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ABSTRACT

Utilizing data-dependence analysis (DDA) in parallel discrete-event simulation (PDES) to find event-level
parallelism, we present the DDA-PDES framework as an alternative to spatial-decomposition (SD) PDES.
DDA-PDES uses a pre-computed Independence Time Limit (ITL) table to efficiently identify events in the
pending-event set that are ready for execution, in a shared-memory-parallel simulation engine. Experiments
with AMD, Qualcomm, and Intel platforms using several packet-routing network models and a PHOLD
benchmark model demonstrate speedup of up to 8.82x and parallel efficiency of up to 0.91. In contrast with
DDA-PDES, experiments with similar network models in ROSS demonstrate that SD-PDES cannot speed
up the packet-routing models without degradation to routing efficacy. Our results suggest DDA-PDES is
an effective method for parallelizing discrete-event simulation models that are computationally intensive,
and may be superior to traditional PDES methods for spatially-decomposed models with challenging
communication requirements.

1 INTRODUCTION

Parallel Discrete-Event Simulation (PDES) methods typically rely on spatial decomposition (SD-PDES),
where a simulation model is partitioned into separate logical processes (LPs) that can execute in parallel
(Fujimoto 1990; Perumalla et al. 2022; Fujimoto et al. 2017; Rahman et al. 2017; Andelfinger and Cai
2022). SD-PDES is limited by simulation model decomposability and serial execution of events within
an LP. In contrast, event-level PDES allows multiple independent events within a single LP to execute
simultaneously, potentially offering greater parallelism than traditional SD-PDES methods. Event-level
PDES may be particularly useful (1) for models with long-range communication patterns that would make
LP-parallelization inefficient and (2) for monolithic models for which spatial decomposition is challenging.

In prior work, we introduced a novel approach for identifying independent events through data-
dependence analysis (DDA) (Jensen et al. 2025). We defined mathematical frameworks for determining
event readiness based on state-variable usage, scheduling dependencies, and timestamps. This laid the
theoretical foundation for a new class of PDES that can dynamically identify ready events during simulation
execution, regardless of model decomposability. Building on this foundation, we present the design,
implementation, and performance of our Data-Dependence Analysis Parallel Discrete-Event Simulation
(DDA-PDES) framework. Our contributions include:

• A parallel simulation engine that dynamically identifies ready events during runtime using DDA
• Algorithms and data structures for ready-event discovery and parallel execution
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• A performance evaluation across multiple x86- and ARM-based hardware platforms
• Comparisons with the ROSS (Carothers et al. 2002) parallel simulation system using similar

packet-routing network models that are challenging for SD-PDES

This work demonstrates that the theoretical foundations established in our earlier work can be im-
plemented in a shared-memory high-performance simulation system. The results show that DDA-PDES
can effectively identify and utilize parallelism at the event level, achieving significant speedup over serial
execution and superior performance compared with SD-PDES, for some DES models.

The remainder of this paper is organized as follows: section 2 reviews the theoretical foundations
of DDA-PDES and related work. Section 3 describes the architecture and implementation details of our
framework. Section 4 outlines the experimental setup, including simulation models and hardware platforms.
Section 5 presents performance results and analysis. Section 6 discusses conclusions and future work.

2 BACKGROUND AND THEORETICAL FOUNDATIONS

This section summarizes the foundational theoretical concepts underlying DDA-PDES, drawing from our
previous work (Jensen et al. 2025). We discuss related work in event-level parallelization in section 2.2.

2.1 Data-Dependence Analysis in DES

Data-dependence analysis (DDA) is used to identify independent events in a discrete-event simulation model
by examining state-variable (SV) usage and scheduling dependencies between events. The fundamental
concept is that if two events do not have conflicting SV accesses, and cannot schedule intermediate events
with conflicting SV accesses, they can be executed in any order without affecting the simulation outcome.

