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ABSTRACT

We study ranking and selection (R&S) where the simulator’s input models are increasingly more precisely
estimated from the streaming data obtained from the system. The goal is to decide when to stop updating the
model and return the estimated optimum with a probability of good selection (PGS) guarantee. We extend
the general-purpose R&S procedure by Lee and Nelson by integrating a metamodel that represents the input
uncertainty effect on the simulation output performance measure. The algorithm stops when the estimated
PGS is no less than 1−α accounting for both prediction error in the metamodel and input uncertainty. We
then propose an alternative procedure that terminates significantly earlier while still providing the same
(approximate) PGS guarantee by allowing the performance measures of inferior solutions to be estimated
with lower precision than those of good solutions. Both algorithms can accommodate nonparametric input
models and/or performance measures other than the means (e.g., quantiles).

1 INTRODUCTION

Simulation is an essential computational tool for evaluating the performances of complex stochastic systems.
These simulation models mimic system stochasticity by generating random variates from input distributions
and feeding them through the simulation logic to produce outputs. However, the input distributions are
typically unknown and must be estimated from the observations from the system. Due to the finiteness
of the data, the input models of the simulator are subject to estimation error, which is then propagated to
cause additional uncertainty in the simulation output – such additional uncertainty is referred to as input
uncertainty. In this paper, we investigate finding the optimum for an R&S problem for the target system
when there is input uncertainty.

The incorporation of input uncertainty in simulation optimization has been studied actively in recent
years. He and Song (2024) categorize the literature into three problem contexts depending on the availability
of input data: fixed batch data, streaming data, and active input data collection problems. Our problem
belongs in the second category. We study the case where the input data streams in from the target system
and the simulation model can be periodically updated incorporating the latest batch of the data while a
one-time static decision is needed for the system. In this problem context, the decision boils down to
choose when to stop updating the simulation model and return the estimated optimum.

The existing literature on input uncertainty in the streaming data environment is relatively new. Liu
et al. (2021) take a Bayesian approach in where they update the posterior distribution of the input
parameter with each batch of incoming data. Wu et al. (2024) develop an algorithm based on a sequential
elimination framework, where they consider a streaming data to estimate the parameters of the input
distribution with a moving average estimator. He et al. (2024) study a multi-period continuous simulation
optimization problem, where in each period they get a fixed number of additional observations where they
can re-estimate the input parameters of the simulation model. Wang and Zhou (2025) propose an optimal
computing budget allocation scheme that sequentially allocates the simulation budget to solve an R&S
problem while periodically updating the input models with the streaming data.
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This work investigates the streaming data environment in a multi-period setting, in which we update
our estimation of the input distribution in each period and we decide when to stop collecting data. The R&S
framework we propose utilizes the general-purpose R&S procedure developed by Lee and Nelson (2016)
for a classical R&S problem. The authors do not impose any parametric assumption on the simulation
output distributions of the systems. Instead, their work obtains the statistical guarantee for finding the
optimum via bootstrapping and shows the procedure is asymptotically consistent as more simulation results
accumulate.

The main contribution of this work is three-fold. First, to the best of our knowledge, our framework is the
first to tackle R&S under input uncertainty completely nonparametrically, which does not make parametric
assumptions on the input models nor the simulation output distributions. Second, our framework can
accommodate general performance measures other than the mean such as a quantile or conditional value at
risk. Lastly, our procedure provides an asymptotic probability of selecting a solution whose performance
measure is within a user-defined threshold from the best, which is known as the PGS in the literature.
Again, to the best of our knowledge, we are the first to provide a PGS guarantee for R&S under input
uncertainty.

We extend Lee and Nelson (2016) by incorporating input uncertainty into the general-purpose R&S
procedure. The procedure selects the best solution for the target system based on the current estimate of
the input models. Then, it estimates the probability that the selected solution is indeed the best accounting
for both stochastic error in simulation as well as input uncertainty. If there is enough statistical evidence
of optimality, the procedure returns the estimated best solution.

The paper is structured as follows. Section 2 defines the streaming data environment and the problem.
In Section 3, we introduce the metamodel to predict the performance measure values at different sets of
input models and use it to set up an R&S procedure that stops with a PGS guarantee. The procedure is
further improved in Section 4, which is designed to require fewer data points and number of simulation
replications before stopping. The results from several numerical experiments are shared in Section 5 to
demonstrate the performances of the algorithms. We conclude in Section 6.

2 PROBLEM DEFINITION

Consider an R&S problem with k systems, where the goal is to find the one with the best performance
measure. Each system’s simulation is driven by a set of common input distributions Fc, which consists
of L independent input functions {Fc

1 , . . . ,F
c

L}, where the c stands for correct. Let Yi(F) represent the
simulation output of system i when the inputs are generated from F and ηi(F) be the simulation output
performance measure of system i. For example, if ηi(F) represents the mean of the simulation output, then
ηi(F) = EF[Yi(F)], where EF[·] represents that the expectation is taken with respect to F. Another example
for ηi(F) is to be the α quantile of the simulation output, i.e., ηi(F) = qα,F(Yi(F)). The objective is then
to find the system, ic, that maximizes the performance measure under the correct input distributions:

ic ≜ argmaxi∈{1,...,k}ηi(Fc).

