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ABSTRACT 

Transitioning from narratives to formal system dynamics (SD) models is a complex task that involves 

identifying variables, their interconnections, feedback loops, and the dynamic behaviors they exhibit. This 
paper investigates how large language models (LLMs), specifically GPT-4o, can support this process by 
bridging narratives and formal SD structures. We compare zero-shot prompting with chain-of-thought 
(CoT) iterations using three case studies based on well-known system archetypes. We evaluate the LLM’s 
ability to identify the systemic structures, variables, causal links, polarities, and feedback loop patterns. We 
present both quantitative and qualitative assessments of the results. Our study demonstrates the potential of 

guided reasoning to improve the transition from narratives to system archetypes. We also discuss the 
challenges of automating SD modeling, particularly in scaling to more complex systems, and propose future 
directions for advancing toward automated modeling and simulation in SD assisted by AI. 

1 INTRODUCTION 

System dynamics (SD) captures complex systems by relying on feedback loops, nonlinearities, and delays 
(Bala et al. 2017). Modelers draw on observations, data, and theory to develop descriptive narratives that 

capture the core dynamics of a system, and then translate these narratives into models that represent the key 
variables, their interconnections, and the feedback loops. However, transitioning from narrative 
descriptions to formal models is not a trivial task. Narratives do not necessarily follow a structure that 
makes identifying the underlying systemic structure simple. Moreover, this transition requires both 
experience and theoretical expertise to accurately identify relevant components. 

Large language models (LLMs) have proven to be powerful tools, showing exceptional capabilities 

across various tasks and fields. For instance, LLMs have been applied to text generation, such as creating 
narratives about real-life events (Lynch et al. 2024), code generation (Wang and Chen 2023), and even 
detecting changes in web archive collections (Botello et al. 2024). These tasks require the model to 
understand patterns within the data, recognize contextual relationships, and generate coherent outputs. More 
recently, advancements in reasoning prompting techniques have further enhanced LLMs’ ability to tackle 
complex, multi-step problems (Patil 2025). 

Despite the advances and the widespread application of LLMs, their use in modeling and simulation 
continues to exhibit limitations, particularly in SD modeling, highlighting the need for further exploration 
and intervention. Frydenlund et al. (2024) found that while LLMs like ChatGPT perform well in generating 
discrete-event simulations, they struggle with SD and agent-based models (ABMs), often producing 
incomplete or incorrect representations. The authors concluded that while LLMs show promise in assisting 
non-expert users during the initial stages of model development, expert oversight remains essential to 

ensure the accuracy and completeness of the models. 
Our study focuses on the SD paradigm and explores how different prompting strategies, ranging from 

no reasoning to reasoning with context, can guide the LLM toward a more accurate transition from narrative 
descriptions to formal systemic structures. In particular, we are interested in how much guidance and 
additional information or knowledge we need to provide to achieve this task. We compare zero-shot 
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prompting strategies with chain-of-thought (CoT) iterations and evaluate the quality of the outputs. The 
systemic structures we target are system archetypes, which represent recurring behavior patterns in dynamic 
systems and provide a strong theoretical foundation for identifying causal relationships, feedback loops, 

and dynamics in the system. We use three narratives corresponding to well-known system archetypes in the 
literature: Limits to Success, Fixes that Fail, and Tragedy of the Commons. These narratives are sourced 
from an SD textbook by Kim and Anderson (1998), which explains the transition from the narrative to the 
formal systemic structure.  

We quantitatively assessed the model’s performance to replicate the ground truth across three core 
components: (1) archetype identification, (2) extraction of variables and causal connections, and (3) 

matching the structure of feedback loops. Recognizing that an output may not precisely match the ground 
truth but can still capture the underlying systemic structure—even with more or fewer variables than the 
original model—we propose a simple metric to evaluate whether an LLM replicates the reference model’s 
feedback loop structure. We also conducted a qualitative assessment of the model’s outputs across 
components (2) and (3). This included a manual evaluation of variables’ coherence, causal directionality, 
polarity assignment, causal connections, and systemic coherence. Our results demonstrate the potential of 

reasoning-based prompts and the importance of providing guidance and knowledge to the LLM to enhance 
the modeling process, grounded in theoretical SD principles. The findings also provide insights into the 
complexity involved in generating and comparing models within the field. Building on our work, we present 
a discussion of the limitations, implications, and future research directions aimed at enhancing the ability 
of LLMs to support automated modeling and simulation in SD. 