2.1.1 Identifying Ready Events

At a high level, ready events (REs) are defined as those events in the timestamp-ordered pending-event
set E, which will not be affected by preceding events in E and cannot affect preceding events in E, if
executed out of order. These events may execute immediately. Readiness for the kth event in E requires
mutual independence for each ( j,k) pair in E, where j ∈ {1, . . . ,k−1}, for k>1. The determination that
two events in a pair are mutually independent requires knowledge of data dependencies and timing.

Consider a simulation with a non-empty pending-event set E, where each event is a specific instance of
an associated event type. An event type defines the event routine, which determines state-variable updates
and scheduling of new events. An event contains an event type VG

i with a set of SVs, Si := Ii∪Oi, that are
read (Ii) or written (Oi) during event execution, where the simulation model has n different event types,
and i ∈ {1, . . . ,n}. There are three different ways in which event routine i may use SVs in Si. For each
state variable si,ℓ in Si, where Si has ni state variables, and ℓ ∈ {1, . . . ,ni}, event routine i may

1. update si,ℓ,
2. read si,ℓ to update an SV in Si, or
3. read si,ℓ to evaluate a condition, which determines conditional SV updating in si,ℓ or conditional

event scheduling.

2.1.2 Direct and Indirect Data Dependencies

Data dependencies between event types can be direct or indirect. A direct data dependency (DDD) exists
when two event types share state variables and at least one of them updates shared variables. Formally:
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Definition 1 (Direct Data Dependency (DDD))

For two event types A and B :

A
DDD←−→B ⇐⇒ SA∩SB = SA∩B ̸= /0 ∧
(SA∩B∩OA ̸= /0 ∨ SA∩B∩OB ̸= /0) . (1)

An indirect data dependency (IDD) occurs when one event type can schedule another event type, either
immediately or intermediately, which then has a direct data dependency with a third event type:

Definition 2 (Indirect Data Dependency (IDD))

For three event types A,A+,and B :

A
IDD←−→B ⇐⇒ ∃A+ |

(
A

reach−−−→A+ ∧ SA+∩SB = SA+∩B ̸= /0 ∧

(SA+∩B∩OA+ ̸= /0 ∨ SA+∩B∩OB ̸= /0)
)
,

where A
reach
===⇒A+ indicates that A can schedule A+, immediately or intermediately. (2)

2.1.3 Event Conflicts and Independence Time Limits

Events a and b in a pending-event set E, which have event types A and B, are in conflict if:

1. A and B have a DDD, or
2. A and B have an IDD, and there is an event type A+, such that A+ is reachable from A, A+ and B

have a DDD, and an A+ event, a+, can be scheduled with a TS ta+ ≤ tb.

If a pair of events does not have an event conflict, they are mutually independent. A time limit specific
to the event types, from which these events are instantiated, quantifies this independence:

Definition 3 (Event-Type-Pair Independence Time Limit (ITL))

For a model G with event types VG:={VG
1 , . . . ,V

G
n } and

alias types A,B,B′, A7→VG
i , B7→VG

j , B
′ 7→VG

k , i, j,k∈{1, . . . ,n},

B′ :=
{
VG
ℓ ∈VG | A reach−−−→VG

ℓ ∧ VG
ℓ

DDD←−→B, ℓ∈{1, . . . ,n}
}

:

δ
G
A,B :=

time
(
A

min
==⇒B′

)
, if B′ ̸= /0,

∞, otherwise,

where A
min
==⇒B′ is the minimum of all shortest paths,

from A to each B′ ∈ B′, using minimum edge delays. (3)

2.1.4 Ready-Event Set

The set of ready events is defined mathematically in definition 4, for a specific DES model G, at a specific
point in the simulation of G, using the terms defined as follows:

