
Proceedings of the 2025 Winter Simulation Conference
E. Azar, A. Djanatliev, A. Harper, C. Kogler, V. Ramamohan, A. Anagnostou, and S. J. E. Taylor, eds.

IMPORTANCE SAMPLING FOR LATENT DIRICHLET ALLOCATION

Paul Glasserman1, and Ayeong Lee1

1Graduate School of Business, Columbia University, New York, NY, USA

ABSTRACT

Latent Dirichlet Allocation (LDA) is a method for finding topics in text data. Evaluating an LDA model
entails estimating the expected likelihood of held-out documents. This is commonly done through Monte
Carlo simulation, which is prone to high relative variance. We propose an importance sampling estimator for
this problem and characterize the theoretical asymptotic statistical efficiency it achieves in large documents.
We illustrate the method in simulated data and in a dataset of news articles.

1 INTRODUCTION

Latent Dirichlet Allocation (LDA), introduced in Blei et al. (2003), is a powerful unsupervised learning
technique for extracting topics from a collection of documents, with applications in natural language
processing, recommendation systems, and other domains. It can be viewed as a method for dimension
reduction for categorical data. An important task is to evaluate the quality of the topics extracted by LDA,
which is challenging due to the unsupervised nature of the method. A standard approach considers the
expected likelihood of held-out documents, averaged over topic distributions drawn from a Dirichlet prior.
However, this typically involves high variance due to variability of the predictions of the LDA model under
different topic distributions. Consequently, tasks such as model selection—e.g., choosing the number of
topics—can require a large simulation budget to obtain reliable estimates.

Early work on LDA focused on two primary inference strategies: variational methods (Blei et al. 2003)
and Markov Chain Monte Carlo (MCMC) techniques, notably the collapsed Gibbs sampling approach
proposed in Griffiths and Steyvers (2004), which analytically marginalizes the topic distributions. For
evaluating model fit and performing model selection, estimating the marginal likelihood of held-out data is
critical. Wallach et al. (2009) consider the application of an importance sampling method to this problem,
but they find that it can be unstable and have high variance in the context of topic models.

In this paper, we revisit importance sampling for model evaluation in LDA and propose a new estimator
based on properties of Dirichlet distributions. We theoretically characterize the asymptotic statistical
efficiency of the estimator in large documents. Our analysis highlights how the degree of efficiency depends
on the number of topics, the topic vectors, and the optimal document-topic distribution. Empirically, we
demonstrate that our importance sampling estimator substantially improves upon the mean squared error of
the standard Monte Carlo estimator in a variety of examples. We also confirm that our theoretical analysis
is predictive of the method’s empirical effectiveness.

2 LATENT DIRICHLET ALLOCATION (LDA)

This section provides a brief description of LDA. We begin with some background on Dirichlet distributions.
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2.1 Dirichlet Distributions

A Dirichlet distribution is supported on the set of probability vectors of length K, for some K ≥ 2. Define
∆K−1 as the (K −1)-dimensional simplex in RK , i.e.,

∆K−1 =

{
x ∈ RK

∣∣∣∣∣xi ≥ 0 for all i = 1, . . . ,K,
K

∑
i=1

xi = 1

}
.

A Dirichlet distribution Dirα has the probability density function

Dirα(x) =
1

B(α)

K

∏
i=1

xαi−1
i , x ∈ ∆K−1,

with parameters α = (α1, . . . ,αK), with αi > 0 for all i. The normalizing constant B(α) is the multivariate
Beta function given by

B(α) =
∏

K
i=1 Γ(αi)

Γ
(
∑

K
i=1 αi

) . (1)

where Γ(·) is the Gamma function, defined for x > 0 as

Γ(x) =
∫

∞

0
tx−1e−t dt.

Dirichlet distributions are commonly used to model distributions over probability vectors. The Dirichlet
density’s shape changes with the parameters αi: as the αi increase, the distribution shifts from concentrating
near the corners of the simplex (favoring sparse, peaked probability vectors) to concentrating near the center
(favoring more uniform probability vectors). We will assume throughout that all Dirichlet vectors have
strictly positive components, as this property holds with probability one.

2.2 Latent Dirichlet Allocation (LDA)

LDA posits a generative probabilistic model for a collection of documents based on a latent structure of
topics. Bayesian inference is then used to infer the topics from observed text. The generative model assumes
that each document is a mixture of latent topics, where each topic is characterized by a probability distribution
over a fixed vocabulary of words; each document is then characterized by a probability distribution over
topics.