2 BACKGROUND 

2.1 The System Dynamics Approach 

SD modeling is characterized by five key elements (Naugle et al. 2024): (1) causal relationships expressed 
through feedback loops; (2) accumulations (stocks), rates of change (flows), and time delays that capture 
system changes and inertia; (3) mathematical models describing interactions among variables; (4) the 
treatment of time as a continuous flow; and (5) an analytical focus on feedback dynamics to explain 
behavior and identify intervention points. 

 Feedback loops explain how interactions between variables determine a system’s behavior over time. 
There are two main types: reinforcing loops and balancing loops. Reinforcing loops amplify changes in a 
particular direction. In contrast, balancing loops act as stabilizing mechanisms to maintain the system within 
certain limits. The interaction between these loop types shapes a system’s overall dynamics. 
 Another essential concept in SD is system archetypes, which refer to generic, recurring patterns found 
in the structure of dynamic systems (Senge 2006; Branz et al. 2021). Although no definitive list exists, the 

literature commonly identifies a core set of eight archetypes that describe the behavior of most systems 
(Kim and Anderson 1998; Akers et al. 2015): Fixes That Fail, Shifting the Burden, Limits to Success, 
Drifting Goals, Growth and Underinvestment, Success to the Successful, Escalation, and Tragedy of the 
Commons. Each archetype comprises one or more feedback loops—reinforcing, balancing, or both—and 
provides a theoretical basis for understanding, analyzing, and addressing systemic problems. 
 Our study focuses on three well-established archetypes: Fixes That Fail, Limits to Success, and Tragedy 

of the Commons. Fixes That Fail describes situations where short-term solutions alleviate symptoms but 
inadvertently worsen the underlying problem over time. Limits to Success captures dynamics where initial 
growth eventually slows or reverses due to internal or external constraints that emerge as the system 
expands. Tragedy of the Commons illustrates how individuals acting in their self-interest overexploit a 
shared resource, leading to its depletion and long-term collective harm. The first two archetypes are 
highlighted by Clancy (2018) as essential for managers and have been used to model systemic problems 

(Špicar 2014; Benninger et al. 2021). Tragedy of the Commons was selected for its complex dynamics 
involving multiple actors and resource depletion and has also been applied in modeling real-world systems 
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(Zambrano et al. 2023). This selection enables us to evaluate narratives with different levels of structural 
complexity, from simpler to more complex configurations. 
 Systemic structures are commonly visualized using Causal Loop Diagrams (CLDs) or Stock and Flow 

Diagrams (SFDs). CLDs offer a qualitative representation of variables, causal connections, and feedback 
loops (Barbrook-Johnson and Penn 2022). SFDs provide a more detailed, quantitative view by 
distinguishing between stocks and flows (Hamoudi et al. 2021). Our study focuses on CLDs to evaluate the 
LLM’s ability to identify system archetypes. Future work will extend this analysis to include SFDs. 

2.2 LLMs in the Context of Modeling and Simulation 

Initially, the use of Natural Language Processing provided insight into semi-automating the creation of 

models and simulations (Padilla et al. 2019; Shuttleworth and Padilla 2022). Since the arrival of ChatGPT, 
the use of LLMs has been rapidly adopted across various fields, and modelers have begun to explore their 
potential applications in different modeling and simulation contexts. Giabbanelli (2023) examined how 
LLMs can be usefully and practically integrated into tasks such as explaining the structure of conceptual 
models, summarizing simulation outputs, describing simulation visualizations, and explaining and 
addressing simulation errors. Gao et al. (2024) provide a comprehensive overview of work on ABM and 

simulation powered by LLMs. Martinez et al. (2024) used few-shot prompting and retrieval-augmented 
generation (RAG) to enhance the capabilities of GPT-3.5 in generating interface elements and procedural 
NetLogo code for ABM. 

