelhalim and Abbas July 31, 2022; Kesting et al. 2010). Improved driver 
aggression calibration allows state or local officials to estimate potential crashes when comparing roadway 

designs or analyzing existing roads, bypassing costly crash studies. (Argade 2014). 
 The use of VISSIM and SSAM for safety analysis faces issues such as insufficient calibration, non-
standardized calibration methods, and the inability to accurately represent driving behaviors. Thus, a 
surrogate analysis method with greater accuracy and easier calibration is needed. 

3 METHODOLOGY 

The research methodology included three key components: (1) observing safety-critical conflicts in real-

world scenarios, (2) developing a simulation model for the case study, and (3) calibrating driving behavior 
parameters to replicate observed conflicts. The simulation comprised a VISSIM model of a 5-mile circular 
road network in Blacksburg with peak-hour traffic, Ring-Barrier Controllers to emulate Signal Phase and 
Timing (SPaT) data, and an IDM model for car-following behavior using VISSIM’s EDM API. 
 To validate the methodology, we employed a statistical analysis model (JMP Pro 16) and designed 
experiments with 11 IDM independent variables for VISSIM runs. A VBScript automated the loading of a 

Dynamic Link Library (DLL) for 84 continuous runs. The SSAM converted VISSIM trajectory data into 
conflict counts, and JMP Pro 16 was used for fitting, sensitivity analysis, and calibrating IDM values to 
generate targeted conflict counts from near-conflict data. 

3.1 Roadway Network 

The experiment used a 5-mile loop roadway based on research showing that looped networks effectively 
represent vehicle-to-vehicle interactions, similar to real traffic. Notable studies using this setup focused on 

phantom traffic and the role of autonomous vehicles in alleviating such issues (Stern et al. 2018; Sugiyama 
et al. 2008; Tadaki et al. 2013). To calibrate vehicular conflict detection, a loop road network was modeled 
in VISSIM, based on the roadway network in Blacksburg, VA. This network includes a mix of rural 
principal arterials, urban minor arterials, major collectors, and minor collectors (Federal Highway 
Administration 2000). 
 Blacksburg, a college town with diverse growth prospects, is the chosen location. The network layout 

is illustrated in Figure 1. Turning volumes and SPaT data for the VISSIM setup were sourced from 

1281



Hong and Abbas 
 

 

Blacksburg and VDOT. Data from Blacksburg covers intersections 1 to 8, while VDOT provides 
information on the US-460 bypass and Southgate Drive Interchange (Figure 1). 

 

 
 

Figure 1: Roadway Network’s Satellite Imagery and the VISSIM Network (Blacksburg, VA, 2019). 

 The timing plan from Blacksburg and VDOT is utilized to reflect actual field conditions. Data for 
modeling the 5-mile roadway network were collected between 2018 and 2023 to accurately represent 
current traffic. The 5 PM to 6 PM peak hour was selected due to the typically high traffic volume, which 

increases the likelihood of collisions. To simplify the simulation, minor intersections without traffic 
controllers were excluded, as specific turning counts could not be determined. Additionally, driveways, 
turnouts, bus stops, and facility entrances were not included due to a lack of data. 

3.2 Mathematical Model 

The mathematical expression of the open-source code modified for this experiment is the IDM, a time-
continuous car-following function commonly used in traffic engineering research (Shi 2019; Treiber et al. 

August 30, 2000; Treiber et al. 2007). The IDM functions are shown below in Equations 1 and 2. The 𝑎𝐼𝐷𝑀 
is the acceleration calculated from the IDM and fed back into the VISSIM API at each time step. The 
𝑠, 𝑣, ∆𝑣 are the VISSIM parameters following distance, vehicle speed, and vehicle speed differential (from 
the surrounding vehicles) being input into the IDM from the EDM API. Besides a free acceleration 
component denoted by “δ” that generally has a value of “4”, the meaning of the rest of the parameters is 
shown below (Table 1). Below is IDM Equation (1): 

 

 𝑎𝐼𝐷𝑀(𝑠, 𝑣, ∆𝑣) =
𝑑𝑣

𝑑𝑡
= 𝑎[1 − (

𝑣

𝑣0
)
𝛿
− (

𝑠∗(𝑣,∆𝑣)

𝑠
)
2
] (1) 

 

