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ABSTRACT

Modern simulation models increasingly feature complex logic intended to represent how tactical decisions
are made with advanced decision support systems (DSSs). For a variety of reasons, e.g., concerns about
privacy, latency, and data intensity, users might choose to replace DSSs with approximate logic within the
simulation model. This paper investigates the impacts of replacing DSSs with machine learning surrogate
models on the estimation of system performance metrics. We distinguish this so-called surrogate uncertainty
from conventional input uncertainty and develop approaches for quantifying the error introduced by the
use of surrogate models. Specifically, we explore bootstrapping and Bayesian model averaging methods
for obtaining quantile-based confidence intervals for expected performance measures and propose using
regression-tree importance scores to apportion the overall uncertainty across input and surrogate models.
We illustrate our approach through a contact-center simulation experiment.

1 INTRODUCTION

Many business processes involve the use of decision support systems (DSSs) to make optimal decisions in
complex, dynamic environments. Examples include production planning and inventory control in supply
chains, routing contacts in contact centers, and optimizing delivery routes in parcel delivery operations.
When using stochastic simulation to analyze systems featuring a DSS, a modeler must choose how to
incorporate the DSS in the simulation logic. In many cases, embedding the actual DSS in the simulation
model may be impracticable due to concerns about privacy, latency, and data intensity.

One approach for representing the DSS in the simulation model is to replace it with a simpler set of rules
based on expert knowledge of the DSS and its role in the decision-making process. While such rule-based
systems can partially encode domain knowledge, they rely on subjective expertise and generally would not
incorporate real-world data. As a result, they may fail to capture the complexity of the DSS, or at least not
to a sufficiently high degree of fidelity for trusting the results of the study. In light of these limitations,
we consider an alternative approach of replacing the DSS with a machine learning (ML) surrogate model.
Integrating ML models within simulation frameworks is becoming increasingly prevalent, driven by recent
advances in the offerings of commercial simulation software such as Simio (Simio LLC 2023). Unlike rule-
based logic or heuristics, ML models leverage real-world data to learn complex patterns in how decisions
have historically been made and capture intricate dependencies that may be challenging to explicitly encode
through hand-crafted rules. Replacing computationally expensive DSSs, such as optimization algorithms,
with ML models can accelerate simulation runs and enable larger experiments (Chen et al. 2024).

This paper concerns how to quantify the uncertainty in estimating some key performance indicator
(KPI) of the simulation model due to approximating DSSs with surrogate models. We seek to address
two key questions: How can we obtain confidence intervals (Cls) for the KPI that account for the
added uncertainty introduced by surrogate models? And what proportion of the output variability can
be attributed to uncertainty in surrogate models versus uncertainty in other input models versus intrinsic
random error? As a preliminary investigation in these directions, we study how two techniques used to
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quantify conventional input uncertainty—bootstrapping and Bayesian model averaging (BMA)—can be
broadly applied to construct Cls that account for this so-called surrogate uncertainty. Additionally, we
develop a regression-tree-based framework for quantifying the uncertainty attributable to different sources.
These approaches offer several advantages. First, they are non-parametric and thus allow for considerable
modeling flexibility without relying on strong distributional assumptions. Second, they straightforwardly
accommodate cases with multiple input and surrogate models. Third, the framework can be applied across
a wide range of surrogate model types without requiring model-specific assumptions.

In the simulation literature, input uncertainty (IU) refers to the study of the uncertainty about simulation
KPIs that arises from needing to estimate input models from limited data (Nelson and Pei 2024; Barton
et al. 2022; Lam and Qian 2022). Past IU approaches tend to deal with parametric input distributions,
e.g., the arrival rate of a stationary Poisson process. In contrast, our approach addresses a different
source of uncertainty: the approximation of embedded decision logic using ML surrogate models. This
creates several important distinctions: First, rather than fitting parametric distributions to observed data,
training surrogate models involves fitting (possibly parametric) functions to labeled input-output pairs, i.e.,
supervised learning. Second, surrogate model selection involves trade-offs between accuracy, interpretability,
and computational cost, which are often irrelevant in conventional IU settings where fitting a distribution is
typically straightforward and cheap. Third, whereas traditional IU concerns the input data to the simulation
model, surrogate uncertainty pertains to the decision logic itself, which can alter the sequence and structure
of events within a simulation run in complex ways.

