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ABSTRACT

Simulation optimization (SO) is frequently challenged by noisy evaluations, high computational costs, and
complex, multimodal search landscapes. This paper introduces Tabu-Enhanced Simulation Optimization
(TESO), a novel metaheuristic framework integrating adaptive search with memory-based strategies. TESO
leverages a short-term Tabu List to prevent cycling and encourage diversification, and a long-term Elite
Memory to guide intensification by perturbing high-performing solutions. An aspiration criterion allows
overriding tabu restrictions for exceptional candidates. This combination facilitates a dynamic balance
between exploration and exploitation in stochastic environments. We demonstrate TESO’s effectiveness and
reliability using an queue optimization problem, showing improved performance compared to benchmarks
and validating the contribution of its memory components.

1 INTRODUCTION

Simulation Optimization (SO) is now widely recognized as a powerful methodology for decision-making
across a diverse spectrum of fields, including engineering design (Deng 2007), supply chain management
(Jung et al. 2004), healthcare (Lal, Roh, and Huschka 2015) and increasingly, the tuning of hyperparameters
in complex machine learning models (Amaran et al. 2016). The prevalence of SO stems from its power to
identify optimal parameter settings or system configurations by directly interacting with simulation models,
which often represent the only viable way to capture the intricacies and stochastic nature of real-world
systems when analytical models are intractable (Nezami and Anahideh 2023).

However, the practical application of SO is frequently confronted by significant challenges. Many
high-fidelity simulations are computationally expensive, demanding substantial time or resources for each
evaluation. These simulations are often treated as black-box functions, meaning their internal analytical
structure is either unknown or too complex to be exploited directly for optimization, thus preventing
the direct calculation of derivatives (Tekin and Sabuncuoglu 2004). Also, the outputs derived from
stochastic simulations are inherently noisy due to the underlying random components within the model.
This noise complicates the assessment of a candidate solution’s true performance, making it difficult to
reliably distinguish genuine improvements from mere statistical fluctuations based on a limited number of
simulation runs (Fu 1994). In addition, the search landscapes encountered in SO problems are frequently
highly complex. They can be high-dimensional, contain numerous local optima (i.e., be multimodal), and
lack readily available or meaningful gradient information. This complexity renders standard gradient-based
optimization techniques ineffective and necessitates the use of algorithms capable of global search without
relying on derivative information (Figueira and Almada-Lobo 2014).

A variety of approaches have been developed to tackle the challenges inherent in SO. Among the most
prominent are Surrogate-Based Optimization (SBO) methods, which aim to mitigate the high computational
cost of simulations by constructing cheaper-to-evaluate approximation models, or surrogates (Hong and
Zhang 2021). Gaussian Processes (GPs), often employed within a Bayesian Optimization (BO) framework,
are frequently used for this purpose due to their ability to capture uncertainty in the approximation (Pearce,
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Poloczek, and Branke 2019). However, constructing and tuning effective surrogate models, especially for
high-dimensional or highly complex functions, can be computationally intensive itself and sensitive to the
choice of kernel functions and hyperparameters (Fan et al. 2024).

Another significant class of methods, particularly relevant when comparing a finite number of system
designs, falls under the umbrella of Ranking and Selection (R&S) procedures (Boesel, Nelson, and Kim
2003). These statistical methods focus on efficiently allocating simulation budget to identify the best among
a discrete set of alternatives with a certain level of statistical confidence (Hong, Fan, and Luo 2021). While
powerful in their domain, R&S procedures are primarily suited for problems with discrete or a relatively
small number of candidate solutions and are less directly applicable to the continuous or high-dimensional
search spaces often encountered in optimization.

Metaheuristics represent a third major category, offering general-purpose stochastic search strategies
applicable to complex black-box problems. Common examples used in SO include Genetic Algorithms
(GA) (de Carvalho Miranda, Montevechi, and de Pinho 2015), Simulated Annealing (SA) (Haddock and
Mittenthal 1992), and Particle Swarm Optimization (PSO) (Kuo and Yang 2011). These methods often excel
at global exploration but can suffer from premature convergence to local optima, particularly in the presence
of significant simulation noise (Brahim et al. 2024). Also, their performance can be highly sensitive to
the choice of algorithmic hyperparameters (e.g., population size, mutation rates, cooling schedules), often
requiring substantial tuning effort, which can itself become an optimization problem (Nezami and Anahideh
2023). Distinct from these, Tabu Search (TS) is a metaheuristic optimization strategy characterized by its
intelligent use of memory structures (Glover 1990). Central to TS is the concept of a Tabu List, which
records recently visited solutions or moves, temporarily forbidding them to prevent the search from cycling
and to encourage exploration of unvisited areas of the solution space. This memory-based mechanism
is specifically designed to help search processes escape the confines of local optima, a common pitfall
for many other heuristic methods. The integration of such memory-based strategies offers a promising
direction for enhancing the robustness and exploratory capabilities of SO algorithms.