 
IDM Equation (2): 

 𝑠∗(𝑣, ∆𝑣) = 𝑠0 + 𝑣𝑇 +
𝑣∆𝑣

2√𝑎𝑏
 (2) 

 

3.3 EDM Script, Experiment Design, and Variables 

The EDM utilized in this research is a set of open-source scripts (Shi 2019) that utilized the IDM in its 
algorithm for calculating the VISSIM’s virtual drivers’ behavioral response to the change in the input 
EDM’s parameters. This open-source C++ script builds a DLL for VISSIM’s EDM API, using 11 major 
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input parameters for user calibration (Table 1). These parameters allow users to replace VISSIM’s default 
Wiedemann 74 or 99 car-following model with behavior calculated by the IDM algorithm. In an experiment 
designed in JMP Pro 16, these parameters were assigned reasonable ranges, resulting in 84 distinct 

parameter combinations for the EDM scripts, leading to 84 VISSIM simulation runs. Each combination 
corresponds to one simulation run due to the lack of stochastic nature of the same random seed, ensuring 
identical outcomes with the same VISSIM file and inputs. The "turning_indicator" parameter, with 
designated values of “-1,” “2,” and a corrected “0” instead of “0.5,” was handled accordingly in JMP Pro 
16. A script was also created to automate the compilation of these 84 DLLs. 

Table 1: EDM input variables and possible range. 

Independent Variables 

Possible Range 

Low High 

desired_acceleration 0 8.5 

desired_lane_angle -1.57 1.57 

active_lane_change -1 1 

rel_target_lane -1 1 

desired_velocity 5 35 

turning_indicator -1 2 

a = IDM_max_acceleration 0 8.5 

b = IDM_max_deceleration 0 10 

v0 = IDM_desired_velocity 5 35 

S0 = jam_distance 0 10 

T = safe_time_headway 0 3 

  
 Below are the explanations for each of the variables. Most of the variables below either describe a 
desired state to be in or describe an active desire to complete a certain driving movement. 
“desired_acceleration” is an EDM default variable that has a unit of 𝑚/𝑠2. This variable corresponds to the 
desired acceleration of the driver at the current time step (Rahal et al. 2017). A range of “0” to “8.5” was 

used for this variable because an acceleration of 8.5 is about the quickest acceleration to be expected of 
street vehicles. “desired_lane_angle” is another default EDM variable that has a unit of rad. It is the desired 
lane angle relative to the middle of the lane (Rahal et al. 2017) (Table 1). A positive value in rad would be 
a state of desiring to turn to the left, and a negative value indicates a desire to turn right, while a “0” value 
denotes no desire to turn either left or right concerning the middle of the lane (Rahal et al. 2017). A range 
of “-1.57” to “1.57” rad is used for it equates to about 90 degrees turn to the left and the right. 

“active_lane_change” is an EDM default variable that has no unit, but it simply indicates the direction of 
the active lane change movement or a desired lane change movement (Rahal et al. 2017). A “+1” value 
would indicate an active leftward lane change, a “0” value means no lane change, and a “-1” value means 
an active rightward lane change (Rahal et al. 2017). “rel_target_lane” is a default EDM variable that has no 
unit, but similar to the previous variable, it indicates a desired lane to be in.  
 For example, one lane to the left would be “+1”, one lane to the right would be “-1”, and a “0” value 

would indicate the current lane is the desired lane (Rahal et al. 2017). “Desired_velocity” is another default 
EDM variable in a unit of 𝑚/𝑠. It straightforwardly indicates the travel speed the driver desires to run 
during the current time step (Rahal et al. 2017). A range of “5” to “35” was used because a speed of 11 mph 
to 78 mph could be expected in the roadway network. “turning_indicator” is a default EDM parameter 
similar to the “active_lane_change” parameter mentioned previously. “turning_indicator” has no unit. A 
value of “+1” indicates the left turn signal is on, a value of “-1” indicates the right turn signal is on, a value 

of “0” indicates no signal was used in the lane change, and a value of “2” indicates both indicators or the 
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hazard light was used (Rahal et al. 2017). It is noted that the turning indicator variable not only allows the 
VISSIM visualization during the simulation run to show blinkers used by the ego vehicle, but it also allows 
other drivers to notice and respond to the use of the blinkers (Rahal et al. 2017). “vehicle_color” is a default 