In the applied mathematics community, another form of surrogate uncertainty is referred to as uncertainty
quantification (UQ). This area typically focuses on computer simulation experiments involving expensive
deterministic simulation models, often physics based. In contrast to stochastic simulation models, output
uncertainty arises from varying the model’s input parameters and studying how the output is affected. The
high computational costs associated with these kinds of simulation models motivates the use of surrogate
models trained on data produced by a designed simulation experiment (Popp 2023; Andrés-Thié et al.
2024; Ranftl and von der Linden 2021). Our approach differs in that the surrogate models we consider are
substitutes for only a part of a simulation model’s logic and not for the model as a whole.

The remainder of the paper is structured as follows. In Section 2, we provide a few motivating examples
of DSSs that arise in practice in systems commonly studied using stochastic simulation. Section 3 introduces
a mathematical framework for surrogate uncertainty and draws comparisons to input uncertainty. We detail
our approaches for uncertainty quantification in Sections 4 and 5 and apply them in numerical experiments
in Section 6. We summarize our findings and future research directions in Section 7.

2 DECISION SUPPORT SYSTEMS IN SIMULATED SYSTEMS

Decision support systems play a crucial role in optimizing complex operational processes across various
domains, including logistics, customer service, and energy management. These systems rely on optimization
algorithms or rule-based heuristics to make informed decisions in tactical planning contexts. In this section,
we present three representative examples of the kinds of DSSs that arise in systems commonly studied
using stochastic simulation. The DSSs differ in terms of their application areas, their frequency of use,
and the possible interdependency of the decisions they make over time.

Parcel Delivery Route Optimization A courier company receives a batch of parcels each day that
need to be delivered to customers, where the number of parcels and their locations are both random. An
optimization algorithm determines the most efficient delivery routes for the fleet of vehicles by minimizing
some combination of travel distance and operational costs. Each day’s deliveries are assumed to be
independent, hence the decisions made with the aid of the DSS do not depend on past decisions (Gendreau
et al. 1999). If the company aims to evaluate the long-run expected cost over, say, the next year, it might
turn to a simulation model that generates random orders and locations and simulates delivery operations.

Contact-Center Routing A contact center assigns contacts awaiting service to agents based on
complex decision rules involving queue lengths, agent availability, and service priorities as illustrated in
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Figure 1. To develop a long-term staffing and resource allocation plan for the contact center, a decision-maker
must run thousands of replications of a simulator of daily contact-center operations in which a routing DSS
is invoked for each contact. For such a large-scale experiment, directly embedding the real DSS into the
simulation could be computationally prohibitive; a surrogate routing model trained on historical contact
routing decisions might be used instead.
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Figure 1: Schematic representation of a contact-center simulation model consisting of stochastic input
model parameters (yellow), structural parameters (orange), core system components (gray), a surrogate
model (blue), and outputs (green).

Power Dispatching In power systems, real-time dispatching of electricity is performed every five
minutes based on forecasted demand and the solution of an optimization problem. Past dispatch decisions
influence generator availability and grid conditions in subsequent periods. A stochastic simulation model
can be employed to evaluate power dispatching policies under demand uncertainty. Exactly solving the
optimization problem at each time step throughout a simulation replication is computationally expensive,
particularly as the dimension of the demand grows. To reduce simulation run times, the optimization routine
(the DSS) can be replaced with an optimization proxy, a surrogate model trained on historical optimization
problem instances and their solutions (Chen et al. 2024).

In addition to those mentioned above, there are various reasons why a user may decide against embedding
a DSS in a simulation model:

* Privacy and Security: The DSS may interact with proprietary information, algorithms, business
rules, or trade secrets. These concerns are further amplified when simulations are built or run by
third-party entities, such as consultants. Directly integrating the DSS into the simulation could
expose confidential information or decision logic, creating potential vulnerabilities.

* Latency: The DSS may be too slow to be repeatedly invoked within the simulation, i.e., simulation
time advances too quickly relative to the real-world time experienced when calling the DSS.