Addressing the limitations of existing approaches and benefiting from the strengths of memory-
based heuristics, this paper introduces Tabu-Enhanced Simulation Optimization (TESO), a novel algorithm
specifically designed for complex and noisy SO problems. The core idea behind TESO is to dynamically
balance the fundamental trade-off between exploration, which involves discovering potentially new and
promising regions of the vast solution space, and exploitation, which focuses on carefully refining solutions
within regions already identified as high-performing. This research is motivated by the central research
question: Can the integration of TS principles, Elite Memory structures, and adaptive perturbation strategies
within a unified SO framework effectively balance exploration and exploitation to reliably converge towards
high-quality solutions, particularly when dealing with noisy, potentially multimodal, and computationally
expensive simulation environments?

While TS and elite set strategies are known in deterministic optimization, their application to stochastic
SO presents unique challenges. Standard TS assumes deterministic objective evaluations, making concepts
like ’best move’ and ’aspiration’ straightforward. In SO, these must be redefined to operate on noisy
estimates. TESO’s novelty is not in inventing these memory structures, but in adapting and integrating
them into a cohesive framework for the SO context. Specifically, it uses a dual-memory approach which
is explicitly designed to balance the search process under the uncertainty inherent to simulation.

To address the research questions, this paper makes the following primary contributions to the field of
SO: (i) The proposal of TESO, a novel SO algorithm that synergistically integrates Tabu Search principles
(tabu list, aspiration criterion) with Elite Memory and adaptive noise control, specifically tailored for noisy,
complex black-box simulation environments. (ii) An empirical demonstration of TESO’s effective balancing
of exploration and exploitation. We show how tabu-driven diversification and random sampling interact
with elite-guided intensification and adaptive perturbation to navigate challenging stochastic landscapes,
leading to improved solution quality and reliability.
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The remainder of this paper is structured as follows. Section 2 provides a detailed review of relevant
background concepts. Section 3 presents the methodology of the proposed TESO algorithm, elaborating on
its components. Section 4 details the numerical experiments conducted to evaluate TESO’s performance.
Finally, Section 5 concludes the paper by summarizing the key findings, acknowledging limitations, and
suggesting potential directions for future research in this area.

2 BACKGROUND AND RELATED WORK

2.1 Simulation Optimization (SO)

SO refers to the process of finding optimal input parameters or decision variables, denoted by a vector
x, for a system whose performance is evaluated using a computer simulation model (Andradóttir 1998).
The goal is typically to minimize or maximize an objective function, J(x), which represents the expected
value of some performance measure obtained from the simulation output, f (x,ω) (Gosavi et al. 2015).
Formally, the problem can often be expressed as:

min
x∈X

J(x) = Eω [ f (x,ω)] (1)

or equivalently for maximization, where x represents the vector of decision variables, X is the feasible
set of decisions, f (x,ω) is the performance measure output from a single simulation run given input x and
realization ω of the random elements within the simulation, and Eω [·] denotes the expectation taken over
the probability space governing the stochastic components ω . A key characteristic of many SO problems
is that the simulation model acts as a black box, meaning an explicit analytical expression for J(x) or its
gradients is often unavailable (Cao, Hu, and Lian 2024).

The application of optimization techniques within this simulation context presents several distinct and
significant challenges. First and foremost is the need for handling stochastic responses (Hong and Zhang
2021). Since the simulation output f (x,ω) for any given x is a random variable due to the inherent
randomness ω within the simulation model, a single simulation run provides only a noisy estimate of the
true expected performance J(x). Relying on single, noisy observations can lead to incorrect assessments
of solution quality and poor optimization decisions. Accurately estimating J(x) typically requires multiple
simulation replications for each candidate solution x, which directly impacts the overall computational effort.
This inherent noise complicates tasks such as estimating gradients (if applicable), comparing candidate
solutions reliably, and determining convergence.

Also, SO problems are often constrained by computational budget limitations (Chen and Lee 2011). High-
fidelity simulations representing complex real-world systems can be computationally intensive, requiring
significant time or resources for each execution. Consequently, the total number of simulation runs (across
all candidate solutions and all replications per solution) that can be performed is often severely limited.
This budget constraint forces a careful allocation of computational effort and exacerbates the challenge
posed by stochastic responses, as obtaining highly precise estimates of J(x) for many different x values
may be infeasible.