LLMs have also been used in the field of SD to automate the transition from narratives to models. 
Veldhuis et al. (2024) compared rule-based methods with transformer-based models, such as GPT-3.5 and 
fine-tuned BERT variants, including Causal News BERT, to identify causal sentences in SD-related texts. 

Causal News BERT, trained on annotated news data, outperformed both GPT-3.5 and the rule-based 
method. The authors concluded that transformer-based models offer advantages for SD because they can 
more easily identify relevant components in narratives, especially when designed or fine-tuned for specific 
tasks. Liu and Keith (2025) investigated the use of LLMs with curated prompting techniques to generate 
CLDs from SD hypotheses written in text. They tested four few-shot prompting strategies and demonstrated 
that LLMs can produce CLDs comparable to those created by experts, particularly for simple feedback 

structures when the narrative contains a clear causal statement. Schoenberg et al. (2025) also explored how 
various LLMs can transform text into CLDs. They noted that relying on coding rules to map text into causal 
models remains difficult and often subjective. In contrast, LLMs can support causal modeling, particularly 
for beginners who often struggle with causal logic. 

A key limitation shared by the above three studies is that they do not address the generation of models 
grounded in theoretical structures, such as system archetypes. This more advanced task requires not only 

identifying causal links but also understanding the underlying systemic structure, especially when working 
with less-structured narratives. A common observation is that the use of LLMs offers advantages for SD 
over rule-based methods, which depend on fixed schemes and struggle with complex or ambiguous 
language. Our interest, therefore, lies in determining how much guidance LLMs need to produce models 
that align with theoretical structures rather than generate arbitrary outputs. We believe that addressing this 
challenge will strengthen the foundation for evaluating LLM-generated models in SD and offer insights for 

their application in more complex systems. 

2.3 Prompting Strategies 

A prompt is a set of instructions that guides an LLM by defining context, key information, format, and 
content (Liu et al. 2023). Good prompts include four elements: instructions, context, input data, and an 
output indicator (Giray 2023). Over time, researchers have developed various prompting strategies to 
enhance model performance. Bhandari (2023) outlines several widely discussed approaches, including 

zero-shot, few-shot, and CoT prompting. Zero-shot provides only instructions, while few-shot adds 
examples to help the model infer tasks. CoT prompting encourages step-by-step reasoning. Wei et al. (2022) 
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showed that generating intermediate steps improves performance on complex tasks. Even a simple phrase 
like “Let’s think step by step” can enhance performance through zero-shot CoT prompting (Kojima et al. 
2022). Our study builds on these insights by comparing simple zero-shot prompting with multiple CoT 

iterations, ranging from providing minimal steps and contextual information about system archetypes to 
offering complete guidance, to evaluate the LLM’s ability to reproduce system archetypes. 

3 METHODOLOGY 

 Our study evaluates GPT-4o’s ability to map less-structured narratives into SD models corresponding 

to system archetypes. We developed a systematic evaluation pipeline (Figure 1) that iteratively applies 

predefined prompting strategies, including zero-shot and CoT formats. We used narratives from Kim and 

Anderson (1998), which outline the transition from stories to archetypes and provide the final CLD as 

ground truth. In each iteration, the LLM identifies the most suitable archetype, relevant variables, causal 

connections, polarities, and feedback loops to represent the systemic structure. All outputs are stored for 

later evaluation. 

 

Figure 1. Archetype evaluation workflow for generated SD models from narratives. 