* Data Intensity: Having the simulation make many queries of the DSS may slow down the DSS
when it is simultaneously needed for real-time decision-making, causing delays in critical business
functions and possibly degrading real-world performance.

3 PROBLEM FORMULATION

We define a DSS as a mapping that takes as input system state or contextual parameters and produces an
output that changes the state of the system. In terms of notation, we define a DSS as a function D : .%¥ — 7,
where D maps an instance s € .’ to an action a = D(s) € .o/ taken by the system. The input s consists of all
variables needed to describe an applicable problem instance for the DSS. These variables may originate from
multiple sources, including input distributions, the current system state, external non-stochastic parameters
(contextual factors), and objects within the system. Input variables can be continuous, such as customer
waiting times in a contact center, discrete, such as queue lengths, or categorical, such as whether an operator
is idle or busy. The output (action) may represent a variety of decisions depending on the context, such
as assignments, schedules of future events, or other state-updating operations.
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3.1 Machine Learning Surrogate Models

We assume that the surrogate model is an ML model trained and tested on real-world data. In this statistical
learning task, the features are the state and contextual variables comprising s, and the response is the
action made by the DSS. In this paper, we assume that the DSS is deterministic, i.e., given a fixed instance
s, it returns a fixed action a. This setup deviates from the typical supervised learning setting wherein
the observed response includes random noise. Our intention behind making this assumption is to avoid
dealing with the added complexity (and error) of having stochastic elements in the simulation model’s
logic. Nonetheless, standard ML models can still be applied to this noiseless case.

The surrogate models we envisage can be broadly divided into two categories and further analyzed in
terms of interpretability, accuracy, and computational efficiency:

* Non-Bayesian models: Simple models such as linear regression and decision trees offer high
interpretability and low computational cost, whereas more flexible models like artificial neural
networks (ANNSs) and gradient boosting machines can achieve higher predictive accuracy, especially
with large datasets, but at the cost of reduced interpretability and increased training time (Hastie
et al. 2009). Bootstrapping is a suitable approach for assessing uncertainty caused by incorporating
these models.

* Bayesian models: Bayesian models capture epistemic uncertainty through probabilistic inference.
Bayesian linear regression, for example, is highly interpretable and suitable for smaller datasets,
while more complex models like Gaussian processes (GPs) and Bayesian neural networks (BNNs)
offer greater flexibility and predictive accuracy. However, this comes at the expense of increased
computational cost, especially when sampling from the posterior distribution or scaling to large
datasets. For these models, uncertainty can be quantified through Bayesian model averaging.

Both Bayesian and non-Bayesian models span the spectrum from parametric to nonparametric forms.
Parametric models, such as linear regression or BNNs, rely on a fixed number of parameters where
nonparametric models like gradient boosting and GPs are data adaptive without assuming a predefined
structure. Our framework accommodates this full range of models without making strong assumptions
about their form.

3.2 Surrogate Uncertainty

Let F° = (F{,Fy,...,Ff) represent a collection of I true (correct) input models that drive the inherent
stochasticity in the simulated system. Throughout this paper, we assume that the true input models
Ff{,Fy,... Ff are mutually independent, meaning that the random variables generated from them in the
course of a replication are independent of each other. Similarly, let D = (D{,DY,...,D{) denote the set
of true DSSs whose logic is to be captured in the simulation model. For simplicity, we adopt the standard
setup in the IU literature of studying a single expected simulation output. The simulation output on a given
replication j=1,2,... for a simulation model endowed with F¢ and D¢ can be expressed as

Yj(FC,DC) = H(FC,DC) —|—€j(FC,Dc),

where p(F¢,D¢) = E[Y;(F°,D°)] represents the expected simulation output when hypothetically running
the simulation model with the true input models and true DSSs, and €;(F¢,D¢) is a mean-zero random
variable capturing the stochastic noise produced from the use of stochastic input models.