In addition, SO algorithms must effectively balance the fundamental exploration versus exploitation
dilemma (Amaran et al. 2016). Given the limited budget and noisy feedback, the algorithm must decide
whether to spend resources investigating new, unexplored regions of the decision space X (exploration)
in the hope of discovering globally superior solutions, or to focus resources on refining solutions within
regions already known to yield good performance (exploitation). Over-emphasizing exploration can waste
valuable computational budget on evaluating unpromising areas, while over-emphasizing exploitation risks
premature convergence to a locally optimal solution that may be significantly inferior to the true global
optimum. Achieving an effective balance between these two competing objectives is critical for the success
of any SO algorithm, particularly when dealing with the complex, potentially multimodal landscapes
frequently encountered in simulation-based problems (Nsiye et al. 2024; Soykan and Rabadi 2024). TESO
is designed specifically to address these intertwined challenges.
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2.2 Metaheuristics in Simulation Optimization

Given the black-box nature and the frequent absence of readily available gradient information that characterize
many SO problems, metaheuristic algorithms offer a compelling and widely adopted set of tools (Amaran
et al. 2016). A primary strength of these population-based or trajectory-based methods lies in their
inherent ability to perform a global search across the decision space, rather than being confined to local
improvements like gradient-based methods (Soykan and Rabadi 2022). They operate directly on candidate
solutions and their observed (potentially noisy) objective function values, bypassing the need for derivative
information or strong assumptions about the objective function’s structure (e.g., convexity). This makes
them particularly suitable for solving the complex, potentially multimodal, and rugged landscapes often
characteristic of simulation models (Thengvall, Hall, and Deskevich 2025).

However, the effective application of metaheuristics in SO is not without its difficulties. A significant
challenge lies in parameter tuning; algorithms like GA (requiring settings for mutation and crossover
rates, population size, selection mechanisms), SA (requiring an effective cooling schedule), and PSO
(requiring inertia weights, cognitive and social parameters) possess numerous control parameters. The
optimal settings for these parameters can be highly problem-dependent and non-trivial to determine a
priori, often requiring extensive preliminary experimentation or specific expertise (Nezami and Anahideh
2023). Also, most metaheuristics are stochastic in nature and often lack formal convergence guarantees
to the global optimum, especially within a finite computational budget typically available in SO. While
some theoretical convergence results exist under specific assumptions (e.g., for SA under infinitely slow
cooling), practical guarantees of finding the true optimum in a finite number of steps are rare.

Despite their global search capabilities, these algorithms can still suffer from premature convergence,
becoming trapped in sub-optimal regions of the search space. The inherent stochasticity of simulation
outputs adds another layer of complexity; noise can obscure the true underlying landscape, making fitness or
objective evaluations unreliable and potentially misleading the search direction, which can exacerbate issues
like premature convergence or difficulty in discerning truly superior solutions. Despite these weaknesses,
metaheuristics remain a popular and often effective approach for SO due to their flexibility, general
applicability to challenging black-box problems, and potential for finding high-quality solutions when
gradient-based or analytical methods are infeasible. TESO aims to retain the exploratory strengths while
mitigating some weaknesses, particularly premature convergence, through its specific memory structures.

2.3 Memory-Based Heuristics: Tabu Search and Elite Memory

TS is a prominent metaheuristic that exemplifies the strategic use of adaptive memory, particularly for
escaping local optima in complex search spaces (Glover 1990). Its core mechanism is the Tabu List, a
short-term memory that records recent moves or solution attributes, temporarily forbidding their reversal for
a set duration (Tabu Tenure). This prevents cycling and promotes diversification by forcing the search into
new areas. TS iteratively explores solution neighborhoods, selecting the best permissible move (non-tabu, or
tabu but meeting an aspiration criterion, such as finding a new global best) even if it results in a temporary
worsening of the objective function. This non-improving move capability, combined with longer-term
strategies for exploitation and exploration, has made TS highly effective (Soykan and Rabadi 2016).