For example, one topic may assign high probability to words like "economy," "inflation," and "market."
Another topic may assign high probability to "patient," "treatment," and "symptom." An individual document
about the financial performance of drug companies might assign 15% weight to the first topic, 10% weight
to the second topic, with the remaining 75% weight distributed among other topics.

The generative process assumes that topic vectors are drawn from a Dirichlet distribution over a fixed
vocabulary; topic proportions for each document are drawn from a Dirichlet distribution over the set of
topics. Then, for each word in the document, a topic is sampled from the document’s distribution over
topics, and a word is drawn from the corresponding topic’s distribution over the vocabulary. The details
are as follows:

Suppose the number of topics K and the vocabulary size V are fixed.

1. Topic generation: K topic vectors are drawn from a Dirichlet distribution,

φk
iid∼ Dirβ (·), for k = 1, . . . ,K,

where Dirβ (·) is a Dirichlet distribution with parameters β ∈RV
+. Each φk is a probability distribution

over the vocabulary.
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2. Document-level topic proportions: For each document j = 1, . . . ,J, a topic proportion vector is
drawn:

θ j
iid∼ Dirα(·),

where θ j ∈ ∆K−1 and α ∈ RK
+. Each θ j is a probability distribution over topics.

3. Word generation: A document j is a sequence of N j words (with N1, . . . ,NJ fixed), where each
word takes a value from the vocabulary. Given the document-specific topic distribution θ j, the ith
word, i = 1, . . . ,N j, is generated as follows:
(a) Draw a topic assignment:

zi, j ∼ θ j,

(b) Draw a word from the selected topic:

wi, j ∼ φzi, j .

The generative model determines the probability of any collection of documents, given the latent topic
structure. The inverse problem of inferring the latent topic structure from a collection of documents is a
problem of Bayesian inference. It is commonly solved using either variational inference or Gibbs sampling.

3 EVALUATION METRIC

We now discuss the evaluation metric used to assess the quality of the learned set of topic vectors φ . Let w
be the set of words in a held-out document, and let nv be the counts of each vocabulary element v. Given
the word counts, we would like to evaluate the likelihood of observing these words w in the document
under the topic model. To do so, we consider the expected likelihood of the document averaged over topic
proportions θ drawn from the Dirichlet prior with parameter α ,

p(w|φ) = Eθ∼Dirα
[p(w|θ ,φ)] = Eθ∼Dirα

[
V

∏
v=1

(
K

∑
k=1

θ(k)φk(v)

)nv
]
. (2)

In this expression, only θ is stochastic; the word counts nv and topic vectors φk are fixed.
Letting n denote the total number of words in the document and pv = nv/n denote the frequency of

words in the document, we can write (2) as

p(w|φ) = Eθ∼Dirα
[enH(θ)], (3)

where

H(θ) =
V

∑
v=1

pv log

(
K

∑
k=1

θ(k)φk(v)

)
. (4)

Here, H captures the log-likelihood under the topic mixture. Intuitively, H measures how well the topic-
weighted word probabilities explain the empirical word frequencies pv in the document. However, computing
the expectation (3) exactly is intractable in general. Given that there is no closed form for p(w|φ), a standard

procedure is to estimate the quantity through Monte Carlo sampling: with i = 1, ...,N samples of θi
iid∼ Dirα ,

p̂MC =
1
N

N

∑
i=1

enH(θi). (5)

Due to the exponential estimand, when n is large the variance of p̂MC is high relative to the mean.
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4 DIRICHLET IMPORTANCE SAMPLING ESTIMATOR

Importance sampling seeks to reduce variance by drawing more samples from "important" regions. We
consider importance sampling strategies that replace the original Dirichlet distribution Dirα in (3) with
another Dirichlet distribution Dirγ , for some parameter vector γ . This approach leads to the following
representation of our quantity of interest:

EDirα
[enH(θ)] = EDirγ

[
enH(θ) · Dirα

Dirγ

(θ)

]
= EDirγ

[
enH(θ) · B(γ)

B(α)

K

∏
j=1

θ
α j−γ j
j

]
. (6)

For any choice of γ , γi > 0, i = 1, . . . ,K, the expression inside the rightmost expectation in (6) provides
an unbiased estimator when sampled under Dirγ . The likelihood ratio Dirα(θ)/Dirγ(θ) corrects for the
change of sampling distribution. (For general background on importance sampling, see, e.g., Asmussen
and Glynn 2007 and Kroese et al. 2013.)