• G: the DES model, n event types,
• VG : the set of event types in G, size n,
• E: the timestamp-sorted pending-event set in a simulation of G,
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• R: the set of ready events in a simulation of G,
• ek: the kth event in E, k∈{1, . . . ,m},
• VG

kk: the event type of ek, k 7→kk, kk∈{1, . . . ,n},
• tk: the TS of event ek,
• e j: the jth event in E, j∈{1, . . . ,k−1}, for k>1,
• VG

j j: the event type of e j, j 7→ j j, j j∈{1, . . . ,n},
• t j: the TS of event e j,
• δ G

j j,kk: the ITL for the event-type pair (VG
j j,V

G
kk), and

• tk−t j < δ G
j j,kk: a condition for ek to be in R, specifying that the TS difference between events ek

and e j is less than the ITL for the event-type pair (VG
j j,V

G
kk).

Definition 4 (DDA-DES Ready-Event Set
(
R
)
)

R :=

{
ek ∈ E

∣∣∣∣∣ ∀e j ∈ E, j<k,

tk−t j < δ G
j j,kk

}
(4)

2.2 Related Work on Event-Level Parallelization

Prior work on event-level DES parallelization was domain-specific, did not parallelize SV updates, or did
not temporally bound event conflicts. Jones (1986), Jones et al. (1989) proposed an early alternative called
"concurrent simulation," which finds parallelization through knowledge of scheduling behavior but cannot
parallelize SV updating. Chen et al. (2012), Chen et al. (2014) introduced an out-of-order PDES simulator for
the SystemC and SpecC system-level description languages, leveraging data-dependence analysis between
events to execute them out of order, but this was limited to specific programming languages and applications.
Kunz et al. (2012) experimented with probabilistic heuristics to detect causality relationships, but this
approach appears useful only for specific types of simulations after a training phase. Quaglia and Baldoni
(1999) introduced weak causality (WEC), which identifies causally-unordered events via SV-access analysis.
WEC detects direct conflicts between event pairs but does not implement a mechanism for detecting indirect
conflicts caused by scheduling dependencies. Unlike our approach, WEC is not a parallelization technique,
and no experimental validation is provided. Stoffers et al. (2015) used data dependencies and scheduling
dependencies to find event-level parallelism. However, their approach does not consider time-bounded
event-type reachability, which may critically limit parallelism in many DES models.

Our work differs from these approaches by providing a general-purpose framework that can be applied to
any discrete-event simulation model, which may be represented in an event graph, dynamically identifying
ready events during runtime based on rigorous data-dependence analysis.

3 IMPLEMENTATION OF DDA-PDES

This section describes the implementation of our DDA-PDES framework, including the data structures and
algorithms that facilitate DDA-PDES.

3.1 Independence Time Limit (ITL) Table Generation

A critical component of our approach is the Independence Time Limit (ITL) table, which provides constant-
time lookup of causality relationships between event types. For a model with n event types, this table has
O(n2) size but provides O(1) access time. Prior to generating the ITL table, some components must be
explicitly defined in the simulation model, for each event type i: (1) the sets of input and output SVs Ii

and Oi, and (2) the minimum scheduling delays for all successor events. Correctness of these definitions is
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essential to maintain causality. Currently, these components are defined manually for each event type, but
it may be possible to automate this key process. The generation of the ITL table occurs in three phases,
as shown in algorithm 1 and algorithm 2, not counting the preliminary generation of the Floyd-Warshall
(F-W) shortest-paths table. The algorithms presented here improve upon the earlier work in Jensen (2023)
by extending functionality to a broader class of DES models.