The broader concept of leveraging memory extends beyond TS, with many advanced heuristics incor-
porating mechanisms to learn from search history. A common and powerful form is the use of long-term
memory to store a collection of elite solutions—the best candidates found so far. This elite set serves as
a basis for exploitation. Other forms of memory might track historical attribute frequencies or operator
performance to adaptively bias the search. By incorporating memory, whether the short-term restrictive
memory of a Tabu List or the long-term guiding memory of an elite set, heuristics can achieve a more effec-
tive balance between exploration and exploitation, leading to faster convergence and increased robustness,
particularly in the noisy and complex landscapes characteristic of SO (Yu, Lahrichi, and Matta 2023).
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3 TESO: ALGORITHM METHODOLOGY

3.1 Framework Overview

TESO is positioned as a direct search metaheuristic specifically adapted for noisy, black-box SO. It improves
upon standard metaheuristics by integrating adaptive memory structures inspired by Tabu Search (TS) to
better navigate complex, uncertain landscapes. TESO accommodates simulation noise by operating on
mean estimates derived from multiple replications. Key adaptations include: a Tabu List storing recent
candidate representations to prevent re-evaluation and encourage diversification despite noise; a stochastic
aspiration criterion allowing tabu candidates to be accepted if their estimated performance surpasses the
current best; and an Elite Memory storing top-performing candidates based on their mean estimates, which
provides robust starting points for intensification via perturbation.

When contrasted with standard TS, TESO differs significantly in its neighborhood exploration and
evaluation. Standard TS often relies on explicitly defined, discrete neighborhood structures (e.g., adjacent
swaps, bit flips). TESO, on the other hand, employs an implicit neighborhood structure defined by adaptive
random perturbation around elite solutions. The search step is probabilistic rather than a deterministic
evaluation of all neighbors. Also, TESO evaluates candidates using multiple simulation replications to
handle noise, whereas standard TS typically assumes deterministic function evaluations. This distinction is
critical. In a deterministic setting, a move is unambiguously improving or not. In TESO, all comparisons
are based on mean estimates from multiple replications, which are themselves random variables. Therefore,
the aspiration criterion and improvement checks (detailed later) are inherently stochastic, a key adaptation
for the SO domain.

Compared to other metaheuristics like GA, SA, or PSO commonly used in SO, TESO’s explicit use
of both short-term restrictive memory (Tabu List) and long-term guiding memory (Elite Memory) is a
key differentiator. While GAs maintain diversity through populations and PSO uses particle/global bests
(a form of Elite Memory), they typically lack the systematic short-term avoidance mechanism provided
by a Tabu List. Basic SA is generally memoryless. Also, TESO should be clearly distinguished from
SBO and BO approaches. SBO/BO methods construct an explicit statistical model (the surrogate, e.g., a
Gaussian Process) of the underlying simulation response. They use this surrogate, along with an acquisition
function (like Expected Improvement or Upper Confidence Bound), to intelligently select the next point(s)
to evaluate with the expensive simulation, aiming to improve the surrogate model and find the optimum
efficiently. TESO, in contrast, is a direct search method. While it uses memory, it does not build an explicit
global model of the objective function; it operates directly on the (replicated) outputs of the simulation
model itself to guide its search trajectory.

3.2 Algorithm Methodology

TESO algorithm (Algorithm 1) begins by initializing essential components (line 2): the Tabu List (T )
and Elite Memory (E ) are cleared, the best objective value found so far ( fbest) is set to an appropriate
initial value (e.g., infinity for minimization), the adaptive noise level (η) is set to its starting value (ηinit),
and iteration counters (t, ∆t) are initialized. The core logic resides within a loop iterating up to the total
trial budget T (line 4). Each iteration commences with Candidate Generation (lines 5-9). During the
initial ninit iterations or with a small probability pdiv thereafter, the algorithm performs diversification by
generating a candidate x(t) randomly (line 6). Otherwise, it engages in intensification: an elite solution xe
is selected from E , and a new candidate x(t) is created by perturbing xe using the current noise level η (line
8). A fallback to random generation occurs if E is empty. A unique, hashable representation h(t) of the
generated candidate is then created (line 9). Since our test problem uses a continuous decision variable,
this representation can be created by discretizing the variable into bins or by applying a hash function to
its string representation.

Before proceeding to potentially costly evaluation, the candidate undergoes a Tabu Check and Aspiration
step (lines 11-14). If the candidate’s representation h(t) is found in the Tabu List T and it does not satisfy
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the predefined aspiration criterion (i.e., it is not expected to significantly improve upon fbest), the candidate
is discarded, and the algorithm proceeds directly to the next iteration via the ‘continue‘ statement (line
13). If the candidate x(t) is not tabu or satisfies the aspiration criterion, it is subjected to Stochastic
Evaluation (line 16). This involves running nrep independent simulation replications using x(t) as input. The
mean performance µ(t) and its standard deviation σ (t) are calculated from these replications, providing a
statistically robust estimate of the candidate’s objective value. Note that while the standard deviationσ (t) is
calculated, it is not directly used in the decision logic of the current TESO implementation. It is recorded
for analysis and could be used in more advanced versions of the algorithm, for instance, to dynamically
adjust the number of replications or to inform a risk-based aspiration criterion.