In practice, Fc is unknown and must be estimated from data collected from the system. We assume
that for each p ∈ {1, . . . ,L}, a streaming process generates independent and identically distributed (i.i.d.)
data, which are collected in batches at discrete time points referred to as periods. To make the problem
simpler, we assume that in each period, ∆np ≥ 1 additional observations are collected for p ∈ {1, . . . ,L};
our framework is flexible enough to allow the value of ∆np varies at each period. We adopt np to denote
the cumulative data size collected from the pth process. At the end of each period, we update the estimator,
F̂ ≜ {F̂1, . . . , F̂L}, of Fc using all {n1, . . . ,nL} data. If the parametric families of Fc are assumed known,
then estimating F̂ boils down to estimating the unknown parameter vector of Fc. Alternatively, F̂ can be
estimated nonparametrically by an empirical distribution function constructed from data. Our framework
accommodates both nonparametric and parametric input models.
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In general, ηi(Fc) ̸= ηi(F̂) and the latter is random as F̂ depends on the finite data. Applying a traditional
R&S procedure taking F̂ as the true input distribution leads to finding the conditional best given F̂:

argmaxi∈{1,...,k}ηi(F̂). (1)

Meanwhile, ηi(F̂), i ∈ {1, . . . ,k}, must be estimated by running simulations. Suppose we denote the
corresponding estimate of (1) by î. A natural question is, if î and ic are the same? In other words, we are
interested in the probability of correct selection,

PCS ≜ Pr{î = ic},

where the probability is taken with respect to both the simulation error in estimating ηi(F̂) and the sampling
distribution of F̂. Since the streaming data size increases as the periods continue, F̂ converges to Fc and
we expect that the PCS converges to one provided that the simulation error in estimating ηi is reduced
appropriately. Thus, the problem boils down to deciding when to stop collecting the streaming input data
and return î with a PCS guarantee.

However, providing the exact PCS guarantee is difficult without making some assumption about the
separability between the performance measures at ic and the rest of the systems even for a classical R&S
without input uncertainty. Instead, we consider a modified statistical guarantee, the PGS, given user-specified
threshold, δ > 0:

PGS ≜ Pr{ηic(Fc)−ηî(F
c)≤ δ}.

Namely, PGS is the probability that the estimated best solution’s performance measure is within δ from
the true best’s, and refer to these solutions as good solutions. In the next section, we introduce an R&S
procedure that returns î when the estimated PGS exceeds 1−α for some user-chosen α > 0.

3 EXTENSION OF THE GENERAL-PURPOSE R&S

In this section, we present an R&S procedure that estimates ic with a PGS guarantee. To design an efficient
procedure, we adopt a metamodel to predict ηi at arbitrary input model F without having to run simulations
at F. Exploiting the metamodel, we extend the general-purpose R&S procedure by Lee and Nelson (2016)
to account for both input uncertainty and stochastic error in metamodeling. We introduce the metamodel
in Section 3.1 and the R&S procedure in Section 3.2.

3.1 Metamodeling

To address the effect of input uncertainty in R&S, we need to explicitly model the dependence of ηi(F̂)
on F̂ and estimate its effect on determining ic. While more sophisticated models are available, we adopt a
simple linear regression in this work.

For arbitrary input model F and each i ∈ {1, . . . ,k}, we model the performance measure, ηi(F), as a
function of the moments of F, e.g., means, variances, pairwise covariances of L input models, etc. We
denote the moment vector by θθθ ≜ (θ1, . . . ,θD)

⊤, where θ1 is set to one, and impose a linear model in θθθ ,
ψi(θθθ) ≜ θθθ

⊤
βββ

i. Here, βββ
i ≜ (β i

1, . . . ,β
i
D)

⊤ is the vector of regression coefficients and β i
1 is the intercept

term. Song and Nelson (2015) adopt a similar model in the context of input uncertainty quantification.
The least squares method lets us estimate the value of βββ

i by fitting the model with simulation outputs
run at B ≥ D+1 input models. To create the design matrix to fit the metamodel, we adopt bootstrap to
generate B sets of input models. Let X∗

p ≜ {X∗
p1, . . . ,X

∗
pmp

} denote a size-mp bootstrap sample drawn from
F̂p for each p ∈ {1, . . . ,L} and F̂∗ ≜ {F̂∗

1 , . . . , F̂
∗

L } be the set of input distributions constructed from the
bootstrap samples, {X∗

1, . . . ,X∗
L}. Here, mp may or may not equal np, which will be specified later in the

algorithms.
Suppose we bootstrap F̂ B times to generate F̂∗(b),b ∈ {1, . . . ,B}, run R0 ≥ 1 replications at each b,

and compute the estimate of ηi(F̂∗(b)), η̂i(F̂∗(b)), from the R0 replications. For instance, if ηi is the mean
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function, then η̂i(F̂∗(b)) is the sample average of the R0 replications. Moreover, we assume all simulations
are run independently across k systems, i.e., no common random numbers. We define Θ to be a B×D

matrix whose bth row corresponds to the vector of moments of F̂∗(b), θ̂θθ
∗(b)

, and yi be a B-dimensional
vector whose bth entry is η̂i(F̂∗(b)). Then, the least squares estimator of βββ

i and the fitted linear model for

arbitrary θθθ are β̂ββ
i
≜ (Θ⊤Θ)−1Θ⊤yi and ψ̂i(θθθ)≜ θθθ

⊤
β̂ββ

i
.