3.1 Prompting Iteration and Evaluation 

We designed five prompt iterations to assess how much guidance GPT-4o needs to transition from narrative 
to system archetype. The iterations are: (1) prompt: baseline zero-shot; (2) CoT-i1: reasoning for causal 

links; (3) CoT-i2: reasoning for variables and causal links; (4) CoT-i3: reasoning for archetype, variables, 
and causal links; (5) CoT-at: all prior steps plus additional context including archetype definitions and 
structures. These variations progressively guide the LLM from basic extraction to whole structural 
generation. As shown in Figure 2, our final prompt integrates the four key instructional elements outlined 
by Giray (2023): instruction, context, input data, and output indicator. We conducted both quantitative and 
qualitative evaluations of the output. The quantitative assessment measured whether the output matches the 

ground truth across three core components: 1) archetype identification, 2) variable and connection 
extraction, and 3) feedback loop structure matching. 
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Figure 2. Final Prompt Design for System Dynamics Model Extraction. The design resulted from five 
iterative prompt engineering processes: (1) prompt (baseline, no reasoning), (2) CoT-i1 (causal links 

only), (3) CoT-i2 (variables and causal links), (4) CoT-i3 (complete modeling structure), and (5) CoT-

at (complete structure with archetype definitions). 

 Archetype identification refers to the model’s ability to correctly recognize the system archetype that 
best represents the dynamics described in the narrative. This step is crucial for determining whether the 
LLM identifies systemic patterns. We used accuracy as a binary classification metric in this task.  
 Variable and Connection Extraction evaluates whether the LLMs can extract variables and their causal 
connections, including the type of polarity, that represent the systemic structure and match the ground truth. 

We used text similarity to compute Precision, Recall, and F1 Score for this evaluation component. Precision 
refers to the percentage of variables and connections generated by the LLM that correctly match the ground 
truth. Recall reflects how many of the ground truth elements the model successfully identified. The F1 
Score provides an overall measure of how well the model performs on both metrics. We applied Sentence-
BERT embeddings (Reimers and Gurevych 2019) and computed cosine similarity to align predicted 
elements with reference elements. While most studies consider elements with a similarity score of 0.7 or 

higher as matches, we adopted a threshold of 0.5 to allow for greater flexibility. We implemented this 
approach to account for cases where variable names differ from those in the reference model but still convey 
the same meaning (e.g., “effort” vs. “resource investment”). For connection, we converted each causal link, 
both from the ground truth and the LLM’s output, into the format: “from <variable1> to <variable2> with 
<polarity> connection” to capture both the direction and polarity between variables. 
 It is essential to recognize that the quality of the output should not be judged solely by whether it 

matches the exact number of variables and connections in the ground truth. Different modelers may include 
more or fewer variables while still preserving the structure of the theoretical archetype. For example, if the 
archetype includes one reinforcing and one balancing loop, an output with ten variables might still be valid 
if they are appropriately distributed across both loops, or if some serve as auxiliary variables that 
complement but do not alter the systemic structure. Feedback Loop Structure Matching evaluates whether 
the generated variables and causal connections form the expected loops. We propose a Loop Structure 

Match Score (LSMS) as a simple, interpretable measure of this structural accuracy. To do so, we draw on 
Schoenberg et al. (2020) and Schaffernicht and Groesser (2011). The former emphasizes the importance of 
identifying and categorizing loops by their polarity (reinforcing or balancing) to better understand and 
influence system behavior. The latter emphasized that when comparing mental models in SD, variables, 
links, polarities, types of loops, and delays should be considered. 
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The LSMS can be negative, positive, or equal to 1, where 1 indicates a perfect match between the 
LLM’s predictions and the ground truth for both reinforcing and balancing loops. It stays between 0 and 1 
when the model’s errors are moderate and close to the actual number of loop types. However, as the model 

significantly overestimates the number of loops, the metric becomes increasingly negative, reflecting a 
growing mismatch with the systemic structure. The metric is computed as illustrated in equation 1 for each 
narrative-archetype pair, where Rtrue  and Btrue  are the counts of reinforcing and balancing loops in the 
ground truth and Rpred and Bpred are the generated loops. The type of Loop is detected using graph traversal, 
and each one is classified based on the number of negative links (even = reinforcing, odd = balancing). 