Ideally, we would like Dirγ to place more weight on regions that contribute the most to the original
integrand. For large n, we expect most of the contribution to (3) will come from values of θ near the
maximizer θ ∗ of H(θ). This idea is supported by the asymptotic approximation we will use in the analysis
of our estimator; see Appendix A.1. We therefore seek to concentrate sampling of θ near θ ∗. At the same
time, we need to be mindful that the likelihood ratio Dirα(θ)/Dirγ(θ) in (6) may diverge at the boundary

of the simplex. In fact, EDirγ

[
(∏K

j=1 θ
α j−γ j
j )2

]
will be infinite if 2α j − γ j < 0.

To address both considerations, we propose to sample from θi ∼ Dirα+
√

nθ ∗ to produce the following
importance sampling (IS) estimator:

p̂IS =
1
N

N

∑
i=1

enH(θi)
Dirα(θi)

Dirα+
√

nθ ∗(θi)
1∆ε

K−1
, (7)

where 1∆ε
K−1

is an indicator on the ε-truncated (K −1) simplex defined as

∆
ε
K−1 := {θ ∈ ∆K−1 : θi ≥ ε}. (8)

The restriction to ∆ε
K−1 keeps the likelihood ratio bounded. It introduces a small bias,

Bias(p̂IS) = Eθ∼Dirα
[enH(θ)]−Eθ∼Dirα

[enH(θ)1∆ε
K−1

] = Eθ∼Dirα
[enH(θ)1(∆ε

K−1)
c ], (9)

which is the expectation over the omitted part of the simplex and which we will show is negligible. The
parameter ε > 0 can be arbitrarily small. We only require that the maximizer θ ∗ be in the strict interior
of ∆ε

K−1, which is assumption (A1) below. Our choice of importance sampling distribution concentrates
sampling near the maximizer θ ∗ because

Mode(Dirα+
√

nθ ∗) =
α +

√
nθ ∗−1

∑
K
j=1(α j +

√
nθ ∗

j )−K
→ θ

∗.

The
√

n scaling allows us to apply an asymptotic approximation to evaluate the variance of p̂IS; see
Appendix A.1.

5 ASYMPTOTIC MEAN SQUARED ERROR (MSE) REDUCTION

Our main result proves an asymptotic expression for the efficiency of our importance sampling estimator
as the length of the held-out document increases. We first characterize its asymptotic bias relative to the
variance of the naive Monte Carlo estimator. All proofs are in the appendix. We will use the following
conditions:

(A1) The maximizing vector θ ∗ is in the strict interior of ∆ε
K−1, i.e. θ ∗

j > ε, j = 1, . . . ,K.
(A2) The matrix [φk(v)]k=1,...,K,v=1,...,V has rank K <V .
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Lemma 1 Suppose conditions (A1) and (A2) hold. Then for some positive constant δ > 0, we have

Bias(p̂IS)
2

Var(p̂MC)
= O(e−2nδ ). (10)

Next, we analyze the variance reduction achieved by the IS estimator (7). Under the same conditions,
we can show that the the variance of the IS estimator decays at a faster polynomial rate in comparison to
the MC estimator (5).
Theorem 1 Suppose (A1) and (A2) hold. Then, as n → ∞,

Var(p̂IS)

Var(p̂MC)
∼ n−

K−1
4 · (2π)

K−1
2 ·Dirα(θ

∗) ·

(
∏

k
θ
∗
k

)1/2

. (11)

Combining the exponential bias decay from (10) with the polynomial variance reduction from (11), we
can quantify the asymptotic mean squared error improvement of our IS estimator over the MC estimator.
Corollary 1 Under conditions (A1) and (A2),

MSE(p̂IS)

MSE(p̂MC)
= Θ(n−

K−1
4 ).

Remark. Condition (A2) is easily achieved as long as the vocabulary size V is much larger than K, which
is always the case in practice. We show in the appendix that (A2) implies that the Hessian ∇2H is negative
definite on ∆K−1, a property we will use in our asymptotic analysis. We will also note that since the
topic-word distributions {φk}k=1,...,K have strictly positive components, ∇2H is continuous.