Because the true input models are invariably unknown and the true DSSs might be impractical to embed
in the simulation model, a standard approach to estimating p(F¢,D¢) is to obtain estimated input models
F and estimated DSSs D from real-world data, run n replications using F and D, and compute
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A confidence interval for i (F, D) can then be constructed as ¥ (F, D) £1,, /2.n—15/+/n, where s is the sample
variance and # /5 ,—; is the 1 —a/2 quantile of a Student’s ¢-distribution with n — 1 degrees of freedom.
This method, however, does not yield a satisfactory confidence interval for u(F¢,D¢), as it overlooks the
inherent uncertainty in estimating F¢ and D¢ using F¢ and D. Prior research on input uncertainty has
largely focused on the error in estimating i (F¢, D) introduced by using F in place of F¢, whereas our work
emphasizes the error introduced by running the simulation with D instead of D¢, which we call surrogate
uncertainty. We also aim to consider the joint effect of having estimated both F¢ and D¢ on the overall
uncertainty.

To explain how conventional IU is handled, we temporarily suppose that the true DSSs D¢ can be
embedded in the simulation model. In this setting, the estimated input models F are treated as random,
reflecting the epistemic uncertainty due to limited input data. Under these assumptions, the total variance
of the estimator ¥ (F',D) can be decomposed using the law of total variance:

Var(Y (F,D¢)) = Var(E[Y (F,D°) | F]) + E[Var(¥ (F,D) | F] = 67, + oc-

Here, Gle captures the contribution of input uncertainty—that is, how much the expected simulation output
varies due to uncertainty in F—while Gl%/IC captures the (Monte Carlo) simulation noise conditional on
fixed inputs and DSSs.

In this paper, we wish to additionally study the effect of replacing D¢ in the simulation model with
surrogate models D. As before, the standard confidence interval produced from running # i.i.d. replications
with F and D will fail to account for the uncertainty about D¢ and may fail to cover w(Fe,D°) with the
prescribed confidence. This is due to the fact that replacing D¢ with D will affect both the variance and
bias of the estimator ¥ (K, D). Applying the law of total variance slightly differently, the variance of the
estimator ¥ (F,D)—where now both F and D are treated as random quantities—can be decomposed as

Var(Y (F,D)) = Var(E[Y (F,D) | F,D]) + E[Var(¥ (F,D) | F,D)] = o/ + oiic.

This decomposition separates the simulation error, GMC—Whlch subtly differs from the one previously
mentioned—and attributes the remaining uncertainty to the input and surrogate models, 6125. We aim to
further decompose 6125 across each source of uncertainty in Section 5. Estimating the variance of our
estimator ¥ (I, D) is a vital part of building an asymptotically valid confidence interval for u(F¢, D).

Remark. The presence of surrogate models and input distributions also affects the bias of the estimator:
Bias = E[Y (F,D)] — u(F¢,D°),

where the expectation in the first term is taken over F, D, and replications of the simulation model. Although
bias estimation is not the primary focus of this paper, it nonetheless plays an important role in how well
the resulting CIs cover u(F¢,D). Bias is often overlooked or disregarded in the IU literature—partly
because it is difficult to estimate and is expected to vanish asymptotically faster than the variance, as the
size of the input dataset increases, assuming the classes of estimated input models match those of the true
input models, or are increasingly flexible enough to closely approximate them (Morgan et al. 2019). Our
experiments reveal that this reasoning may not so easily extend to the surrogate uncertainty setting. In
particular, when the ML technique used to fit a surrogate model has high bias, increasing the size of the
training data may not necessarily eliminate the bias term, and this persistent bias can adversely affect CI
coverage. We acknowledge the significance of this issue and leave a more detailed investigation of bias
estimation and its implications for future work.

4 (RE)SAMPLING INPUT AND SURROGATE MODELS

Before describing ways to estimate the variance of ¥ (F, ﬁ), we first discuss two ways of sampling from the
space of input and surrogate models: bootstrapping, which entails resampling input or surrogate training
data and refitting models, and Bayesian model averaging, which naturally captures the epistemic uncertainty
arising from limited input or training data.
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4.1 Bootstrapping