Following evaluation, the algorithm performs Updates to the Best Solution and Memory Structures
(lines 18-22). It checks if the evaluated mean µ(t) constitutes an improvement over the current fbest. If an
improvement is found, fbest and the corresponding best solution xbest are updated, and the no-improvement
counter ∆t is reset (line 20). If no improvement occurred (and the algorithm is past the initialization phase),
∆t is incremented (line 21). Regardless of improvement, the candidate’s representation h(t) is added to the
Tabu List T , and the candidate-performance pair (x(t),µ(t)) is added to the Elite Memory E , maintaining
their respective capacity limits (line 22). Within the loop, Adaptive Noise Control and Termination Check
occur (lines 24-25). The noise level η used for perturbation is updated according to a predefined schedule
(e.g., decaying over iterations). The algorithm then checks if the termination criteria are met: either the
total trial budget T is exhausted (implicit in the ‘For‘ loop) or the number of iterations without improvement
∆t has reached the maximum allowed ∆tmax. If the latter occurs, the loop terminates early via the ‘break‘
statement (line 25). Once the loop finishes, the algorithm returns the best solution xbest and its corresponding
estimated objective value fbest (line 27).

Algorithm 1 TESO Algorithm
Require: f (x,ω), X , T , ninit, nrep, ηinit→ ηfinal, CT ,CE , pdiv, ∆tmax, direction.
Ensure: Best solution xbest, Best objective fbest.
1: Init T ,E , fbest,η ← ηinit,∆t← 0,xbest← null. ▷ Initialize memory, best value, noise, counters
2: for t = 1 to T do
3: ▷ Generate Candidate x(t)

4: if t ≤ ninit or Random() < pdiv then
5: x(t)← RandCand(X ) ▷ Diversify
6: else
7: xe← SelectElite(E ); x(t)← Perturb(xe or RandCand(),η) ▷ Intensify
8: end if
9: h(t)← Represent(x(t))

10: ▷ Check Tabu & Aspiration
11: if h(t) ∈T and not AspirCritMet(x(t), fbest, direction) then
12: continue ▷ Skip tabu, non-aspirated
13: end if
14: ▷ Evaluate Candidate
15: (µ(t),σ (t))← Evaluate(x(t), f ,nrep) ▷ Run nrep sims, get mean/std
16: ▷ Update Best & Memory
17: if IsImprovement(µ(t), fbest, direction) then
18: fbest← µ(t); xbest← x(t); ∆t← 0
19: else if t > ninit then ∆t← ∆t +1
20: end if
21: Add h(t) to T ; Add (x(t),µ(t)) to E ▷ Update memories
22: ▷ Adapt Noise & Check Termination
23: η ← UpdateNoise(t,T,ηinit,ηfinal)
24: if ∆t ≥ ∆tmax then break ▷ Stop if no improvement
25: end if
26: end for
27: Return: xbest, fbest.
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Figure 1: Flow Diagram of the TESO Algorithm, illustrating the iterative cycle including candidate
generation, tabu/aspiration filtering, evaluation, and memory updates.

Figure 1 provides a visual summary of the TESO methodology detailed in Algorithm 1. The diagram
illustrates the flow starting from initialization, proceeding through the main iterative loop. Key stages
depicted include the adaptive candidate generation (switching between diversification via random sampling
and intensification via elite perturbation), the critical filtering step based on the Tabu List (T ) and aspiration
criteria, the stochastic evaluation using multiple replications, and the subsequent updates to the best solution,
both memory structures (T , E ), and control parameters like noise level (η) before checking termination
conditions.

4 NUMERICAL EXPERIMENTS

4.1 Experimental Objectives

The numerical experiments herein aim to empirically validate the proposed TESO algorithm’s effectiveness
for noisy SO problems. Our goals are fourfold: first, to demonstrate TESO’s capability to converge reliably
to high-quality solutions within typical budget constraints despite stochastic evaluations; second, to quantify
the impact of its core memory components (Tabu List, Elite Memory) by comparing the full algorithm
against ablation variants lacking one of these structures; third, to benchmark TESO’s final solution quality,
convergence speed, and reliability against baseline methods; and fourth, to analyze how TESO’s mechanisms
dynamically balance exploration and exploitation during the search. These experiments collectively seek
to establish TESO as an effective framework for challenging SO problems.