In Corollary 1, the MSE reduction using IS is theoretically greater with a larger number of topics K.
We provide some insight into this feature in the remark at the end of Appendix A.5.

6 NUMERICAL RESULTS

We run experiments to provide numerical evidence for the result in Corollary 1 and to demonstrate the
MSE reduction of our proposed importance sampling estimator on a standard empirical dataset.

6.1 Synthetic Data Experiments

We run synthetic data experiments using an LDA model with a vocabulary of V = 1000 words and K = 5
topics. We fix α = 0.1 ·1K ∈ RK and β = 0.1 ·1V ∈ RV ; small values of these parameters are commonly
used in LDA because they produce "spiky" vectors.

For the evaluation of (2), a document is characterized by its length n and its word frequencies pv. We
generate 100 instances of pv and vary n. To generate an instance of pv, we draw K = 5 independent latent
topic vectors from φk ∼ Dirβ on ∆V and a random topic distribution θtrue ∼ Dirα̃ on ∆K−1. We then set
pv = ∑

K
k=1 θtrue,kφk(v). This construction makes θ ∗ = θtrue; choosing α̃ = 1K helps ensure that θ ∗ will be

in the interior of ∆ε
K−1. For each of the 100 instances generated this way, we vary n from 50 to 1000.

For the standard Monte Carlo estimator, we draw N = 106 samples of θ ∼ Dirα and evaluate (5) for
each instance of pv and each n. For our proposed importance sampling estimator p̂IS, we draw N = 106

samples of θ ∼ Dirα+
√

nθ ∗ and evaluate (7) for each instance of pv and each n. We set ε = 0.01 for the
simplex truncation parameter. We observe that while the importance sampling estimator introduces the
additional step of computing the maximizer θ ∗, the wall-clock time of doing so with standard gradient-based
methods was 100x faster (2.2 ms on a Intel(R) Xeon(R) CPU 2.20GHz) than sampling from the Dirichlet
distribution with N = 106 samples (340 ms on the same machine), contributing only negligibly to the overall
computational cost of the estimator.
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Figure 1: Results for 100 instances of synthetic data with K = 5, V = 1000, and ε = 0.01. Left: MSE
ratio decays as predicted. Right: Bias ratio decays exponentially.

Because p̂IS is biased, we calculate both the MSE ratio and the relative bias normalized by the MSE
of the Monte Carlo estimator (which is the same as its variance). These ratios are

MSE(p̂IS)

MSE(p̂MC)
and

Bias2(p̂IS)

MSE(p̂MC)
. (12)

As the document length n increases, our asymptotic results in Corollary 1 predict that the MSE ratio should
decay at rate n−(K−1)/4 = n−1, and the relative bias should decay exponentially.

We calculate the ratios in (12) for each of the 100 instances, for each value of n. The results are
shown in the left panel of Figure 1, where the blue line shows the average MSE ratio. The right panel
shows corresponding results for the relative bias. Consistent with our theoretical predictions, the MSE ratio
decays like n−1, and the relative bias decays exponentially. The results indicate that our IS estimator indeed
provides significant variance reduction and negligible bias compared with the standard MC estimator. Most
of the variability in the figures comes from estimating the variance of the MC estimator.

In separate experiments we have confirmed that we do not get similar performance with ε = 0: the
restriction to some ∆ε

K−1, ε > 0, in our IS estimator is important. We need ε to be small enough to satisfy
(A1), and we generally observe better results with smaller ε , particularly with larger values of K.

6.2 Newsgroups Data

We next evaluate our importance sampling estimator on the "20 newsgroups" dataset, a widely used text
corpus, often attributed to Lang (1995). The dataset contains approximately 18000 newsgroup posts, split
into a training set and a test set. The vocabulary size is roughly 105 for the entire corpus. For our
model, we choose K = 10 topics and use variational inference to extract the topic-word distributions φk
from approximately 11,000 training documents. Then, for each of approximately 7,500 test documents
we calculate the empirical frequencies pv and evaluate the MSE ratio between the standard Monte Carlo
estimator and our proposed importance sampling estimator. With α = 0.1 ·1K , we draw N = 105 samples
from Dirα and Dirα+

√
nθ ∗ for the MC and IS estimators, respectively. For IS we set the truncation parameter

to ε = 0.01. The maximizer θ ∗ for each document can be calculated quickly through a simple recursion.
This setting does not strictly fall within the scope of our theoretical analysis because here we cannot

vary n while holding pv fixed; we simply have documents of different lengths. Also, we cannot guarantee
(A1). We can nevertheless check for error reduction through the MSE ratio.