EDM variable neglected in this experiment due to its insignificance in affecting driver behaviors under the 
no-driver-error default settings in VISSIM.  
 The IDM variables are added to the default EDM by researcher Yunpeng Shi in the open-source script 
used in this experiment (Shi 2019). These IDM variables are essentially the Kesting and Treiber IDM 
variables incorporated into the script (Kesting et al. 2010). “IDM_max_acceleration” or “a” as noted in the 
original open-source script, is an IDM variable with a unit of 𝑚/𝑠2. “IDM_max_deceleration”, or “b” as 

noted in the original open-source script, is an IDM variable with a unit of 𝑚/𝑠2. Both “a” and “b” are 
positive values used for the IDM calculations to determine the acceleration and the following distance at 
the current time step (Kesting et al. 2010; Shi 2019). For “a”, a range between “0” to “8.5” like the one 
given to the “desired_acceleration” is given. For “b”, a range between “0” to “10” was given due to the 
slightly higher deceleration that could be expected from street vehicles than that of their acceleration. 
“IDM_desired_velocity” or “v0”, is another IDM variable with a unit of 𝑚/𝑠 like the “desired_velocity”. 

Thus, a similar range between “5” and “35” is given. “jam_distance” or “S0” is an IDM variable with a unit 
of meters. A range between “0” and “10” was given since following a vehicle with as much as two-car-
length distance is acceptable. “safe_time_headway” or “T” is the final IDM variable with a unit of seconds. 
A range between “0” and “3” is used in this experiment because the “3-second rule” is a commonly 
recommended car-following rule when driving at 65 mph. 
 Once the user changes the input parameters to their desired numbers and the vehicle class according to 

the desired VISSIM vehicle class in the C++ script, the script is then developed into a DLL file ready for 
VISSIM’s API to call. For this experiment, all vehicle classes, including the passenger cars, buses, and 
Heavy Goods Vehicle (HGV) classes, used the external driver. However, in a scenario where the other 
vehicle classes are added, the scripts are easily modifiable by changing a single parameter “vehicle_type” 
to the corresponding vehicle classes. During the simulation run, VISSIM will supply the EDM with 
information such as the vehicle ID, lane number, total distance traveled (or odometer), lane angle, velocity, 

acceleration, length, and weight at every time step. The algorithm in the DLL will take these values and 
supply VISSIM with the updated values after the parameters run through the IDM model at each of the time 
steps incrementally (Rahal et al. 2017; Shi 2019). 

4 RESULTS AND DISCUSSION 

The following section will focus on the calibration process from the simulation output parameters and a 
discussion of the calibration results. The calibration process consists of four parts: (1) Create 84 simulation 

runs generating 84 distinct trajectory files (.trj) using a script file, (2) Input the trajectory files in SSAM to 
translate the files into conflict types and conflict counts for each of the runs, (3) Input the conflict types and 
their counts for each run into their corresponding response variable in JMP Pro 16 for model fitting, and 
(4) Fine-tune each parameter within the acceptable ranges to match the pre-determined conflict count 
translated from the real-world data. After the DLL generation, a script file was written for the VISSIM 
interface to initiate the EDM API, load all the DLLs consecutively, and run the simulations consecutively. 

 After the 84 simulation runs, the trajectory data was examined by the SSAM and output three types of 
conflicts and their counts. The SSAM was then used to identify incidents where the vehicle’s trajectory was 
in proximity to the other vehicles. TTC and PET were used to describe such proximity. TTC is the time 
before two vehicles in the roadway network collide if they continue in their trajectory. PET is the time 
between one vehicle occupying a specific location in the roadway network and the next vehicle arriving at 
the same location (Pu and Joshi May 2008). The TTC and PET were then used as a filter to identify the 

most critical conflicts among all the conflicts, specifically those with 0 seconds (equal to collision) or 0.1 
seconds of TTC or PET. The crossing, rear end, and lane change conflicts of each scenario or trajectory file 
were compared against the VISSIM default as well as the EDM’s default trajectory output. TTC thresholds 
were set at “0” to “1.5” seconds, while PET thresholds were set at “0” to “4.9” seconds. The conflict data 
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taken into consideration were 55,394 crossing conflicts, 434,143 rear-end conflicts, and 43,157 lane change 
conflicts. All of these factors came from the sum of the conflicts in all 84 simulation runs. Various levels 
of conflict severity were scattered throughout the roadway network used in this investigation (Figure 2).  