 

 LSMS =
1

2
(1 −

|𝑅𝑡𝑟𝑢𝑒−𝑅𝑝𝑟𝑒𝑑|

max(𝑅𝑡𝑟𝑢𝑒,1)
+ 1 −

|𝐵𝑡𝑟𝑢𝑒−𝐵𝑝𝑟𝑒𝑑|

max(𝐵𝑡𝑟𝑢𝑒,1)
) (1) 

 
 While the LSMS provides a metric for structural accuracy, it does not fully capture structural 
correctness. To address this limitation, we complemented it with a qualitative human assessment, offering 
an extra layer when the model does not fully match the ground truth, but may respect the theoretical 

archetype structure. It covered five dimensions: (1) variable coherence, (2) causal directionality, (3) 
polarity assignment, (4) causal connections, and (5) Systemic coherence. We selected and adapted these 
dimensions to qualitatively capture a holistic assessment of essential aspects of structural correctness when 
comparing models, as noted by Schoenberg et al. and Schaffernicht and Groesser. Variable coherence 
checks if the generated variables, especially those not in the ground truth, are meaningful and derived from 
the narrative. Causal directionality assesses whether relationships are logically and correctly oriented. 

Polarity assignment checks if signs are correctly applied. Causal connections analyze whether the LLM 
has connected all the variables or if any connections might be missing, and whether these connections make 
sense from a modeling perspective. Systemic coherence complements the LSMS by evaluating whether the 
full model reflects the expected dynamics. Each dimension was scored on a scale of 1 to 3, indicating 
whether the model failed, partially captured, or adequately represented the dimension.  

4 RESULTS 

Table 1 details our results across the three quantitative evaluation dimensions: (1) archetype identification, 
(2) variable and connection extraction, and (3) feedback loop structure matching. 

In the case of Archetype Identification, the LLM correctly identified “Fixes That Fail” and “Tragedy of 
the Commons” across all prompts, suggesting it recognizes their underlying dynamics from our narratives. 
The above may be due to prior exposure during training, where similar definitions or narratives were 
present. In contrast, “Limits to Success” was often misclassified as “Growth and Underinvestment”, likely 

due to its similar growth pattern followed by decline. This misclassification is a form of structural 
hallucination, where the model guesses an archetype that appears reasonable but is incorrect, based on 
surface-level similarities. A strategy to address this issue was evident in the final CoT-at prompt, where we 
provided archetype definitions and structures, allowing the LLM to identify “Limits to Success” correctly. 
This suggests that, when it comes to SD modeling, GPT-4o benefits from contextual guidance and 
structured knowledge to distinguish between similar archetypes.  

For Variables and connections extraction, GPT-4o often generated more variables than expected when 
it lacked contextual information about the archetypes (see Figure 3), resulting in lower precision. However, 
recall was often high, suggesting all ground truth variables were included in the output. Performance on 
causal connections was notably weaker. This is because overgeneration of variables leads to overgeneration 
of connections, and as a consequence, the output does not match the ground truth. These results suggest 
that without guidance or context, the model freely generates as many variables as it considers relevant. CoT 

prompting, specifically CoT-at, helps narrow the output by grounding the modeling process in a theoretical 
and structural context, resulting in fewer and accurate variables and, consequently, connections that were 
more likely to match the ground truth. 
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Despite improvements in precision and recall, the model still failed to fully replicate the reference 
model in “Limits to Success” and “Tragedy of the Commons”. This may be because, even with guidance 
and structural context, the model is not yet trained to handle complex systemic archetypes. 

 

Table 1. Summary of metrics across our three quantitative evaluation dimensions 

 
Although the structure of the ground truth was not exactly reproduced, we believe the model can be 

viewed as a modeler who explores a broad set of variables and connections, while still capturing the logical 
and dynamic identity of the system archetype. As such, the output might still be valid. With this in mind, 
we also evaluated the output using the Feedback Loop Structure Matching component via the LSMS (see 

results in Table 1). We complemented this metric with a qualitative assessment to account for structural 
correctness. For this, we compared each iteration against the systemic structure of the archetype, using the 
theoretical structure according to the version provided in the book, which represents the core components 
of the system archetype. 
 The LSMS shows that while the basic prompt struggled to capture the correct number and type of 
feedback loops, the CoT approaches, specifically CoT-at, achieved better loop matches across archetypes. 