Figure 2 plots the distribution of log-MSE ratios across the test documents. The results show consistent
error reduction across all documents. Furthermore, 96% of test documents show a log-MSE ratio less than
−2, and for more than 53% the ratio is less then −3.
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Figure 2: Histogram of log(MSE(p̂IS)/MSE(p̂MC)) across 7,532 test documents using K = 10 topics.

7 CONCLUSION

We proposed and analyzed an importance sampling estimator for the evaluation of LDA topic models on test
documents. Compared to standard Monte Carlo, the estimator’s relative efficiency grows with document
length. Future work includes exploring cases in which θ ∗ lies on the boundary of the simplex, testing
larger models, and analyzing the bias–variance trade-off for different restriction thresholds ε .

A APPENDIX

A.1 Laplace Approximations

The classical Laplace approximation (see, e.g., Breitung 1994, Theorem 41, p.56) takes the form∫
F

h(x)exp(n f (x))dx ∼ (2π)k/2 h(x∗)√
|det(H f (x∗)|

· exp(n f (x∗)) ·n−k/2, as n → ∞, (13)

where the integration domain F ⊂Rk is a compact set and the maximizer x∗ of f is an interior point of F .
Here, h(·) is a continuous function assumed to be neither vanishing nor singular at x∗, and the Hessian of
f (·), H f (x∗) must be negative definite. The key point is that the integrand has an exponential dependence
on a large parameter n, as in our setting. The approximation is based on the idea that the integral is
dominated by the behavior of the integrand near the maximum of f . We will apply (13) to expectations
like Eθ∼Dirα

[enH(θ)]. In fact, under mild conditions, it suffices to restrict to smaller neighborhoods V of
x∗, instead of the entire F (Breitung 1994, Lemma 38, p.53):∫

F
h(x)exp(n f (x))dx ∼

∫
F∩V

h(x)exp(n f (x))dx, n → ∞. (14)

We will also use the more general approximation (Breitung 1994, Theorem 44, p.62),

∫
F

h(x)exp
(
n f (x)+

√
ng(x)

)
dx ∼ (2π)k/2h(x∗) ·

exp
(
−1

2 ∇g(x∗)⊤H−1
f (x∗)∇g(x∗)

)
√
|det(H f (x∗))|

· exp
(
n f (x∗)+

√
ng(x∗)

)
·n−k/2 (15)

where h, f ,F satisfy the same assumptions as in (13), and g is assumed to be in C1(F). This result allows
us to include a component g that is non-concave near x∗ by making its contribution to the exponent of
smaller order in n.
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The approximation in (15) is the main reason we chose the
√

n scaling in setting the IS distribution to
Dirα+

√
nθ ∗ . The likelihood ratio contributes a non-concave term −θ ∗ logθ to the exponent of the integrand,

and the
√

n scaling allows us to analyze its performance using (15).

A.2 Negative Definiteness of ∇2H(θ)

Lemma 2 Suppose (A2) holds. Then the Hessian ∇2H(θ) is negative definite at every θ ∈ ∆K−1.

Proof. Write φ(v) for the vector (φ1(v), . . . ,φK(v))⊤, which is the vth column of the matrix in (A2).
Then θ⊤φ(v)> 0, for all θ ∈ ∆K−1. The Hessian of H(θ) is given by

∇
2H(θ) =−

V

∑
v=1

pv ·
φ(v)φ(v)⊤

(θ⊤φ(v))2 . (16)

To show negative definiteness, consider any nonzero vector x ∈ RK and note that

x⊤∇
2H(θ)x =−

V

∑
v=1

pv ·
(x⊤φ(v))2

(θ⊤φ(v))2 .

This expression is strictly negative unless x⊤φ(v) = 0 for all v. But this would imply that x is orthogonal
to all φ(v), contradicting the assumption that the vectors {φ(v)}V

v=1 span RK .