We can further characterize the prediction error of ψ̂i(θθθ) under some simplifying assumptions. Suppose
that the estimation error of η̂i(F̂∗(b)) is i.i.d. N(0,σ2

i ) for all b ∈ {1, . . . ,B}. Let ei be the vector of estimation
errors, i.e., ei ≜

(
η̂i(F̂∗(1))−ηi(F̂∗(1)), . . . , η̂i(F̂∗(B))−ηi(F̂∗(B))

)⊤. Then, given Θ,

ψ̂i(θθθ) = θθθ
⊤
(

βββ
i +(Θ⊤

Θ)−1
Θ

⊤ei

)
∼ N

(
θθθ
⊤

βββ
i,σ2

i θθθ
⊤(Θ⊤

Θ)−1
θθθ

)
. (2)

Clearly, the normality assumption we make here is unlikely to hold in general, but (2) provides an easy way
to quantify the prediction error, which proves to be useful in designing the R&S procedure in Section 3.2
robust to the prediction error of the metamodel.

The algorithms we propose in section 3.2 and section 4 require the predictions from the metamodel
to evaluate the stopping criteria at each period. While it is possible to fit the metamodel only once at the
beginning of the algorithm and continue to use it throughout the algorithm, this may bring up two issues.
The first is that we represent ηi(F) as a linear function of the moments of F, which may approximate ηi
well locally, but may not have global fidelity. Our goal is to find ic. Therefore, metamodels that lead to
ranking ic as the best near Fc may be good enough since F̂ becomes closer to Fc as np increases for all
p ∈ {1, . . . ,L}. However, if we do not update the metamodels, then there is no guarantee that ψ̂i(·) would
approximate ηi(·) well near Fc since all B design points of the regression are computed from the bootstrap
samples generated from F̂. Secondly, even if ηi(·) = ψi(·), i.e., the performance measure is indeed a linear

function of θθθ , the fitted metamodel parameters, β̂ββ
i
, are subject to the estimation error as long as B is finite,

which translates to the prediction error in ψ̂i(·).
The first issue may be addressed by refitting the metamodel in each period so that the design points

can be generated from the most up-to-date F̂. On the other hand, the second issue may be addressed
by increasing the number of design points to fit the metamodels, which favors including the simulation
outputs from the previous periods. To address both problems, we introduce parameter γ ∈ (0,1] to control
the fraction of periods whose bootstrapped design points and simulation outputs that are included in the
regression. At the tth data collection period, we include the last ⌈γt⌉ periods’ design points and performance
estimators to refit the metamodel. The ceiling function ensures that we always get an integer number and
at least one period, particularly when t is low. A similar idea has been adopted in Wu et al. (2024). The
bias-variance trade-off occurs when choosing γ , which we will investigate further in our future work.

3.2 R&S Procedure

In this section, we introduce Algorithm 1 that utilizes the metamodel in Section 3.1 to estimate ic with a
PGS guarantee given δ > 0. We start by providing a brief background on the general-purpose R&S in Lee
and Nelson (2016) for classical R&S problems with known Fc and discuss the modification we make to
reflect input uncertainty.

Let η̂i(Fc) be an arbitrary estimator of ηi(Fc). Hsu (1996) shows that, if we have

Pr
{

η̂i(Fc)− η̂ j(Fc)−
(
ηi(Fc)−η j(Fc)

)
≤ δ , ∀i ̸= j

}
≥ 1−α, (3)

then, for each i ∈ {1, . . . ,k},

Pr
{

ηi(Fc)−max
j ̸=i

η j(Fc) ∈
[
η̂i(Fc)−max

j ̸=i
η̂ j(Fc)−δ , η̂i(Fc)−max

j ̸=i
η̂ j(Fc)+δ

]}
≥ 1−α. (4)
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Namely, if we have ±δ CIs for all pairwise differences ηi(Fc)−η j(Fc), i ̸= j, with simultaneous coverage
probability 1−α , then for each i ∈ {1, . . . ,k} we can build a ±δ CI of the performance measure difference
from the best of the rest, ηi(Fc)−max j ̸=i η j(Fc). Suppose we choose î = argmaxi∈{1,...,k} η̂i(Fc). Then,
from (4), with probability ≥ 1−α , we have

ηî(F
c)−max

j ̸=î
η j(Fc)≥ η̂î(F

c)−max
j ̸=î

η̂ j(Fc)−δ ≥−δ ,

since η̂î(F
c)−max j ̸=î η̂ j(Fc) ≥ 0. This result implies that î is the best or within δ from the best with

probability 1−α , i.e., the PGS is guaranteed to be ≥ 1−α . Exploiting this idea, the general-purpose R&S
procedure in Lee and Nelson (2016) keeps simulating all k solutions at Fc until a bootstrap version of (3)
is confirmed.