4.2 Test Problem: M/M/k Queue Optimization

To evaluate the performance of the TESO algorithm on a multiple-server M/M/k queueing system. This
system is characterized by Poisson arrivals (M), exponentially distributed service times (M) shared across
k identical parallel servers (k), and typically assumes an infinite buffer capacity operating under a First-In,
First-Out (FIFO) discipline. The key parameters governing its behavior are the mean arrival rate, λ , the
number of servers, k, and the mean service rate, µ , for each individual server. For stability, the system
requires the total service capacity to exceed the arrival rate, i.e., k ·µ > λ .

In this optimization context, the decision variable, x, remains the service rate µ provided by each of the
k identical servers. We assume this rate can be controlled within a predefined feasible range [µmin,µmax],
where k ·µmin > λ must hold for stability. The objective function, J(µ), aims to minimize a combination of
operational performance (customer waiting time) and the cost associated with providing service capacity.
Specifically, we seek to minimize the sum of the expected steady-state average sojourn time (W ) experienced
by customers (time spent waiting in queue plus time in service) and a cost penalty proportional to the
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square of the individual server service rate, aggregated across all servers. The quadratic cost reflects the
increasing marginal expense of providing faster service per server. Therefore, the objective function to be
minimized is:

J(µ) = E[W (k,µ,ω)]+C · k ·µ2 (2)

where E[W (k,µ,ω)] is the true expected average sojourn time when k servers operate at rate µ , and C is
a positive cost coefficient applied per server. For our experiments, we set the system parameters to create
a non-trivial scenario: Arrival Rate: λ = 2.5 customers per unit time, Number of Servers: k = 3, Cost
Coefficient: C = 0.5, Feasible Service Rate Range: The stability condition is 3µ > 2.5, or µ > 0.833....
We define the feasible range for the individual server service rate as µ ∈ [1.0,4.0].

This M/M/3 objective function retains the key characteristics relevant for testing TESO:
Stochastic / Noisy Evaluation: While complex analytical formulas exist for M/M/k steady-state probabilities
(Erlang C formula), directly calculating the mean sojourn time E[W (k,µ,ω)] can be cumbersome or
impractical within an optimization loop. It is typically estimated by running a discrete-event simulation
of the M/M/3 system and averaging observed sojourn times. Random arrival and service processes
(ω) ensure each simulation yields a noisy estimate Ŵ (k,µ,ω), making the evaluated objective Ĵ(µ) =

1
nrep

∑
nrep
j=1Ŵ (k,µ,ω j)+C · k ·µ2 inherently stochastic.

Black-Box Nature (from Optimizer’s Perspective): TESO treats the simulation providing Ŵ (k,µ,ω) as a
black box, using only the input µ and the noisy output Ĵ(µ).
Complex Landscape: Although the underlying trade-off between reducing waiting time (higher µ) and
increasing cost (higher µ) likely results in a generally convex-like shape for J(µ). Also, the noise present in
the simulation-based evaluation creates a rugged landscape for the optimizer, posing a significant challenge
for convergence and requiring robust handling of noisy feedback.

It is important to note that this M/M/3 problem is expected to be unimodal. While it effectively tests
the algorithms’ ability to handle noise and balance exploration and exploitation in a simple setting, it does
not challenge their capacity to escape distinct local optima. The primary benefit of the Tabu List observed
here will relate to preventing cycling in noisy regions rather than overcoming multimodality

4.3 Benchmark Algorithms for Comparison

We compare TESO’s results against several benchmark algorithms to evaluate the performance and understand
the contributions of the different components within the proposed TESO framework. These benchmarks
are chosen to represent both a baseline level of performance and to facilitate an ablation study isolating
the effects of TESO’s core memory structures. The algorithms used for comparison are:
Pure Random Sampling (PRS): This serves as the most basic benchmark. In PRS, candidate solutions
x(t) are generated purely by sampling uniformly at random from the feasible decision space X for the
entire duration of the optimization run (T trials). No memory or adaptive search strategy is employed.
PRS provides a baseline against which the added value of any intelligent search mechanism, including
TESO’s, can be measured. Its performance indicates the difficulty of finding good solutions simply by
chance within the given budget.
TESO without Tabu List (TESO-noTabu): This variant is identical to the full TESO algorithm (Algorithm
1) except that the Tabu List mechanism is disabled. Comparing full TESO against TESO-noTabu allows us
to directly assess the impact and benefit of the short-term tabu memory on preventing cycling, encouraging
diversification, and potentially improving the final solution quality or convergence speed.
TESO without Elite Memory (TESO-noElite): This variant mirrors the full TESO algorithm but removes
the influence of the Elite Memory on candidate generation during the intensification phase. Instead of
selecting an elite candidate xe from E and perturbing it, this variant might, for example, always perturb the
single current best-known solution xbest or simply rely more heavily on the diversification mode (random
generation). The comparison between full TESO and TESO-noElite aims to quantify the contribution of
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the long-term Elite Memory in effectively guiding the intensification process and exploiting promising
regions identified during the search.