However, performance remains challenging as structural complexity increases. The above may also be due 
to the model not being trained to reproduce system archetypes, suggesting that future work should explore 
providing a few examples of narrative-model pairs or fine-tuning a model for this task.  
 Despite the challenges, the LSMS suggests that some components of the systemic structure may still 
be present in the output, and our qualitative analysis (see Table 2) provides an additional layer of insight 
regarding this aspect. Below, we focus on the LLM’s output for ‘Fixes That Fail’ (Figure 4) and generalize 

findings across other archetypes. We compared the LLM-generated models (Figures 4b–f) with the 
theoretical structure (Figure 4a). 
 As shown in Figure 4a, “Fixes That Fail” includes three core elements: (1) a problem symptom, (2) a 
short-term fix, and (3) a long-term unintended consequence. These form a balancing loop (B1) and a 
reinforcing loop (R1). The narrative used, drawn from Kim and Anderson (1998, p. 7), reflects “Fixes That 
Fail” logic and can be modeled with three variables: Borrowing (the short-term fix), temporarily solve a 

Need for Cash (the problem symptom) but increases debt over time due to Interest and Payments (the long-
term unintended consequence). The CoT-at prompt fully captured this pattern and the exact number of 
variables (see Figure 4f), resulting in a score of 3 across all dimensions in the qualitative assessment, which  

 Archetype Variables Connections 
Loop 

Structure 

SD Archetype Prompt Iteration Accuracy Precision Recall 
F1 

Score 
Precision Recall 

F1 

Score 
LSMS 

Fixes That 

Fail 

zero-shot prompt 1.000 0.375 1.000 0.545 0.333 0.750 0.462 0.500 

CoT-i1 1.000 0.300 1.000 0.462 0.100 0.250 0.143 0.000 

CoT-i2 1.000 0.375 1.000 0.545 0.200 0.500 0.286 -0.500 

CoT-i3 1.000 0.333 1.000 0.500 0.100 0.250 0.143 1.000 

CoT-at 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Limits to 

Success 

zero-shot prompt 0.000 0.412 1.000 0.583 0.150 0.375 0.214 -0.500 

CoT-i1 0.000 0.389 1.000 0.560 0.118 0.250 0.160 0.000 

CoT-i2 0.000 0.467 1.000 0.636 0.111 0.250 0.154 0.000 

CoT-i3 0.000 0.583 1.000 0.737 0.188 0.375 0.250 -0.500 

CoT-at 1.000 1.000 0.857 0.923 0.500 0.500 0.500 0.500 

Tragedy of the 

Commons 

zero-shot prompt 1.000 1.000 1.000 1.000 0.200 0.154 0.174 0.125 

CoT-i1 1.000 1.000 1.000 1.000 0.200 0.154 0.174 0.250 

CoT-i2 1.000 0.889 1.000 0.941 0.100 0.077 0.087 0.125 

CoT-i3 1.000 1.000 0.750 0.857 0.125 0.077 0.095 0.000 

CoT-at 1.000 1.000 0.750 0.857 0.222 0.154 0.182 0.875 
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Figure 3. Performance of prompting iterations in extracting variables and causal connections matching the 
ground truth. 

Table 2. Summary of results from qualitative assessment. 