In our problem, we cannot directly simulate with Fc as it is unknown. Instead, we take ψ̂i(θ̂θθ), the
prediction of ηi(F̂) from the metamodel, as the estimate of ηi(Fc) since F̂ best approximates Fc given the
current set of data. That is, the probability in (3) can be rewritten as

P ≜ Pr
{

ψ̂i(θ̂θθ)− ψ̂ j(θ̂θθ)−
(
ηi(Fc)−η j(Fc)

)
≤ δ , ∀i ̸= j

}
,

where the probability is taken with respect to the sampling distribution of F̂ as well as the prediction
error of the metamodel. We design our Algorithm 1 to stop when P exceeds 1−α. Because the sampling
distribution of F̂ is generally unknown, P cannot be directly evaluated. Instead, we adopt bootstrapping to
approximate its value as in Lee and Nelson (2016).

The bootstrap estimator of P is defined as

P∗ ≜ Pr
{

ψ̂i(θ̂θθ
∗
)− ψ̂ j(θ̂θθ

∗
)−

(
ψ̂i(θ̂θθ)− ψ̂ j(θ̂θθ)

)
≤ δ , ∀i ̸= j

∣∣ F̂
}
, (5)

where the conditional probability is taken with respect to the bootstrap sampling distribution of F̂∗ and the
prediction error of the metamodel given F̂. Suppose we adopt the same normality assumption as in (2).
Then, (5) can be rewritten as

P∗ = Pr
{
(θ̂θθ

∗− θ̂θθ)⊤(βββ i −βββ
j)+(θ̂θθ

∗− θ̂θθ)⊤(ξi −ξ j)≤ δ , ∀i ̸= j
∣∣ F̂

}
, (6)

where ξi ∼ N
(
0,σ2

i (Θ
⊤Θ)−1

)
for i ∈ {1, . . . ,k}, which characterizes the prediction error in the metamodel.

The exact computation of P∗ is difficult in general, but bootstrap sampling distribution of F̂∗ can be empirically
approximated while ξi may be sampled from N

(
0,σ2

i (Θ
⊤Θ)−1

)
given σ2

i . Although σ2
i is unknown, it

can be estimated from the regression model. For each i ∈ {1, . . . ,k}, let ri ≜ yi −Θβ̂ββ i = (ri1, . . . ,riB)
⊤ be

the vector of residuals of the regression. Then, σ̂2
i = 1

B−D ∑
B
b=1 r2

ib can be used as a point estimate of σ2
i .

Algorithm 1 starts by initializing the parameters including α,δ ,γ,B, and R0 and setting the values
of n0

p, the initial sample size from the pth input process, and ∆np for all p ∈ {1, . . . ,L}. In Steps 4-14,
Algorithm 1 updates the bootstrapped input distributions, F̂∗(1), . . . , F̂∗(B), runs simulations with them to
obtain new performance measure estimates and updates the metamodel. In Step 15, P∗ is estimated by

P̂∗ ≜
1
B

B

∑
b=1

1
{
(θ̂θθ

∗(b)− θ̂θθ)⊤(β̂ββ
i
− β̂ββ

j
)+(θ̂θθ

∗(b)− θ̂θθ)⊤(ξ
(b)
i −ξ

(b)
j )≤ δ , ∀i ̸= j

}
, (7)

where ξ
(b)
i is sampled from N

(
0, σ̂2

i (Θ
⊤Θ)−1

)
for each b ∈ {1, . . . ,B}. We stop the procedure if P̂∗ ≥ 1−α .

Otherwise, it proceeds to the next period to collect more input data and to reduce the prediction error of
the metamodels.

Let T1 denote the stopping period of Algorithm 1. Then, it runs R0BT1k simulation replications in total.
In addition, for each system we run one regression in each iteration to update the metamodel, making a
total of T1k linear regressions.
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Algorithm 1 General Purpose R&S with Input Uncertainty

1: Choose 0 < α < 1−1/k,δ > 0,0 < γ ≤ 1,B ≥ D+1, and R0 ≥ 1. Set the values of n0
p ≥ 1, and ∆np ≥ 1

for all p ∈ {1, . . . ,L}. Set t = 1.
2: For each p ∈ {1, . . . ,L}, let Xp to be the vector of n0

p observations and np = n0
p.

3: Update F̂ and θ̂θθ from {X1, . . . ,XL}.
4: for b = 1 to B do
5: For each p ∈ {1, . . . ,L}, draw size-np bootstrap sample X∗(b)

p from Xp.