We have intentionally omitted comparisons to other common metaheuristics like SA or GA in this
study. A fair comparison would require extensive hyperparameter tuning for each method, which itself
constitutes a difficult optimization problem and could obscure the specific contributions of TESO’s memory
components. Our ablation study, therefore, provides a more controlled analysis of the direct impact of the
Tabu List and Elite Memory, which is the primary focus of this paper.

4.4 Experimental Design

To conduct a fair and comprehensive evaluation of TESO, we define a consistent experimental setup for
optimizing the M/M/3 queue problem (k = 3, λ = 2.5, C = 0.5, µ ∈ [1.0,4.0]). Each algorithm (TESO and
benchmarks) is run for a total budget of T = 300 candidate evaluations, with the first ninit = 20 dedicated to
random initialization. Candidate solutions are evaluated using nrep = 30 independent simulation replications
to estimate the mean objective and its standard deviation. For statistical robustness, all results are averaged
over Nmacro = 30 independent macro-replications. TESO utilizes specific parameter settings: a linearly
decaying noise schedule for perturbations (ηinit = 0.2 to η f inal = 0.01), a Tabu List capacity CT = 15, an
Elite Memory capacity CE = 10, a diversification probability pdiv = 0.2, and termination if no improvement
occurs in ∆tmax = 50 iterations. The benchmark algorithms adapt this setup: PRS omits memory and
adaptive search; TESO-noTabu disables the Tabu List (CT = 0); and TESO-noElite modifies intensification
to not rely on the elite set E . All algorithms operate on the same queue problem defined in Section 4.2.

Performance is assessed using several key metrics across the 30 macro-replications. We report the
average and standard deviation of the Best Mean Objective Value Found ( f ∗best) upon termination to gauge
final solution quality and reliability. The stability of performance near the end of the search is measured
by the Average Objective Value over the Last 50 Trials. Convergence Plots illustrate the progression of
the average best-found solution over the trial budget, visually comparing speed and consistency (often
including standard error bands). Finally, we record the average Computational Time per macro-replication
as a practical measure of efficiency. These metrics collectively allow for a thorough comparison of the
effectiveness, reliability, and efficiency of the algorithms.

4.5 Results and Discussion

The performance of the proposed TESO algorithm and the selected benchmarks are evaluated based on the
queue optimization problem described in Section 4.2. The results, averaged over Nmacro = 30 independent
macro-replications, are presented numerically in Table 1 and visually through the convergence plots in
Figure 2.

Comparison against Benchmarks As expected, PRS demonstrates the weakest performance, achiev-
ing the highest (worst) final best mean objective value (approximately 4.11) with the largest standard deviation
(0.20), indicating low solution quality and poor reliability. The convergence plot for PRS shows slow im-
provement, confirming its inefficiency as a search strategy. In contrast, all TESO variants significantly
outperform PRS. The full TESO algorithm achieves the best overall performance, converging to the lowest
final best mean objective value (2.53), which is very close to the assumed true optimum (2.52). Furthermore,
TESO exhibits the lowest standard deviation for the final best value (0.07) across the macro-replications,
highlighting its superior reliability and consistency in finding high-quality solutions compared to all bench-
marks. While TESO incurs a slightly higher average computational time compared to its ablation variants,
this is justifiable given the significant improvement in solution quality and reliability. The convergence plot
(Figure 2) confirms TESO’s faster convergence towards better solutions compared to the other methods.