SD Archetype Prompt Iteration 
Variables 

Coherence 

Causal 

Directionality 

Polarity 

Assignment 

Causal 

connections 

Systemic 

Structure 

Fixes That 

Fail 

zero-shot prompt 3 3 3 2 2 

CoT-i1 3 3 3 2 1 

CoT-i2 3 3 3 3 1 

CoT-i3 3 3 3 3 3 

CoT-at 3 3 3 3 3 

Limits to 

Success 

zero-shot prompt 3 3 3 2 1 

CoT-i1 3 3 3 2 1 

CoT-i2 3 3 3 3 2 

CoT-i3 3 3 3 3 3 

CoT-at 3 3 3 3 3 

Tragedy of the 

Commons 

zero-shot prompt 3 3 3 2 1 

CoT-i1 3 3 3 2 1 

CoT-i2 3 3 3 2 1 

CoT-i3 3 3 3 3 1 

CoT-at 3 3 3 3 2 
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is also consistent with the quantitative analysis. For other prompt iterations, we noted that GPT-4o 
consistently identified variables that were either clearly stated or implicitly present in the narrative. The 
cause-and-effect relationships and polarities also made sense from a modeling perspective. These results 

were consistent across all the archetypes we evaluated and aligned with the current state of the art regarding 
the performance of LLMs for generating cause-effect relationships. 

Regarding variable connections, we observed some missing links, especially in early iterations. For 
example, in the output shown for “prompt” in Figure 4b, it would be logical to include a connection between 
business expenses and short-term cash needs. For “CoT-i1” in Figure 4c, no loops were generated. 
However, a connection from revenue stream to short-term cash needs and then to orders could make sense 

in this context as a way to complement the model and form a loop, even if it does not precisely reflect the 
core structure of the archetype. Because of these omissions, we assigned a score of two, meaning the model 
provided a partial output, missing some connections. We consider that the above happens because with less 
guidance and theoretical foundation on how to approach the task of reproducing systemic structures, the 
model is more likely to miss connections that would help to find an intended structure. This is something 
that the current state-of-the-art does not consider. 

When examining the system structure, the first three iterations (Figure 4b-d) failed to fully capture the 
archetype’s dynamics. In contrast, the CoT-i3 (Figure 4e) output is notable. When evaluating it both 
quantitatively and qualitatively, we can make the following observations: Variable extraction accuracy and 
recall were 33% and 100% respectively, meaning it included all ground truth variables but added extras. 
These additional variables, along with their connections and polarities, were reasonable and served as 
auxiliary elements without altering the core structure. LSMS was 1, meaning it correctly reflects the loop 

structure. However, connection recall was only 25%, indicating that the model failed to capture many of 
the ground truth connections. This low recall resulted from the model framing the problem symptom as 
cash availability instead of cash shortage. While these terms are opposites linguistically, they represent the 
same underlying concept in this modeling context. At first glance, a 25% recall might suggest that the model 
did not reproduce the systemic structure. However, our qualitative analysis reveals that the shift in framing 
altered the polarity of certain causal links, but the overall logic of the system remained intact. In other 

words, despite the quantitative mismatch, the model successfully replicated the core systemic behavior. 
 

 

Figure 4. a) Theoretical structure of the “Fixes That Fail” archetype. b–f) Diagrams of outputs generated 
by LLM under different prompting iterations. 
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5 DISCUSSION 

Our study not only assessed how LLMs transition from narratives to system archetypes and how CoT 
improves this process, but also offers broader insights for scalable, automated modeling in SD. At this 

point, it is fair to ask: What is needed to enhance SD modeling and bring us closer to full automation? 
We believe that grounding LLM modeling in theoretical foundations can improve both the generation 

and evaluation of outputs. To achieve this, future work should focus on enhancing the identification and 
articulation of feedback loops to more accurately represent systemic structures. 

Our study also highlights the complexity of model comparison and evaluation. Quantitative metrics 
enable the measurement of accuracy and structural agreement with a reference model; however, they do 

not capture the whole picture. Qualitative metrics, on the other hand, allow for assessing more nuanced 
aspects, such as whether the expected systemic dynamics are captured. However, these assessments may 
remain subjective and depend on the evaluator’s expertise. It would be worthwhile to explore an approach 
or metric that combines both when evaluating LLM-generated models that correspond to system archetypes. 