6: Update F̂∗(b) and θ̂θθ
∗(b)

from {X∗(b)
1 , . . . ,X∗(b)

L }.
7: Run R0 replications to obtain η̂i(F̂∗(b)) for each i ∈ {1, . . . ,k}.
8: end for
9: Set Θt = (θ̂θθ

∗(1)
. . . θ̂θθ

∗(B)
)⊤ and update Θ to include the bootstrapped design points from the last ⌈γt⌉

iterations, i.e., Θ = (Θ⊤
t−⌈γt⌉+1 . . .Θ

⊤
t )

⊤.
10: for i = 1 to k do
11: Set yit = (η̂i(F̂

∗(1)
t ) . . . η̂i(F̂

∗(B)
t ))⊤ and update yi = (y⊤i,t−⌈γt⌉+1 . . .y

⊤
i,t)

⊤.

12: Compute β̂ββ i = (Θ⊤Θ)−1Θ⊤yi and σ̂2
i = 1

B−D ∑
B
b=1 r2

ib from ri = yi −Θβ̂ββ i.

13: For each b ∈ {1 . . . ,B}, sample ξ
(b)
i ∼ N

(
0, σ̂2

i (Θ
⊤Θ)−1

)
.

14: end for
15: Compute P̂∗ in (7).
16: if P̂∗ ≥ 1−α then
17: Return î = argmaxi∈{1,...,k} ψ̂i(θ̂θθ) as an estimate of ic.
18: else
19: Obtain ∆np additional input data and update Xp for all p∈ {1, . . . ,L}; set t = t+1, and np = np+∆np;

and go to Step 3.
20: end if

4 IMPROVING THE SAMPLE-SIZE EFFICIENCY

Recall that Algorithm 1 provides the PGS guarantee based on the simultaneous CIs for all pairwise
comparisons of the systems. However, estimating the performance differences precisely for all

(k
2

)
pairs is

considerably more demanding than the good selection event because even for a system whose performance
is significantly worse than the best, Algorithm 1 still requires its difference from all other solutions to
be estimated at the same level of precision. This indeed makes Algorithm 1 conservative as can be seen
from the empirical results in Section 5; the empirical PGS of the algorithm tends to be much higher than
the target, 1−α , implying that the procedure could have stopped earlier. This observation has motivated
Algorithm 2 introduced in this section, which improves the efficiency of Algorithm 1 by relaxing the
pairwise comparison requirement; this is inspired by Lee and Nelson’s unpublished follow-up research to
improve the computational efficiency of the general-purpose R&S procedure who generously shared it with
the authors.

We start by establishing a less conservative probability bound to guarantee the PGS. Nelson and Banerjee
(2001) show that, if

Pr
{

η̂i(Fc)− η̂ic(Fc)−
(
ηi(Fc)−ηic(Fc)

)
≤ max{δ ,ηic(Fc)−ηi(Fc)}, ∀i ̸= ic

}
≥ 1−α, (8)

then we have Pr
{

ηic(Fc)−ηî(F
c) ≤ δ

}
≥ 1−α. Hence, if we find estimators η̂1(Fc), . . . , η̂k(Fc) that

satisfy (8), then the PGS is guaranteed with probability at least 1−α .
There are two benefits to this approach that enhance the efficiency of the algorithm. First, the number

of comparisons is reduced from k(k− 1) in (3) to k− 1 in (8) by focusing on the comparisons between
each solution with ic. Second, the comparisons between ic and considerably inferior systems are allowed
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Algorithm 2 Efficient General Purpose R&S with Input Uncertainty

1: Choose 0 < α < 1−1/k,δ > 0,0 < γ ≤ 1,0 < ε < 1,B ≥ D+1, and R0 ≥ 1. Set the values of n0
p ≥ 1,

and ∆np ≥ 1 for all p ∈ {1, . . . ,L}. Set t = 1.
2: For each p ∈ {1, . . . ,L}, let Xp to be the vector of n0

p observations and np = n0
p.

3: Update F̂ and θ̂θθ from {X1, . . . ,XL}.
4: For each p ∈ {1, . . . ,L}, let mp = ⌈n1−ε

p ⌉.
5: for b = 1 to B do
6: For each p ∈ {1, . . . ,L}, draw size-mp bootstrap sample X∗(b)

p from Xp.

7: Update F̂∗(b) and θ̂θθ
∗(b)

from {X∗(b)
1 , . . . ,X∗(b)

L }.
8: Run R0 replications to obtain η̂i(F̂∗(b)) for each i ∈ {1, . . . ,k}.
9: end for

10: Set Θt = (θ̂θθ
∗(1)

. . . θ̂θθ
∗(B)

)⊤ and update Θ to include the bootstrapped design points from the last ⌈γt⌉
iterations, i.e., Θ = (Θ⊤

t−⌈γt⌉+1 . . .Θ
⊤
t )

⊤.
11: for i = 1 to k do
12: Set yit = (η̂i(F̂

∗(1)
t ) . . . η̂i(F̂

∗(B)
t ))⊤ and update yi = (y⊤i,t−⌈γt⌉+1 . . .y

⊤
i,t)

⊤.

13: Compute β̂ββ i = (Θ⊤Θ)−1Θ⊤yi and σ̂2
i = 1

B−D ∑
B
b=1 r2

ib from ri = yi −Θβ̂ββ i.

14: For each b ∈ {1 . . . ,B}, sample ξ
(b)
i ∼ N

(
0, σ̂2

i (Θ
⊤Θ)−1

)
.