A.3 Bias Decay Bound

Proof of Lemma 1. Since H is C2 and its Hessian is negative definite on ∆K−1 with θ ∗ ∈ ∆ε
K−1, there

is a δ > 0 such that
sup

θ∈(∆ε
K−1)

c
H(θ)≤ H(θ ∗)−δ . (17)

Letting η = inf(∆ε
K−1)

c ||θ ∗−θ ||, this δ is bounded away from zero by η2/2 times the smallest eigenvalue
of
(
∑

V
v=1 pvφ(v)φ(v)⊤

)
, which is strictly positive. From (17) we get

Bias(p̂IS) = Eθ∼Dirα
[enH(θ)1(∆ε

K−1)
c ]≤ en(H(θ ∗)−δ ). (18)

To bound Var(p̂MC) from below, we first note the following the lower bound of Eθ∼Dirα

[
e2nH(θ)

]
. The

function H is convex in logθ . Combining this property with the lower bound for the beta function in (36)
yields the following lower bound:

Eθ∼Dirα

[
e2nH(θ)

]
≥ Eθ∼Dirα

[
e2nH(θ ∗)+2nθ ∗·(logθ−logθ ∗)

]
=

e2nH(θ ∗)−2nθ ∗·logθ ∗

B(α)
B(α +2nθ

∗)

≥C ·R · e2nH(θ ∗)

B(α)
(
π

n
)

K−1
2

(
K

∏
k=1

θ
∗
k
(αk− 1

2 )

)
, (19)

with C,R ∈ (0,∞) as defined in (39)–(40). From (29), we have that (Eθ∼Dirα

[
enH(θ)

]
)2 = o(n−

K−1
2 e2nH(θ ∗

),
which, together with (19), implies that there exist a constant C′ > 0 such that, for large n,

Varα(enH(θ))≥C′n−
K−1

2 enH(θ ∗). (20)
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Combining (18) and (20), we get

Bias(p̂IS)
2

Var(p̂MC)
≤ e2n(H(θ ∗)−δ )

C′n−
K−1

2 enH(θ ∗)
(21)

= (C′)−1e−2nδ n
K−1

2 = O(e−2nδ ′
) ∀0 < δ

′ < δ .

A.4 Second Moment of MC Estimator

For the second moment of the MC estimator, we have the following asymptotic result.
Lemma 3 Suppose (A2) and θ ∗ is an interior point of the (K − 1) simplex, i.e. θ ∗

j > 0, j = 1, . . . ,K.
Then, as n → ∞,

Eθ∼Dirα
[e2nH(θ)]∼ e2nH(θ ∗)

(|det(∇2H(θ ∗)|)1/2 (
π

n
)(K−1)/2Dirα(θ

∗). (22)

Proof. Define the projected simplex in RK−1,

∆̃K−1 = {θ̃ ∈ RK−1|
K−1

∑
i=1

θ̃i ≤ 1, θ̃i ≥ 0, i = 1, . . . ,K −1}.

With this we can express the expectation in (22) as

Eθ∼Dirα
[e2nH(θ)] =

∫
∆̃K−1

e2nH(T (θ̃)) Dirα(T (θ̃))dθ̃ , (23)

where T : RK−1 → RK is the mapping T (y) := (y1, . . . ,yK−1,1−∑
K−1
i=1 yi). In other words,

T (y) = Ay+b, with A =

[
IK−1
−1⊤K−1

]
, b = eK , (24)

where IK−1 is K −1 dimensional identity matrix, 1K−1 a vector of ones, and b = eK a unit vector. With
this reparameterization, the maximizer of the exponent is now in the strict interior of ∆̃K−1. As in (14),
we can further restrict the domain by looking at the projected truncated simplex ∆̃ε

K−1,

∆̃
ε
K−1 = {θ̃ ∈ RK−1|

K−1

∑
i

θ̃i ≤ 1− ε, θ̃i ≥ ε, i = 1, . . . ,K −1}. (25)

where ε > 0 is small enough that θ ∗ ∈ ∆ε
K−1. Now Dirα(T (θ̃)) is continuous on ∆̃ε

K−1. We can now use
(14) and (13) to get∫

∆̃K−1

e2nH(T (θ̃)) Dirα(T (θ̃))dθ̃ ∼ e2nH(θ ∗)

(|det(A⊤∇2H(θ ∗)A|)1/2 (
π

n
)(K−1)/2Dirα(θ

∗). (26)

By (A2) and the fact that A has full rank, |det(A⊤∇2H(θ ∗)A)| = det(−A⊤∇2H(θ ∗)A). The right
hand side can be further evaluated by defining C =