Phase 0 determines which vertices are reachable from each vertex in the event graph. Phase 1 then
computes the initial ITL values by analyzing which events can affect each other through state variable access
patterns. For each vertex pair ( j,k), the minimum time needed for an earlier j-type event to affect a later
k-type event, through direct or indirect data dependencies, is the phase-1 ITL value. Phase 2 then refines
these values by considering, for each vertex pair (h, i), how a later i-type event may affect immediately an
earlier h-type event or any events an earlier h-type event may schedule before the execution of the later i-type
event. The outer loop of each phase is independent and parallelizable. Our implementation uses OpenMP
for parallelization. The ITL-generation algorithm’s time complexity is O(n3), but this is decoupled from
simulation performance. Using the AMD system described in section 4.2, ITL-table generation including
F-W takes about 0.6 s and 264 s for 512-node and 4096-node 3D Torus NoC models, respectively, using
baseline algorithms. The 4096-node time can be reduced to 48 s with CPU-optimized code and to 9 s
using an NVIDIA RTX 3070 GPU. Note, if any event routine i is modified such that Ii or Oi is changed,
or a minimum scheduling delay is changed, the ITL table must be updated.

3.2 DDA Calendar Queue

Key to our parallel execution strategy is DDA-CQ, a novel parallel calendar queue for managing the
pending-event set, designed to support efficient parallel operations in the DDA-PDES framework. Our
design utilizes several key features:

1. Contiguous Memory Layout: Unlike traditional calendar queues that use arrays of linked lists,
our implementation stores events in a single contiguous array indexed by bucket ID and offset,
which facilitates efficient ready-event identification and parallel event scheduling.

2. Parallel Access: Contention is minimized through strategic use of atomic operations for bucket
indices, using spin locks only for bucket overflow lists and the far-future list.

3. Adaptive Bucket Width: The queue dynamically adjusts bucket width to maintain a useful number
of pending events in each bucket, avoiding sparsity and overflow.

3.3 Parallel Execution Strategy

The execution strategy uses OpenMP to manage a thread pool that executes ready events in parallel. The
main execution loop is implemented as shown in algorithm 3. In each execution iteration, parallel worker
threads process events in the first bucket of the calendar queue. Each thread examines the events and
determines their readiness by consulting the Independence Time Limit (ITL) table. An event is ready if, for
each preceding event in the timestamp-sorted first bucket, the event-pair ITL is greater than the timestamp
delta. In the parallel implementation, the ready-event set is restricted to the first bucket in the DDA-CQ.

CheckHasEvents() identifies the first bucket, partitions the first bucket to group non-empty events
together at the front, sorts these events by timestamp, and establishes a partition point that serves as
the working bucket size. UpdateFirstBucket() resets executed first-bucket events, integrates any
buffered immediate events into the first bucket, and triggers adaptive operations including bucket width
adjustments and bucket expansion.
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Algorithm 1: Independence Time Limit
(ITL) Table - Phase 0 & 1.

Input: shortestPaths, Is,Os

Output: IT L,Rs
1 IT L← zeros matrix of size numVertices2

// Independence Time Limit
table

2 Rs← array of numVertices empty lists
// Reachability sets
// Phase 0: Compute reachable

vertices
3 for l← 0 to numVertices−1 do
4 lmPaths← empty list
5 for m← 0 to numVertices−1 do
6 if shortestPaths[l][m]< ∞ then
7 append m to lmPaths

8 Rs[l]← lmPaths

// Phase 1: Compute initial
ITL values

9 for k← 0 to numVertices−1 do
10 Sk← SetUnion(Is[k],Os[k])

// State variable set Sk =
Input SVs ∪ Output SVs

11 USk ← empty list // Vertices
that can update SVs in Sk

12 for l← 0 to numVertices−1 do
13 Ol_Sk ← SetIntersection(Os[l],Sk)
14 if Ol_Sk is not empty then
15 append l to USk

16 for j← 0 to numVertices−1 do
17 X jk← SetIntersection(Rs[ j],USk)

// Vertices reachable
from j that affect k

18 if X jk is not empty then
19 Tjx← empty list
20 for each x in X jk do
21 append shortestPaths[ j][x]

to Tjx

22 IT L[ j][k]←min(Tjx)

23 else
24 IT L[ j][k]← ∞

25 return IT L,Rs

Algorithm 2: Independence Time Limit
(ITL) Table - Phase 2.