15: end for
16: Set î = argmaxi∈{1,...,k} ψ̂i(θ̂θθ).
17: Compute P̂′∗ in (11).
18: if P̂′∗ ≥ 1−α then
19: Return î as an estimate of ic.
20: else
21: Obtain ∆np additional input data and update Xp for all p ∈ {1, . . . ,L}; set t = t+1 and np = np+∆np;

and go to Step 3.
22: end if

to be less precise. For the good systems, (8) prescribes the CI upper bound to be δ . For the others, it
allows greater upper bounds.

Using the same metamodels defined in Section 3.1, the probability in (8) can be rewritten as

P′ ≜ Pr
{

ψ̂i(θ̂θθ)− ψ̂ic(θ̂θθ)−
(
ηi(Fc)−ηic(Fc)

)
≤ max{δ ,ηic(Fc)−ηi(Fc)}, ∀i ̸= ic

}
, (9)

where the probability is taken with respect to the sampling distribution of F̂ as well as the prediction error
of the metamodels. We design Algorithm 2 to stop when P′ ≥ 1−α .

Since P′ cannot be directly evaluated, we utilize its bootstrap estimator, P′∗. Notice that (9) re-
quires the identity of ic; the equivalent quantity under the bootstrap sampling distribution given F̂ is
argmaxi∈{1,...,k} ψi(θ̂θθ), which we approximate with î = argmaxi∈{1,...,k} ψ̂i(θ̂θθ) as an estimate of ic. Adopting
the same normality assumption as in (2), we define

P′∗ ≜ Pr
{

ψ̂i(θ̂θθ
∗
)− ψ̂î(θ̂θθ

∗
)−

(
ψ̂i(θ̂θθ)− ψ̂î(θ̂θθ)

)
≤ max{δ , ψ̂î(θ̂θθ)− ψ̂i(θ̂θθ)}, ∀i ̸= î

∣∣F̂}
= Pr

{
(θ̂θθ

∗− θ̂θθ)⊤(βββ i −βββ
î)+(θ̂θθ

∗− θ̂θθ)⊤(ξi −ξî)≤ max{δ , θ̂θθ
⊤
(βββ î −βββ

i)+ θ̂θθ
⊤
(ξî −ξi)}, ∀i ̸= î

∣∣F̂}, (10)

where the conditional probability is taken with respect to the bootstrap sampling distribution of F̂∗ and the
prediction error of the metamodel given F̂.

Recall that in (6), the right-hand side threshold of the probability statement is δ , which is fixed and
known. On the other hand, the threshold in (10) is max{δ , ψ̂î(θ̂θθ)− ψ̂i(θ̂θθ)}, which contains estimates.
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Although we do not present here, some asymptotic analyses have revealed that to enjoy consistency of P′∗

in an asymptotic regime, ψî(θ̂θθ)−ψi(θ̂θθ),∀i ̸= î, must converge faster to ψî(θθθ
c)−ψi(θθθ

c) than the rate at
which the bootstrap distribution of ψi(θ̂θθ

∗
)−ψî(θ̂θθ

∗
) converges to ψi(θ̂θθ)−ψî(θ̂θθ) given F̂. Motivated by this

preliminary analysis, we choose mp ̸= np in Algorithm 2; we impose mp to grow at a slower rate than np

by setting mp = ⌈n1−ε
p ⌉, for some ε ∈ (0,1). Hence, Algorithm 2 constructs F̂∗(1), . . . , F̂∗(B) by sampling

mp observations from F̂p for each p ∈ {1, . . . ,L}.
Algorithm 2 is similar to Algorithm 1; we only highlight the differences below. Algorithm 2 requires

the value of ε in Step 1 as described above. In Step 17, we estimate P′∗ with

P̂′∗ ≜
1
B

B

∑
b=1

1
{
(θ̂θθ

∗(b)− θ̂θθ)⊤(β̂ββ
i
− β̂ββ

î
)+(θ̂θθ

∗(b)− θ̂θθ)⊤(ξ
(b)
i −ξ

(b)
î

)≤ max{δ , θ̂θθ
⊤
(β̂ββ

î
− β̂ββ

i
)+ θ̂θθ

⊤
(ξ

(b)
î

−ξ
(b)
i )}, ∀i ̸= î

}
.

(11)
Let T2 denote the stopping period of Algorithm 2. Algorithm 2 runs a total of R0BT2k simulation

replications and T2k linear regressions. These are identical to Algorithm 1 if we replace T2 with T1, however,
we expect T2 < T1 as can be confirmed by the experiments in Section 5.

5 EMPIRICAL STUDY

In this section, we evaluate the proposed algorithms with some numerical examples. In the first example,
the performance measure is the simulation output mean and a linear function in θθθ , i.e., ηi = ψi. We consider
a quadratic performance measure in θθθ in the second example while ψi still assumes a linear model to
test robustness. In the first two examples, we add homoscedastic simulation output noises to make them
stochastic. The last example is a M/M/1/c queueing system, where the goal is to find the system capacity,
c, that minimizes the expectation of a cost function. All three examples have analytical expressions for the
performance measures facilitating the empirical evaluations of the algorithms.