While moving toward this goal, we must also consider expanding our methodological approach to 
account for generalizability. We acknowledge that our dataset, while a helpful starting point for exploring 

the transition from narrative to system archetypes, is limited. Future work should utilize a larger and more 
diverse dataset that encompasses a broader range of narratives and archetypes. 

On the other hand, as new LLMs emerge with reasoning capabilities at their core (e.g., OpenAI 
o3‑mini), promising opportunities arise to explore, evaluate, and refine prompting techniques on these 
models. It is essential to recognize that prompting is not as trivial as it may seem. It plays a critical role in 
evoking the LLM’s knowledge to perform effectively on a given task. Such efforts would provide a broader 

perspective on the extent to which LLMs may require intervention. 
Our work with three archetypes also highlights scalability challenges where token consumption 

increases as we incorporate more archetypes. The average input length was 1,768 tokens per narrative. 
Including more archetypes would increase token usage, raising the cost of using LLMs like GPT. Even with 
open-source models, it is important to consider that input token limits remain a key constraint. Fine-tuning 
LLMs on a comprehensive set of archetypes, including mixed structures, could mitigate this and would be 

a valuable direction for future work to improve LLM performance in reproducing system archetypes.  
A potentially more cost-effective alternative could be leveraging AI agent architectures to reduce token 

consumption. For example, one agent could specialize in identifying the archetype within a narrative and 
then delegate to another agent specifically designed to model the narrative based on their expertise on the 
identified archetype. This approach would narrow the model’s focus and potentially improve the ability to 
transition toward system archetypes. Similarly, RAG could help by letting the LLM identify the archetype 

and then retrieve relevant data to guide the generation of variables, connections, and feedback loops. The 
above are some ways to move forward and an opportunity that invites us to rethink how system dynamics 
modeling should evolve. 

Another point to consider is that current approaches still assume complete ignorance of the modeling 
context and rely solely on conceptual models. However, scaling up to real-world applications requires 
contextual grounding. Modelers typically consult reference models for domain knowledge and 

contextualization. For example, modeling what the Storymodelers Lab in Norfolk, VA, does requires more 
than a narrative; it also needs domain-specific data. While LLMs can infer some connections, they risk 
inconsistencies without context. If crucial relationships are missing from the narrative, models must query 
external sources to complete their understanding. RAG and AI agent frameworks could also enable such 
retrieval and processing, enriching LLM outputs with relevant context and improving structural accuracy. 

As we move toward these approaches, it is essential to acknowledge that many narratives lack a clear 

structure for SD modeling. This makes it hard to extract or generate all the needed components. In our 
results, the model often included too many variables or formed connections that did not create coherent 
loops. This shows why setting clear boundaries and scope is key, especially for complex systems. While 
this is already difficult with archetypes, it becomes harder with more complex models. To address this, we 
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suggest using a template-based approach to help turn unstructured narratives into structured models by 
organizing key SD elements more systematically. 

As we dive into this discussion, it becomes evident that several components are essential to take the 

interception of AI and SD modeling to another level. AI models should be able to 1) understand systemic 
structures, 2) build coherent feedback loops, 3) use context to define variables and systems, and 4) connect 
different systems. This is not easy. Even with recent progress in AI, more research is needed. Reaching this 
goal requires better modeling frameworks, improved prompting strategies, task-specific fine-tuning, and 
tools that bring in context. All these steps can help move us closer to scalable and automated SD modeling. 

6 CONCLUSION 

This study explored the potential of LLMs, particularly GPT-4o, to transition from narratives to system 
archetypes. Our findings demonstrate that prompting strategies such as CoT have the potential to improve 
performance by setting boundaries in the generation of variables and causal connections and by guiding the 
model toward the identification of feedback loops. While further exploration in this field is needed, we 
offer a discussion grounded in our results and insights to support progress toward scalable and automated 
modeling in system dynamics. By highlighting the potential and current limitations of LLMs in this context, 

our study provides a foundation for future research to advance toward automated, context-aware modeling 
and simulation processes in system dynamics. 
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