Input: shortestPaths, IT L,Rs
Output: IT L
// Phase 2: Refine ITL values

1 for h← 0 to numVertices−1 do
2 for i← 0 to numVertices−1 do
3 Zi← empty list // Vertices

that i can affect
immediately (ITL = 0)

4 for l← 0 to numVertices−1 do
5 if IT L[i][l] = 0 then
6 append l to Zi

7 Xhi← SetIntersection(Rs[h],Zi)
// Reachable vertices
with immediate effect

8 if Xhi is not empty then
9 Thi← empty list

10 for each x in Xhi do
11 append shortestPaths[h][x]

to Thi

12 if min(Thi)< IT L[h][i] then
13 IT L[h][i]←min(Thi)

// Update if
phase-two value is
smaller

14 return IT L
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Algorithm 3: Parallel Out-of-Order Simulation Execution.
Input: ITL table, event buckets
Output: Simulation statistics

1 simTime← 0 run← CheckHasEvents(true)
2 UpdateFirstBucket(simTime)
// Begin parallel region

3 while run do
4 buckets,startIdx, partitionPoint← GetFirstBucket()

// Parallel for loop with dynamic scheduling
5 for j← 0 to partitionPoint−1 in parallel do
6 if buckets[startIdx+ j].status = 0 then
7 eventReady← true
8 vertexID← buckets[startIdx+ j].vertexID
9 timestamp← buckets[startIdx+ j].time

10 for i← 0 to j−1 do
11 depVertexID← buckets[startIdx+ i].vertexID
12 depTimestamp← buckets[startIdx+ i].time
13 indepLimit← IT L[vertexID][depVertexID]
14 if timestamp−depTimestamp≥ indepLimit then
15 eventReady← f alse
16 break

17 if eventReady then
18 Execute(buckets[startIdx+ j])

// Synchronization point - single thread updates
19 UpdateFirstBucket(simTime)
20 run← CheckHasEvents()

4 EXPERIMENTAL SETUP

Multiple simulation models and multiple platforms were used to evaluate the performance of our DDA-
PDES implementation. The DDA-PDES simulation framework and models were developed in C++ and
compiled with the GNU Compiler Collection (GCC) using O3 optimization.

4.1 Simulation Models

To evaluate our DDA-PDES framework, we implemented multiple packet-routing network models with
different topologies and capabilities, and also the PHOLD benchmark. Each model exercises different
aspects of our event-level parallelism approach, with varying complexity and communication patterns. The
2D and 3D models feature adaptive routing, similar to strategies employed for network-on-chip (NoC)
packet routing in (Ascia et al. 2008; Mak et al. 2010; Trik et al. 2021).

PHOLD Benchmark: Standard PDES benchmark with fully-connected topology, 4096 nodes.
Ring Network: One-dimensional ring with bidirectional packet routing, 4096 nodes (8192 event types).
2D Irregular NoC Network: Mixed topology with local mesh and express links. Parameterized

probability of local connectivity. Features adaptive routing based on current n-hop-neighbor queue states
and propagated historical queue information from incoming packets, 4096 nodes (8192 event types).
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3D Torus NoC Network: Regular wrapped mesh with six neighbors per node. Features the same
adaptive routing as the 2D Irregular NoC Network models, 4096 nodes (8192 event types).

Table 1 provides an event-routine analysis from the Python Lizard library (Terryin/Lizard ), to estimate
the computational intensity of each model and the speedup capability with the DDA-PDES implementation.

Table 1: Cyclomatic complexity and size metrics for DES model event routines.