In all examples we consider k = 9 systems, the target 1−α is set to 0.9, and the number of bootstrap
iterations B = 500. For Algorithm 2, we set ε = 0.1. All experiments are run for 1000 macroreplications
for performance evaluations of the algorithms; we consider four metrics. First, the coverage probability of
the joint CIs that implies PGS is empirically evaluated. For Algorithm 1, this probability corresponds to
(3); for Algorithm 2, it is (8). The second and third metrics are the empirical PCS and PGS, respectively.
Both algorithms aim to provide the PGS ≥ 1−α , but do not guarantee the PCS. The last metric is the
number of input data collected before stopping; the lower, the more efficient.

5.1 Linear Response

In this example. we choose Fc = N(0,1) as our single uni-variate input model, which we pretend to be
unknown. We adopt ηi(θ) = ai+biθ as the simulation output mean of System i where θ is the mean of F.

The values of (ai,bi), i ∈ {1, . . . ,k}, we adopt are presented in Figure 1. We consider two parameter
settings for the best system, ic = 1. Figure 1 plots ηi(θ) of all 9 systems in θ ∈ [−1,1]. In the first
case plotted in Figure 1(a), b1 = 1. In the second case in Figure 1(b), we increase b1 to 5. This change
makes System 1 more sensitive to the variation in θ near the true mean, which makes it more difficult to
correctly find ic = 1 in the second case. The simulation output is generated by adding a normal noise to
ηi: Yi(θ) = ηi(θ)+σZ, where Z ∼ N(0,1) and σ = 20.

The algorithmic parameters used for this problem are n0 = 50,∆n = 1,R0 = 1 and γ = 0.8. In addition,
we set δ = 0.5. In both test cases, this choice makes System 1 the only good system, i.e., PCS =
PGS. For Algorithm 2, PCS and PGS are also equal to the coverage in this case. To observe this,
note that max{δ ,ηic(Fc)−ηi(Fc)} = ηic(Fc)−ηi(Fc) for all i ̸= ic. Hence, we write the event in (8) as
{ψ̂ic(θ̂θθ)− ψ̂i(θ̂θθ)≥ 0, i ̸= ic}, which is true if and only if î = ic.
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(a) (b)

Figure 1: Plots of ηi(θ) = ai + biθ , i ∈ {1, . . . ,9}, for two test cases. In Case (a), b1 = 1, whereas in
Case (b), b1 = 5. All other systems’ performance measures are the same for both cases.

Table 1: Empirical coverage, PCS, PGS and input data size (at stopping) for the examples in Figure 1
computed from 1000 macroruns.

Algorithm
Case (a) Case (b)

Coverage PCS = PGS
Input Data Size

Coverage PCS = PGS
Input Data Size

Avg Std Dev Avg Std Dev

Algorithm 1 0.913 0.995 227 52 0.887 0.957 445 106
Algorithm 2 0.936 0.936 93 21 0.864 0.864 208 133

The left panel of Table 1 contains the empirical results for Case (a). Both algorithms have coverages
greater than the target, 0.9. Algorithm 1 clearly overshoots the PGS (=PCS) compared to Algorithm 2.
The average input data sizes are 227 and 93 for Algorithms 1 and 2, respectively. Clearly, Algorithm 2 is
more efficient because it reaches the desired PGS earlier. The difference between both algorithms indicates
the conservatism in Algorithm 1, since it mandates precise pairwise comparisons of all systems, which
requires a higher number of observations to reach the coverage target.

The right side of Table 1 contains the empirical results for Case (b). Both algorithms have coverages
lower than the target, 0.9. Case (b) shows to be more difficult for both algorithms, since the coverage and
the PGS are lower compared to Case (a). The PGS is still greater than the target for Algorithm 1 but it
is below for Algorithm 2. This difference is produced because the conservatism in Algorithm 1 is still
present; the average input data sizes are 445 and 208 for Algorithms 1 and 2, respectively.

5.2 Quadratic Response

In this example, we consider ηi(θ) = ai(θ −bi)
2 +ci as the simulation output mean of System i. As in the

previous example, we choose Fc = N(0,1), which we pretend to be unknown. Figure 2 plots ηi(θ) of all 9
systems in θ ∈ [−1,1]. Observe that System 1 performs the best when θ ∈ [−0.115,0.1]. We consider the
simulation output Yi(θ) = ηi(θ)+σZ, where Z ∼ N(0,1) and σ = 4. The algorithmic parameters chosen
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η1(θ) = -4(θ - 0)**2 + 4
η2(θ) = 5(θ - 0)**2 + 3
η3(θ) = -2(θ - -0.5)**2 + 4
η4(θ) = -4(θ - 0.2)**2 + 4
η5(θ) = 1.2(θ - -1)**2 + 2

η6(θ) = 1.2(θ - 1)**2 + 2
η7(θ) = -1(θ - -2)**2 + 7.5
η8(θ) = -1(θ - 2)**2 + 7.5
η9(θ) = 3(θ - 0)**2 + 3.5

Figure 2: Plots of ηi(θ) = ai(θ −bi)
2 + ci, i ∈ {1, . . . ,9}.