[
A 1K

]
∈ RK×K using the Schur complement of

−A⊤∇2H(θ ∗)A in −C⊤∇2H(θ ∗)C to get

det(−A⊤
∇

2H(θ ∗)A) = det
(
−∇

2H(θ ∗)
)
·
(

1⊤K (−∇
2H(θ ∗))−11K

)
. (27)
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To evaluate the rightmost factor, we note that the gradient of H at θ ∗ is

∇θ H(θ ∗) = ∑
v

pv∇θ log(θ⊤
φ(v))

∣∣∣∣
θ=θ ∗

= ∑
v

pv
φ(v)

θ ∗⊤φ(v)
,

which equals −∇2H(θ ∗)θ ∗, in light of the expression in (16). By assumption (A1) and KKT conditions,

∇θ H(θ ∗) = λ1K .

Since ∇θ H(θ ∗) ·θ ∗ = 1, we have that λ = 1, which implies (−∇2H(θ ∗))θ ∗ = 1K . This further implies
(−∇2H(θ ∗))−11K = θ ∗, and therefore that 1⊤K (−∇2

θ
H(θ ∗))−11K = 1⊤K θ ∗ = 1. Thus, (27) becomes

det(−A⊤
∇

2H(θ ∗)A) = det
(
−∇

2H(θ ∗)
)
. (28)

Making this substitution in (26) yields the result in (22).

By taking n instead of 2n we get the asymptotics for the first moment

Eθ∼Dirα
[enH(θ)]∼ enH(θ ∗)

(|det(∇2H(θ ∗)|)1/2 (
2π

n
)(K−1)/2Dirα(θ̃

∗). (29)

A.5 Second Moment of Importance Sampling Estimator

We introduce the following asymptotic result for the second moment of the IS estimator in (7).
Lemma 4 Suppose (A1) and (A2) hold. Then as n → ∞,

Eθ∼Dirα+
√

nθ∗

[
e2nH(θ)

(
Dirα(θ)

Dirα+
√

nθ ∗(θ)

)2

1∆ε
K−1

]

∼ e2nH(θ ∗)√
|det∇2H(θ ∗)|

(
2π2

n3/2

)K−1
2

Dirα(θ
∗)2
(

∏
k

θ
∗
k

)1
2

.

(30)

Proof. Using (25) and T (θ̃) as in (26), the left side of (30) can be expressed as

Eθ∼Dirα+
√

nθ∗

[
1∆ε

K−1
e2nH(θ)

(
Dirα(θ)

Dirα+
√

nθ ∗(θ)

)2]
= Eθ∼Dirα

[
1∆ε

K−1
e2nH(θ) Dirα(θ)

Dirα+
√

nθ ∗(θ)

]

=
B(α +

√
nθ ∗)

B(α)2

∫
∆̃ε

K−1

K

∏
i=1

T (θ̃)αi−1
i

· exp
(
2nH(T (θ̃))−

√
nθ

∗ · logT (θ̃)
)

dθ̃ . (31)

We can now apply (15) to get∫
∆̃ε

K−1

K

∏
i=1

T (θ̃)αi−1
i exp

(
2nH(T (θ̃))−

√
nθ

∗ · logT (θ̃)
)

dθ̃

∼ n−
K−1

2 e2nH(θ ∗)−
√

nθ ∗·logθ ∗
(2π)

K−1
2

(
K

∏
i=1

(θ ∗
i )

αi−1

)
exp
(
−1

2(A
⊤1K)

⊤(A⊤∇2H(θ ∗)A)−1(A⊤1K)
)

(|det(A⊤∇2H(θ ∗)A)|)1/2

= (2π)
K−1

2

(
K

∏
i=1

(θ ∗
i )

αi−1

)
· e2nH(θ ∗)−

√
nθ ∗·logθ ∗ ·n−K−1

2

(|det(∇2H(θ ∗))|)1/2 . (32)

Thus, (31) is asymptotic to (32) times B(α +
√

nθ ∗)/B(α)2. Replacing B(α +
√

nθ ∗) with the Stirling
approximation in (35) yields (30).
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Remark. Equation (31) provides some insight into the finding (in Corollary 1) that the relative performance
of the IS estimator theoretically improves with larger K. The integral in (31) and the normalizing factor
B(α +

√
nθ ∗) contribute factors of the order of n−(K−1)/2 and n−(K−1)/4, respectively, to the second moment

of the IS estimator through their respective asymptotic approximations. For the second moment of the
plain MC estimator (22), we have only a single factor of order n−(K−1)/2.