Impact of Memory Components (Ablation Study) Comparing the full TESO algorithm with its
variants allows us to analyze the specific contributions of the Tabu List and Elite Memory.
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Effect of Tabu List: Comparing TESO with TESO-noElite (which has Tabu but no Elite guidance for
intensification) against PRS shows the baseline benefit of using memory. Comparing TESO (full) with
TESO-noTabu reveals the advantage conferred by the tabu mechanism. TESO-noTabu achieves a respectable
final objective value (2.72), substantially better than PRS, demonstrating the effectiveness of elite-guided
intensification. However, it performs worse than the full TESO (2.53) and exhibits higher variability (std
dev 0.16 vs 0.07). This suggests that without the Tabu List, the search, while guided by elite solutions,
may indeed spend unnecessary effort revisiting recently explored areas or get temporarily stuck near elite
candidates, hindering diversification and slowing convergence to the very best solutions. The Tabu List
effectively mitigates this.
Effect of Elite Memory: Comparing TESO with TESO-noTabu (which has Elite but no Tabu) against
PRS shows the benefit of intensification. Comparing TESO (full) with TESO-noElite highlights the role of
guided intensification. TESO-noElite performs better than PRS but worse than both TESO-noTabu and the
full TESO (final mean obj. 2.89, std dev 0.21). This indicates that while the Tabu List helps diversification,
the lack of targeted intensification based on a pool of elite solutions (instead potentially perturbing only
the single best or relying more on random jumps) makes the exploitation phase less efficient. The Elite
Memory is crucial for effectively focusing the search and refining high-potential regions identified during
exploration. The results strongly suggest that both the short-term tabu memory and the long-term Elite
Memory play vital and complementary roles in TESO’s performance. The Tabu List enhances exploration
and prevents stagnation, while the Elite Memory effectively guides exploitation, leading to a synergistic
effect in the full TESO algorithm that outperforms either component used in isolation (within the TESO
framework).

Exploration and Exploitation Balance The convergence plots provide insights into the exploration-
exploitation dynamics. PRS represents pure exploration with no learning. TESO-noElite, lacking strong
guidance for exploitation, shows slower convergence after the initial phase compared to methods using
Elite Memory. TESO-noTabu shows faster initial convergence due to elite guidance but potentially plateaus
earlier or at a slightly higher level than full TESO, possibly due to insufficient diversification caused by
revisiting areas near elite solutions. The full TESO algorithm exhibits a desirable pattern: a period of
exploration (similar slope to others initially, possibly slightly slower than TESO-noTabu if elite guidance
is very strong early on), followed by a phase of rapid improvement (steeper slope) as intensification guided
by Elite Memory takes over, and finally converging reliably to the best solution region with low variance.
This behavior suggests that the combination of tabu diversification, elite intensification, and adaptive noise
successfully manages the exploration-exploitation trade-off for this noisy SO problem.

Table 1: Performance Comparison of TESO and Benchmark Algorithms.

Final Best Final Best Avg Obj. Avg Comp.
Algorithm Mean Obj. Std Dev (Mean ± Std Dev) Time (s)

PRS 4.11 0.23 4.11±0.20 53.34
TESO-noElite 2.89 0.21 2.89±0.18 101.43
TESO-noTabu 2.72 0.16 2.72±0.13 113.52
TESO 2.53 0.07 2.53±0.06 132.81

5 CONCLUSION AND FUTURE WORK

This paper introduced TESO, a novel metaheuristic framework tailored for optimizing noisy, expensive
black-box simulation models. TESO’s methodology combines adaptive random search with a short-term
Tabu List to prevent cycling and a long-term Elite Memory to guide intensification around promising
solutions, employing an aspiration criterion and adaptive noise control. Our key experimental results
on a queue optimization problem demonstrated TESO’s effectiveness, showing consistent convergence
to high-quality solutions with better reliability (lower variance) compared to PRS and ablation variants
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Figure 2: Convergence Plot for Queue Optimization

lacking either memory component. The study confirmed the synergistic benefit of integrating both tabu
restrictions and elite guidance, leading to a successful balance between exploration and exploitation.
The primary contributions include this novel integration of TS principles and Elite Memory for stochastic
optimization, the empirical demonstration of improved performance, and a structured approach to managing
the exploration-exploitation trade-off. However, we acknowledge limitations such as validation on a single,
unimodal problem class, potential sensitivity to TESO’s internal parameters, and untested scalability in
very high-dimensional settings. Furthermore, while we criticize other metaheuristics for their sensitivity
to hyperparameters, TESO is not immune. Its performance depends on parameters and the noise decay
schedule. A full sensitivity analysis was beyond the scope of this initial study but is a critical direction for
future work. Finally, the algorithm’s scalability in very high-dimensional settings remains untested.

Future work will focus on three key areas. First, we will test TESO’s generalizability on a wider
range of benchmark problems with higher dimensions and multimodality. Second, we aim to enhance
the algorithm by developing adaptive mechanisms for its internal parameters and exploring hybridization
with surrogate models. Finally, pursuing a theoretical analysis of its convergence properties would provide
important formal grounding.
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