 Prices Fork Road, the east-west running arterial on the top part of the roadway network, showed the 
highest concentration of conflicts of all severity levels, while the southern part of the roadway network 
experienced the least number of conflicts. Also, from the concentration of the conflicts on Prices Fork Road, 
it is worth mentioning that there is a possible correlation between the number of vehicles and the number 
of surrogate conflicts. On the US-460 bypass, the north-south running freeway on the left side of the 
roadway network barely has any conflicts. This is because of a lack of vehicles on the freeway US-460 

compared to the vehicles traveling on the arterial Prices Fork Road.  
 

 

Figure 2: Conflict map visualization by SSAM. 

 Since the conflicts happened throughout the 84 simulation runs and were all projected as a summary of 
the conflicts, the concentration of the conflicts may seem as if it is higher than normal (Figure 2). To further 
explain the number of conflicts in individual VISSIM runs, the following is the data acquired from the 
SSAM after the analysis and the filtration of the included unnecessary trajectory conflicts. The table only 
shows the SSAM conflict summary data from the 27th to the 37th run as an example (Table 2). All 84 lines 
of data were loaded into JMP Pro 16 for final model fitting and calibration target-matching. Before the JMP 

model fitting and sensitivity analysis, the visual inspection indicates a high fluctuation of all three types of 
conflicts throughout the 11 simulation runs because of the change in EDM driver model parameters. 

Table 2: EDM input variables and corresponding VISSIM conflicts. 
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4.25 1.57 1 0 35 2 8.5 10 35 10 0 226 2492 215 

0 1.57 1 -1 20 -1 0 10 20 0 0 135 1592 130 

8.5 1.57 1 1 35 -1 0 10 35 10 1.5 137 2196 96 

8.5 -1.57 1 -1 5 0 8.5 10 20 10 0 495 34 123 

0 0 1 -1 35 0 0 0 35 5 1.5 138 2061 110 

0 -1.57 1 1 5 -1 0 10 5 5 1.5 146 2053 112 

4.25 -1.57 0 1 5 -1 8.5 0 20 10 0 318 1821 212 
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Comparing the 1st, 7th, and 10th runs in Table 2, the IDM deceleration parameter seems to have a large 
impact on the rear-end conflicts. In real life, decelerating too slow or too fast could result in a rear-end 

collision. Similarly, in the VISSIM simulation, if the drivers dictated by the EDM parameters brake too fast 
or do not have enough braking, it will likely result in more collisions. The first simulation run above has 
the most amount of rear-end conflicts as well as the highest IDM maximum deceleration of 10 𝑚/𝑠2, which 
is approximately the highest deceleration possible on a street-legal vehicle. The violent braking is likely the 
cause of such conflicts. The seventh simulation run has the lowest IDM maximum deceleration of 0 𝑚/𝑠2. 
By not having enough braking in a car-following episode, the vehicles will likely collide with each other in 

the event of turning into another street or in a roundabout. Thus, while the deceleration parameter changed, 
the number of rear-end conflicts did not dramatically decrease.  
 However, when compared to the tenth simulation run, the previous two experiment runs had 
deceleration values that were too extreme. A maximum deceleration value of 5 𝑚/𝑠2  is like that of 
moderate to hard braking in daily commutes. In the tenth run, the rear-end conflict count dropped 
dramatically to only 64, indicating a more modest braking behavior will likely result in fewer rear-end 

conflicts. 
 These visual inspections of the simulation data, however, could not replace the statistical analysis. 
While visual inspections could indicate possible correlations between a singular driver model parameter 
and a single VISSIM surrogate conflict output parameter, it is impossible to determine the exact correlation 
or the impact of other driver model parameters on this correlation. For example, how would the increase in 
safe-time headway impact the correlation between the IDM maximum deceleration and the rear-end 

conflicts? JMP Pro 16 was used to examine the output of all 84 simulation runs based on its experiment 
design, and it reports all trends or correlations observed. A model fitting is completed producing the 
visualization of the model-fitting results in (Figure 3) and (Figure 4). All three response parameters show 
statistically significant correlations to the 11 input variables under 95% confidence intervals with the lane 
change being the response variable with the highest R-square value. 