Bootstrapping (Efron and Tibshirani 1994) is a non-parametric resampling technique that involves resampling
the observed data with replacement to create multiple bootstrapped datasets and is commonly applied to
study input uncertainty (Barton et al. 2022). A straightforward way to leverage bootstrapping for studying
surrogate uncertainty is to resample the input-output pairs in the training dataset with replacement (Tang
and Westling 2024). While bootstrapping does not impose strong distributional assumptions on the data, it
can be challenging to apply in certain contexts, e.g., time series data, which exhibits temporal dependencies,
meaning that randomly resampling observations can disrupt inherent correlations and patterns. This situation
could arise, for example, if the DSS were a forecasting tool. Specialized techniques such as moving block
bootstrap (Lahiri 2003) or stationary bootstrap (Politis and Romano 1994) have been developed to address
this case, but they can be more complicated to implement. Bootstrapping also tends to multiply the required
computational effort. In conventional input uncertainty settings, obtaining F's via bootstrapping is relatively
inexpensive because it entails fitting input models, which is typically fast. In contrast, when bootstrapping
is used to quantify surrogate model uncertainty, the computational burden is expected to be higher because
a surrogate model needs to be trained for each bootstrap sample. Complex ML models, such as deep
neural networks, often require substantial training time, especially when the data are high-dimensional or
the model architecture is deep. When using bootstrapping for IU, the dominant cost is often the simulation
runs themselves, whereas in our setting of surrogate uncertainty, the cost of repeatedly training surrogate
models may become comparable or even dominant.

4.2 Bayesian Model Averaging

Bayesian model averaging offers a principled framework for accounting for uncertainty in the form of a
posterior distribution—obtained via Bayes’ rule—which inherently captures the remaining uncertainty about
the model after observing the data (Chick 2001). This approach treats the parameters of input or surrogate
models as random variables, which are updated using Bayes’ rule when training the model. Bayesian
surrogate models, e.g., GPs or BNNs, are equipped with posterior distributions on their predictions as
functions of inputs for GPs (Rasmussen and Williams 2006) or parameters weights for BNNs (Neal 2012).
Instead of resampling and retraining the surrogate model multiple times, as required in bootstrapping,
many Bayesian methods simply require sampling from the posterior distribution of the model parameters.
For example, when working with BNNs, generating new surrogate models requires only sampling from
the posterior distribution rather than performing a full retraining process. On the other hand, sampling
from GPs becomes increasingly expensive as the number of evaluation points grows, which in our setting
corresponds to the number of times the surrogate model is invoked within a simulation replication.

5 UNCERTAINTY QUANTIFICATION

Let {Fi*(b): b=1,2,...,Band i=1,2,...,1} and {Df(b): b=1,2,...,Band [ =1,2,...,L} represent B
instances of each source of input uncertainty and surrogate uncertainty, respectively, generated via either
bootstrapping or posterior sampling. It is likely prohibitively expensive to simulate all B’ possible
combinations (henceforth called configurations) of these instances, even for moderate values of B, I, and
L. To address this challenge, we turn to design of experiments (DOE) to choose a much smaller design of
configurations that reasonably covers the space of input and surrogate model instances. In this paper, we
employ Latin Hypercube (LH) designs (Santner et al. 2018), which ensure that every level of every factor
(in our context, every instance of every source of uncertainty) appears exactly once in a design. More
specifically, a LH design is constructed by sampling without replacement from the set of B instances of
each input and surrogate model to form configurations until all instances have been exhausted. This process
can be repeated to create additional LH designs, that can then be stacked to form a larger design. The
total number of configurations in such a stacked design is B’ = BS, where S is the number of stacks. The
simulation model is then run n times at each configuration, resulting in a dataset as depicted in Tablel. The
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B’ configurations do not represent B’ unique input or surrogate models, but rather are formed by selecting
combinations from base sets of B bootstrapped instances of each input and surrogate model using stacked
LH designs.

Table 1: Sampling framework for input and surrogate model uncertainty.