Model NLOC CCN Tokens

PHOLD 13 3 119
Ring 111 36 811
2D Irregular NoC 462 119 3495
3D Torus NoC 453 126 4240

4.2 Hardware Platforms

We conducted experiments on three different hardware platforms:

• AMD Ryzen 5 3600: x86_64 architecture, 6 cores, 4.2 GHz max clock, 192 KiB L1d cache × 6,
192 KiB L1i cache × 6, 3 MiB L2 cache × 6, 32 MiB L3 cache × 2, 16 GB DDR4 3200 MHz
memory, Manjaro Linux 24.0.8, GCC 14.2.1

• Qualcomm Snapdragon X Elite: aarch64 architecture, 12 cores, 3.8 GHz max clock, 1.1 MiB
L1d cache × 12, 2.3 MiB L1i cache × 12, 144 MiB L2 cache × 12, 14 GB LPDDR5X 4224 MHz
memory, WSL 2 running Ubuntu 24.04.2 LTS on Windows 11, GCC 13.3.0

• Intel Xeon Gold 6148: x86_64 architecture, 40 cores (2 sockets, 20 cores/socket), 2.4 GHz max
clock, 1.3 MiB L1d cache × 40, 1.3 MiB L1i cache × 40, 40 MiB L2 cache × 40, 55 MiB L3 cache
× 2, 384 GB DDR4 2666 MHz memory, Rocky Linux 9.3 (Blue Onyx), GCC 11.4.1

5 RESULTS AND ANALYSIS

This section presents the performance results of our DDA-PDES implementation across different hardware
platforms and simulation models, and provides comparisons with similar SD-PDES model simulations.
Each experimental parallel run is validated against a corresponding serial run, comparing: (1) the final
simulation-clock time, (2) the final SV values, (3) the number of event executions in total and by type, and
(4) if applicable, the global mean packet delay, to full double precision. All parallel runs are consistent
with corresponding serial runs, based on these criteria. In our previous work (Jensen et al. 2025) that
evaluated the available parallelism in DES models, similar to those used in this work, ready events were
identified and executed serially, out-of-order. In that work, all 1,900 serial out-of-order runs were found
to be consistent with corresponding serial in-order runs, comparing event-type-level simulation traces that
logged the timestamp and values of all input and output SVs at each event execution.

5.1 Speedup Analysis

Figures 1 and 2 show the speedup achieved by our DDA-PDES implementation on the Ryzen, Snapdragon,
and Xeon platforms. Serial performance is measured from two different serial implementations, using two
different pending-event set data structures: (1) a C++ std::multiset, and (2) a fixed-width calendar
queue (Brown 1988). For each testing configuration, the mean of five parallel runs is compared against the
best serial run, which may be from either serial implementation. For the more computationally-lightweight
models, the PHOLD benchmark and the ring network, the calendar queue implementations are about 20%
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and 13% faster than the std::multiset implementations. For the other network models, the differences
are minimal, as performance is not bound by event-set management.
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Figure 1: Grouped speedup plots for the PHOLD benchmark and 1D ring network. Multiple calendar
queue bucket sizes are tested. Speedup is non-existent or minimal with lightweight events.
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Figure 2: Grouped speedup plots for the 2D irregular NoC networks (50% and 80% local connectivity)
and 3D torus topology, 1-hop-aware and 4-hop-aware configurations. Multiple calendar queue bucket sizes
are tested. DDA-PDES can parallelize the computationally-intensive routing algorithms.

The PHOLD and Ring models find no speedup and minimal speedup, respectively, as the parallelization
overhead is more significant than the event routines. The 2D and 3D models, which feature computationally-
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intensive adaptive routing algorithms, find maximum speedup of 4.28, 6.65, and 8.82 on these platforms with
6, 12, and 40 cores. Maximum parallel efficiency is 0.91. Generally, the 1-hop-aware models parallelize
better than the 4-hop-aware models because there are more independent events for the threads to execute.
Similarly, using larger bucket sizes exposes the threads to more ready events, but performance returns
diminish with increasing bucket size, as the ready-event identification process has O(n2) time complexity.