 

 
 

Figure 3: Crossing and rear end conflicts model goodness of fit. 

0 -1.57 -1 1 35 2 0 5 5 0 3 135 1592 130 

0 0 0 -1 5 0 8.5 10 35 5 1.5 579 536 617 

4.25 1.57 -1 1 20 -1 8.5 5 35 0 1.5 259 64 127 

8.5 -1.57 -1 1 35 2 0 0 35 5 0 146 2053 112 
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 After the model fitting, a sensitivity analysis was performed. As shown below in Figure 5 and Figure 
6, each of the 11 input parameters has demonstrated its influence on each response variable. The correlation 
profiles shown for all 11 driver model variables and 3 conflict response variables revealed correlations that 

were impossible to discover visually. When moving the parameter value needle on one of the eleven 
parameter’s correlation profilers, the rest of the correlation profilers’ profile changes as the needle moves. 
This evidence confirmed the findings of the visual inspection above: the impact of one parameter on the 
correlation between other parameters. Also, the correlation profilers confirmed the finding that the IDM 
max deceleration value has a significant impact on the rear-end conflict count (Figure 6). 

 

 
 

Figure 4: Lane change conflicts model goodness of fit. 

 The next step is to use the slider for each of the 11 parameters in the sensitivity analysis to change their 

values and observe the change in the response variables crossing, rear-end, as well as lane change conflicts. 
The curves show the correlation trends of each input parameter, changing their shapes with the movement 
of the sliders and indicating the cooperative influence of the 11 input parameters together. It is important 
to note that the inputs for “active_lane_change”, “rel_target_lane”, and “turning_indicator” are only 
acceptable as they are integers. For this experiment, a conflict count target is 280 crossing conflicts, 270 
rear-end conflicts, and 55 lane-change conflicts. The sliders for each input variable were adjusted so that 

all three response variables from the new input variables would be matched to those of the calibration target. 
 The purpose of such calibration is to find a set of driving behavior parameters in the car-following 
episodes to best represent the driving behavior of a roadway network. After the simulation runs, SSAM, 
and the sensitivity analysis, the value of each parameter that is most effective in detecting conflicts and 
potential collisions was found. The effectiveness is determined by a good match between the calibration 
targeting conflict counts and the simulation conflict count based on the sensitivity analysis. Shown below 

are the calibrated parameters to best represent the targeted calibration values in (Figure 5) and (Figure 6). 
A crossing, rear-end, and lane-change conflict count of 281.35, 272.33, and 55.71 are within acceptable 
proximity to the calibration targets of 280, 270, and 55. 
 One benefit of such a calibration process is that it is mostly automatic, sans the SSAM’s involvement 
and the sensitivity analysis in JMP Pro 16 due to their inability to support an API interface for automatic 
processing. In the event of a future application utilizing such calibration in a different locality, the scripts 

only need to be modified slightly to accommodate the setup on different computers, software versions, and 
roadway networks. 
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Figure 5: Calibrated EDM default input parameters. 

 
 

Figure 6: Calibrated IDM input parameters. 

 It is safe to conclude that the calibration method this experiment proposes effectively matches the 
surrogate conflicts translated from the real-world collision data. All potential crossing, rear-end, and lane 
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change collision detections are optimized during this calibration. However, determining whether this 
calibration method has the adaptability to represent the surrogate of collisions in different localities or 
internationally still requires future research and development. With the availability of traffic turning 

volumes and SPaT data from different agencies, it is possible to come up with improvements on various 
steps of this calibration method and develop this method to be universally applicable to all roadway 
networks. 

5 CONCLUSIONS 

In this paper, a method of calibrating the VISSIM’s EDM’s car-following behaviors to best identify 
potential collisions through the surrogate conflict analysis of the microsimulation trajectories was 

introduced. The calibration methodology developed in this research can be applied to any adequately 
established simulation network model for other simulation tools with slight changes in the scripts and 
settings. This calibration method provides sufficient evidence to produce an accurate result matching real-
world target metrics. With the availability of the calibration data, this method can be improved to 
accommodate more roadway networks. This methodology can potentially be used by researchers, 
engineering consultants, and officials to calibrate their microscopic simulation’s car-following models to 

identify and alleviate safety-critical situations. 
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