Input Models | Surrogate Models Output

v =y, (B0, DY

N _ v, (B PO

) NG L7 =h{IEY,DT)
Yn<1> _ Yn(F<1>,ﬁ<1>)

y\? =y, (F@ D)

2) _ v 2 HE)

P2 B 7 =n(FDE)
Yn<2> _ Yn(f‘<2>,]3<2>)
vE) =y, (B D®))

(B) _ (B") HB)
56 D& B =n(F, D)
v = v, (B®), DE)

The choices of B, S, and n affect the computational cost of the experiment and the coverage probability
of the CIs. Increasing B enhances the diversity of the sampled input and surrogate model instances,
increasing S improves the coverage of the cross-product of those instances, and increasing n reduces the
impact of simulation noise by averaging over more replications. Note that the number of input and surrogate
models that must be fitted or retrained depends on B, not S. A user can conduct a preliminary experiment
with a small design to assess the contributions of each source of uncertainty and then choose B, S, and n
accordingly for a refined design.

We next describe how one can analyze the data shown in Table 1 to construct Cls for u(F¢,D¢) and
use regression trees to decompose and attribute overall uncertainty to individual sources.

5.1 Confidence Intervals

We construct an approximate 1 — & quantile-based confidence interval for u(F¢,D¢) as
[Q(x/Z (Y) 7Q17(x/2 (Yﬂ )

where Q,(Y) denotes the empirical p—quantile of the sample means {V{ ¥ . 7))} where
VA ZY FE DY) for b’ =1,2,....B

This confidence interval provides a nonparametric estimate of the overall uncertainty incorporating
both input model and surrogate model uncertainty. The confidence interval is asymptotically valid as the
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size of the input and training datasets grows large, assuming that the true input and surrogate models lie
within the classes used to generate the sampled instances. This mirrors established results in the input
uncertainty literature for both bootstrapping and Bayesian model averaging. However, coverage can still be
adversely affected by bias—particularly for small sample sizes—underscoring the importance of selecting
flexible models and acquiring sufficient training data.

5.2 Using Regression Trees to Attribute Uncertainty

The confidence interval presented above quantifies overall uncertainty, but does not distinguish the individual
contributions from each input model and surrogate model. Consequently, decision-makers looking to
prioritize efforts in reducing uncertainty—such as increasing the number of simulation replications, collecting
more real-world data to improve input models, or enhancing the surrogate model through hyperparameter
tuning or switching to a more flexible architecture—could benefit from techniques that attribute uncertainty
to specific sources. Such a decomposition could allow practitioners to target their computational or data
collection efforts toward the most influential contributors to uncertainty.

We introduce a method for quantifying the contribution of different sources to overall uncertainty
that is compatible with both parametric and non-parametric input and surrogate models. Our approach
leverages variable importance metrics from regression trees (James et al. 2021), which assign a value
to each feature based on the total reduction in the total sum of squares (TSS) resulting from splits on
that feature. Our approach strongly resembles Analysis of Variance (ANOVA); however, whereas ANOVA
separately accounts for interaction effects, tree-based importance scores absorb interactions into the main
effects.

In our context, we consider a regression tree trained on the dataset illustrated in Table 1, where the /
input models F() and L surrogate models D are treated as categorical features with levels corresponding
to the sampled model instances. The tree is grown using recursive binary splitting, iteratively minimizing
the residual sum of squares (RSS), until each configuration is its own terminal node, at which point the
RSS corresponds to the portion of the TSS that is not explained by the input and surrogate models.

The TSS is defined as

TSS = Z Z (th’>_1=/>2’ where ¥ =— Z ZYW%
b=1j=1 NG p=y =1

and the RSS is given by:

B n N2
Rss:hzlzl(ngb>_yj<b>> 7
=1j=

where ¥ j<bl>

which in our case is 7.

To further understand the role of model complexity in this framework, we consider the concept of
degrees of freedom (DoF), which represents the effective number of parameters used by a model to fit data.
In regression settings, DoF is often interpreted as a measure of a model’s flexibility or complexity and
plays a critical role in error decomposition (Ye 1998). For regression trees, a common approximation for
DoF is the number of terminal (leaf) nodes (Hastie et al. 2009). Furthermore, the contribution of individual
features to model complexity is the number of times each feature is used for splitting, where each split
contributes approximately one additional DoF (Mentch and Zhou 2020). To attribute uncertainty to each
source, we compute the reduction in TSS attributable to each source and normalize it by the number of
times the corresponding source appears in the tree splits. Finally, we divide this value by the DoF of the
RSS, nB' — B’ 4+ 1, to obtain the simulation error’s contribution to the overall variance.