Table 2: Empirical coverage, PCS, PGS and input data size (at stopping) for the examples in Figure 2 .
Results are computed from 1000 macroruns.

Algorithm Coverage PCS PGS
Input Data Size
Avg Std Dev

Algorithm 1 0.893 0.983 1.000 652 113
Algorithm 2 0.907 0.823 0.935 248 63

for this example are n0 = 100,∆n = 10,R0 = 1 and γ = 0.8. In addition, we set δ = 0.5, which makes
System 4 a good system since η1(0)−η4(0)< δ . Therefore, PGS ̸= PCS in this example.

Table 2 contains the empirical results. Both algorithms have coverages close to the target: 0.893 for
Algorithm 1 and 0.907 for Algorithm 2. The PCS is lower than the target, 0.9, for Algorithm 2. However,
the goal of both algorithms is to provide the PGS, which is achieved by both. The PGS is overshot by
Algorithm 1 compared to Algorithm 2. The average input data size are 652 and 248 for Algorithms 1
and 2, respectively, which suggests that Algorithm 1 is conservative for this example, too.

5.3 Queuing System Simulation

Consider now a M/M/1/c queuing system with Poisson arrival process with rate 0.9 and only one server
with exponentially distributed service times with mean 1.21, where the capacity of the system is c (one in
the server and c−1 in the queue). We define a cost function for a customer as C = 1 ·W +15 ·Z+0.01 ·c3/2,
where W is the waiting time and Z is a variable that takes the value 1 if the customer could not enter the
system because it was full and 0 otherwise. Lower values of c yield low values of W but a higher likelihood
that Z is equal to 1. In contrast, higher values of c decrease the probability of finding the system full, but
increase the average waiting time, since we can accept more customers.

The objective is to find the value of c that minimizes the expected cost of a customer in steady state,
considering that W and Z are random quantities. We assume that 3 ≤ c ≤ 11, giving a total of 9 systems
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Table 3: Expected Cost for Different System Capacities in the M/M/1/c queuing system.

System Capacity 3 4 5 6 7 8 9 10 11

Expected Cost 2.895 2.449 2.263 2.211 2.229 2.285 2.360 2.444 2.532

Table 4: Empirical coverage, PCS, PGS and input data size (at stopping) for the M/M/1/c queueing
system. Results are computed from 1000 macroruns.

Algorithm Coverage PCS PGS
Input Data Size
Avg Std Dev

Algorithm 1 0.886 0.957 1.000 3146 1100
Algorithm 2 0.894 0.751 0.999 243 100

to evaluate. Since this problem has been studied exactly in the literature, we know the exact expression of
the expected cost. Table 3 contains the expected cost for each system, making c = 6 the optimal solution.

We pretend that the arrival rate is unknown to us and must be estimated from observations. In this
example, Fc represents the distribution of the interarrival times, which is exponential with rate 0.9. We
assume that we know the distribution family of Fc. Therefore, we only need to estimate the parameter
of the arrival process. The algorithmic parameters used for this problem are n0 = 50,∆n = 5,R0 = 2, and
γ = 0.5. In addition, we set the indifference zone parameter δ = 0.06, which allows c to be 5, 6 or 7 to
be considered a good system.

Table 4 contains the results of both algorithms. Algorithms 1 and 2 show coverages of 0.886 and 0.894,
respectively, suggesting that the bootstrap estimations closely approximate the target, 0.9. Algorithm 1
shows high empirical PCS and PGS, as well as the average input data size, confirming the conservatism
of the procedure – in line with what was observed in the other examples. Note that the PCS and average
input data size are considerably lower for Algorithm 2 than for Algorithm 1. Recall that neither algorithm
provides a PCS guarantee and it is rather difficult to tell apart c = 6 from two other good systems as all
three systems perform similarly. Therefore, we attribute the low PCS for Algorithm 2 to the difficulty of
the problem. On the other hand, because Algorithm 1 is more conservative, it samples more observations,
which explains the higher PCS. Finally, both algorithms overshoot the target PGS. Recall that Algorithm 2
still applies lower bounds to guarantee the PGS albeit less conservation than Algorithm 1.

6 CONCLUSION

In this article, we study the R&S problem with streaming input data. We propose two sequential algorithms
that determine when to stop receiving the streaming input data and return the estimated optimum with the
PGS guarantees. Both procedures adopt a metamodel to represent the effect of input uncertainty on the
system performance measures and evaluate the probabilities of the events that imply PGS via bootstrap.
The former relies on precise pairwise comparisons while the latter relaxes this requirement allowing the
procedure to terminate much earlier.

Several questions remain to be studied in the future work. First, we will provide theoretical guarantees
of the procedures under an asymptotic regime. Furthermore, some algorithmic parameters are not trivial
to set up such as the parameter γ , that controls the number of design points to refit the metamodel with
or the bootstrap sample size, mp, p ∈ {1, . . . ,L}, in Algorithm 2. The choices for these parameters need to
be investigated both empirically and theoretically in an asymptotic regime.
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