A.6 Variance Ratio Asymptotics

Proof of Theorem 1. To simplify notation, we take N = 1 replications in the definitions of p̂MC and p̂IS.
Then

Eθ∼Dirα+
√

nθ∗

[
p̂2

IS
]
−
(
Eθ∼Dirα+

√
nθ∗ [p̂IS]

)2

Eθ∼Dir(α)

[
p̂2

MC

] ≤ Var(p̂IS)

Var(p̂MC)
≤

Eθ∼Dirα+
√

nθ∗

[
p̂2

IS
]

Eθ∼Dir(α)

[
p̂2

MC

]
−
(
Eθ∼Dir(α) [p̂MC]

)2 . (33)

On both sides of the inequalities, the second-moment terms dominate, and the squared first moments are
of higher order in n; see (29). Thus, making the substitutions from (22) and (30) shows that the variance
ratio is asymptotic to

Eθ∼Dirα+
√

nθ∗

[
p̂2

IS
]

Eθ∼Dir(α)

[
p̂2

MC

] ∼
e2nH(θ∗)

|det(−∇2H(θ ∗))|1/2 ·
(

2π2

n3/2

)(K−1)/2
·Dirα(θ

∗)2 ·
(
∏k θ ∗

k

)1/2

e2nH(θ∗)

|det(−∇2H(θ ∗))|1/2 ·
(

π

n

)(K−1)/2 ·Dirα(θ ∗)

= n−
(K−1)

4 (2π)(K−1)/2 ·Dirα(θ
∗) ·

(
∏

k
θ
∗
k

)1/2

.

A.7 MSE Reduction

Proof of Corollary 1. Recalling that p̂MC is unbiased, we know that

Var(p̂IS)

Var(p̂MC)
≤ MSE(p̂IS)

MSE(p̂MC)
≤ Var(p̂IS)+O(e−2nδ )

Var(p̂MC)
. (34)

The order of the lower bound is Θ(n−(K−1)/4), in light of (11). The upper bound has the same order because,
for δ > 0, O(e−2nδ ) is o(n−k), for all k > 0, and therefore does not change the order of the ratio.

A.8 Stirling’s Formula for Beta Function

Lemma 5 Suppose θ ∗ ∈ ∆K−1, with θ ∗
k > 0, k = 1, . . . ,K. Then, as n → ∞,

B
(

α +
√

nθ
∗
)
∼ (2π)

K−1
2 n−

K−1
4 exp

{
√

n
K

∑
k=1

θ
∗
k lnθ

∗
k +

K

∑
k=1

(
αk −

1
2

)
lnθ

∗
k

}
. (35)

Proof. Stirling’s approximation states that, as x → ∞,

Γ(x)∼
√

2πxx− 1
2 e−x.

Since θ ∗
k > 0 and ∑

K
k=1 θ ∗

k = 1, applying Stirling’s formula to (1) evaluated at α +
√

nθ ∗ and simplifying
yields (35).
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We also note the following (non-asymptotic) lower bound of the Beta constant

B(α +nθ
∗)≥CnRn(2π)

K−1
2

(
K

∏
k=1

θ
∗
k
(αk− 1

2 )

)
n−

(K−1)
2 enθ ∗·logθ ∗

, (36)

where

Cn = e−
1

12(α0+n) (37)

Rn =
K

∏
k=1

(1+
αk

nθ ∗
k
)αk−1/2

(
K

∏
k=1

(1+
αk

nθ ∗
k
)(nθ ∗

k )

)(
1− α0

α0 +n

)α0+n

. (38)

This follows from Theorem 5 in Gordon (1994): ∀x > 0
√

2π xx− 1
2 e−x ≤ Γ(x)≤

√
2π xx− 1

2 e−x+ 1
12x .

Note that for all n ≥ 1 we have

Cn ≥C ≡ e−
1

12α0 (39)

Rn ≥ R ≡
K

∏
k=1

min

{
1,
(

1+
αk

θ ∗
k

)αk− 1
2
}(

1− α0

α0 +1

)α0+1

. (40)

We may therefore replace Cn with C and Rn with R in (36), as we do in (19).
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