is the predicted value of the KPI for the configurations 4’ from the fully grown regression tree,
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6 A NUMERICAL EXAMPLE

To demonstrate the measurable effects of substituting a surrogate model for a DSS in a simulation model,
we consider a contact-center simulation. The model includes two contact groups, where contacts from
each group are assumed to arrive according to stationary Poisson processes with arrival rates A; = 80 and
A2 =90 contacts per hour and have exponential service time distributions with means of 6; =4 and 6, =5
minutes per contact. We are interested in estimating the expected average waiting time for the first contact
group. For simplicity, we assume that the patience times of the contacts are sufficiently large so that no
contacts abandon the queue. There are three expert groups having 4, 4, and 5 experts, respectively, and
each expert group is capable of handling every type of contact. So the only difference in experts comes
from routing.

The contact center employs a routing mechanism that dynamically assigns contacts to expert groups
based on system conditions. The routing mechanism is triggered when one of two scenarios occurs: If a
contact arrives to find their contact group queue is empty and one or more experts are available, the contact
is immediately assigned to one of the available experts. Alternatively, if an expert becomes available when
queues are present, a waiting contact is selected to be serviced by that expert. Because of these cases,
we consider two distinct DSSs: a contact-triggered routing model, denoted by D¢, and an expert-triggered
routing model, denoted by Df. Both D¢ and Df are rule-based functions with non-trivial decision rules.
Specifically, D¢ takes as input the number of idle experts in each expert group and D takes as input the
longest waiting times of each contact group and their queue lengths. We run the simulation for five days
using the true input models and the true DSSs to generate datasets of routing decisions, which are used
to train the surrogate models, and datasets of arrival and service times, which are used to estimate the
input model parameters. We further simulate 100 replications (days) under this setting and estimate the
expected mean waiting time of the first contact group to be 1.07£0.031 minutes. We test two modeling
paradigms in our experiments: a frequentist approach that uses maximum likelihood estimation (MLE)
for estimating the parameters of the interarrival time and service time distributions and decision trees for
surrogate modeling, and a Bayesian approach that uses Bayesian parameter estimation for the input model
parameters—which reduces to MLE under non-informative priors—and BNNs for surrogate modeling.

In the first experiment, we fit decision tree classifiers as surrogates for the two routing models. The
contact-side routing model achieves an accuracy of 98%, while the expert-side routing model achieves
an accuracy of 97%. Three cases are examined: In the first case, simulations are conducted without
incorporating any input or surrogate uncertainty, i.e., we run 1250 replications using the estimated input
parameters and the trained surrogate models and calculate a point estimate and 90% CI for the expected
average waiting time of the first contact group. In the second case, only input uncertainty is considered.
The trained surrogate models are used, while the input parameters are bootstrapped 5 times to obtain
new estimates for each parameter, defining a design point. At each design point, the simulation model is
executed 10 times using D¢ and Dg, and the sample mean is computed. A quantile-based method is then
used to construct a 90% confidence interval. The third case extends the analysis by accounting for both
input and model uncertainty. Samples are drawn from both the routing models and the input parameters
before running the simulations. Bootstrapping on training datasets is performed to generate Dz(b) and f)::(b),
b=1,2,...,5. Additionally, B =5 input parameter instances are obtained for each of 4;,4;,6;,6, via
bootstrapping. The simulation model is then executed using sampled surrogate models Dé(b) and ﬁz(b) and
input parameters )Ll* (b),l; (b), 91* (b), and 92* (h). We used S = 25 stacks of non-overlapping Latin-hypercube
designs with n = 10 replications taken at each design point.

In the second experiment, we perform the same three-case experiment, but this time we use Bayesian
parameter estimation and train two BNNs for the surrogate models, where each BNN consists of one hidden
layer with 128 nodes and the ReL.U activation function and a softmax activation function at the output layer.
All parameters in the neural network have prior distributions that are normal with mean 0 and variance of

0.1. We use 10 epochs to train each BNN and then use the posterior means of the parameters to specify
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the surrogate models. The contact-side and expert-side routing surrogate models achieved classification
accuracies of 93% and 92%, respectively. For the input models, we used an exponential-Gamma conjugate
prior to obtain posterior distributions of the arrival and service rate parameters.