5.2 ROSS Comparison

For comparison with SD-PDES, we implemented similar 3D torus models for the ROSS simulation system
(Carothers et al. 2002). Figure 3 shows a comparison between our DDA-PDES implementation and ROSS
for the 3D torus network model with both 1-hop-aware and 4-hop-aware configurations. The ROSS models
were designed to minimize message passing by storing queue-size updates in shared memory, for LPs
belonging to the same process. Further, a parameter defines how often an LP has to broadcast queue-size
updates to inter-process LPs, based on how much its queue size has changed. Additionally, queue-size
update messages are allowed to be stale, similar in scale to the defined lookahead value. All ROSS runs
use 8 MPI processes; using more than 8 processes resulted either in slower run times, likely due to poor
decomposition, or failure due to out-of-memory errors. The DDA model is able to use up to 12 cores and
achieves increased speedup beyond 8 cores, so that data is included in fig. 3.
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Figure 3: Performance comparison between DDA-PDES and ROSS for 3D torus network model, 1-hop-
aware (Torus-1) and 4-hop-aware configurations (Torus-4). The ROSS parallel model uses (1) a queue-size
delta update threshold parameter and (2) a queue-size update message delay similar to lookahead, to
alleviate communication burden while potentially maintaining routing efficacy. The fully shared-memory
DDA model does not have to make these compromises.

The 1-hop ROSS model can parallelize somewhat effectively, if some degradation to the packet-routing
capability is permitted. For example, using a queue-size delta update threshold of 2 and a lookahead of
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Table 2: Speedup and error for Torus-4 on ROSS, multiple lookahead and update threshold values.

Update Lookahead = 0.01 Lookahead = 0.1 Lookahead = 1.0

Threshold Speedup Error (%) Speedup Error (%) Speedup Error (%)
1.0 0.10 0.22 0.11 0.53 0.11 3.29
2.0 0.37 1.70 0.57 2.11 0.58 4.90
3.0 0.66 3.69 1.18 3.94 1.23 6.87

...
...

...
...

...
...

...
10.0 1.14 13.43 2.45 13.95 3.01 16.63
15.0 1.18 15.50 2.56 15.93 3.26 18.86
20.0 1.21 16.52 2.61 17.04 3.46 20.01

0.1, the ROSS model achieves a speedup of 3.08 with a mean packet delay error of 0.94%. On the same
platform, the comparable DDA model achieves a speedup of up to 6.65, with no deviation from the serial
mean packet delay. However, for the 4-hop model, the ROSS model can achieve significant speedup only
with significant degradation to the routing capability. For example, using a lookahead of 1.0 and an update
threshold of 10, speedup is 3.01, and mean packet delay error is 16.63%. On the same platform, the
comparable DDA model achieves a speedup of 3.5, with no deviation from the serial mean packet delay.
Complete metrics for the ROSS 4-hop torus model are in table 2.

6 CONCLUSION AND FUTURE WORK

We presented the design and performance evaluation of Data-Dependence Analysis Parallel Discrete-Event
Simulation (DDA-PDES), a simulation system that builds on theoretical foundations for identifying indepen-
dent events through data-dependence analysis. Our implementation is a shared-memory simulation engine
that dynamically detects and executes ready events in parallel. Rather than utilizing spatial decomposition
and multiple logical processes, simulation threads parallelize model execution using a precomputed lookup
table that encapsulates event dependencies. Not limited to a narrow model class, DDA-PDES can parallelize
a wide range of DES models, given they have event routines that are sufficiently computationally intensive
to outweigh the overhead of the parallelization method.

Our experimental results across three hardware platforms and multiple simulation models demonstrate
that DDA-PDES can achieve significant speedup over serial execution and superior performance compared
with SD-PDES, for some DES models. The approach may be beneficial for models with complex data
dependencies that are not easily decomposable into separate logical processes, including high-resolution
atomic models such as biomedical models with fast and slow processes. Future work may explore: (1)
parallelization of additional classes of problems, which feature long-range dependencies and computationally-
intensive events, (2) integration of shared-memory DDA parallelization into SD-PDES methods, and (3)
automated methods for identifying SV sets and minimum scheduling delays, for expediency and correctness.
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