Table 2: 90% CIs for expected average waiting time under frequentist and Bayesian approaches.

Setting Approach Mean 90% CI Replications
Conventional 1.11  [1.096, 1.124] 1250

Frequentist Input Uncertainty 1.087 [1.005, 1.175] S$=25,B=5,n=10
Surrogate + Input Uncertainty 1.037 [0.942, 1.134] S§=25,B=5,n=10
Conventional 4015 [3.671, 4.359] 1250

Bayesian Input Uncertainty 3.604 [1.043,7.873] S=25,B=5,n=10
Surrogate + Input Uncertainty 2.691 [0.716, 8.230] S$S=25,B=5,n=10

Table 2 summarizes the results of the two experiments. The results highlight several noteworthy
patterns regarding the impact of uncertainty quantification on confidence interval construction. First, the
conventional approach in both the frequentist and Bayesian settings yields relatively narrow Cls that fail
to contain the estimated “true” expected average waiting time of 1.07 minutes. This indicates that the
conventional method underestimates the variability in the simulation output which suggests that decisions
based solely on the conventional approach may be overly optimistic and potentially misleading. The
second and third approaches address this limitation by incorporating input uncertainty and both input and
surrogate uncertainty, respectively. In both the frequentist and Bayesian settings, these expanded uncertainty
quantification strategies lead to wider intervals, with those from the third approach being the widest. In
the Bayesian case, this effect is even more pronounced and the interval from the third approach is not
only the widest but also the most conservative. Although wider intervals can sometimes be seen as less
informative, in this context they alert the decision-maker to the substantial uncertainty introduced by input
and surrogate modeling.

To further analyze the contribution of each source of uncertainty, we train a decision tree regressor on
the datasets generated from the third cases. We then compute and plot the feature importance scores for
both frequentist and Bayesian approaches in Figure 2. The analysis reveals that the most significant source
of uncertainty comes from the expert-triggered routing model. This indicates that our estimation of the
expected average waiting time is heavily influenced by the model used to approximate expert-side routing.
In contrast, the contact-triggered routing model contributes much less than the expert-triggered routing
model. Based on these results, one could consider collecting additional data for training the expert-side
surrogate model or selecting a more accurate surrogate model to enhance accuracy and reduce uncertainty in
the estimation of the expected average waiting time. Moreover, the importance plots suggest that increasing
the number of simulation replications or improving the accuracy of input model estimation would not be
enough to effectively shrink the confidence interval.

We conclude this section with a brief discussion on how one might choose the number of stacks, S.
In the second and third cases of the first experiment, for example, we generated a total of 125 design
points and ran 10 replications at each point, resulting in BSn observations. Figure 3 shows a plot where
the number of stacks, S, is plotted on the x-axis and the estimated importance scores of each source of
uncertainty are plotted on the y-axis. This visualization allows us to assess the stability of the variable
importance scores as S increases. If the plot exhibits large oscillations—especially in the ranking of the
most influential sources—it suggests that more stacks are needed to obtain stable estimates. We observe
that after approximately five stacks, the variability in the importance scores diminishes substantially, and
the dominant sources of uncertainty become clearly identifiable. This indicates that a modest number of
stacks may suffice for effective uncertainty attribution in this setting.
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Figure 2: Feature importance plots from fitting decision trees for the frequentist and Bayesian settings.
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Figure 3: Importance scores of each source of uncertainty with respect to the number of stacks, S.

7 CONCLUSION

This paper introduces a framework for quantifying the uncertainty introduced by ML surrogate models
embedded in simulation models. We leverage bootstrapping and Bayesian model averaging to construct
quantile-based Cls that capture the variability from both input and surrogate models. We further decompose
this uncertainty using regression-tree-based variable importance metrics to identify which sources contribute
most to output variability. Through a contact-center simulation experiment, we demonstrate how conventional
methods can significantly underestimate uncertainty and that accounting for surrogate model uncertainty
can yield more reliable CIs. Our results underscore the importance of selecting flexible surrogate models
and having sufficient training data and provide actionable insights for decision-makers seeking to allocate
resources to reduce model risk.
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