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ABSTRACT

Transitioning from narratives to formal system dynamics (SD) models is a complex task that involves
identifying variables, their interconnections, feedback loops, and the dynamic behaviors they exhibit. This
paper investigates how large language models (LLMSs), specifically GPT-40, can support this process by
bridging narratives and formal SD structures. We compare zero-shot prompting with chain-of-thought
(CoT) iterations using three case studies based on well-known system archetypes. We evaluate the LLM’s
ability to identify the systemic structures, variables, causal links, polarities, and feedback loop patterns. We
present both quantitative and qualitative assessments of the results. Our study demonstrates the potential of
guided reasoning to improve the transition from narratives to system archetypes. We also discuss the
challenges of automating SD modeling, particularly in scaling to more complex systems, and propose future
directions for advancing toward automated modeling and simulation in SD assisted by Al.

1 INTRODUCTION

System dynamics (SD) captures complex systems by relying on feedback loops, nonlinearities, and delays
(Bala et al. 2017). Modelers draw on observations, data, and theory to develop descriptive narratives that
capture the core dynamics of a system, and then translate these narratives into models that represent the key
variables, their interconnections, and the feedback loops. However, transitioning from narrative
descriptions to formal models is not a trivial task. Narratives do not necessarily follow a structure that
makes identifying the underlying systemic structure simple. Moreover, this transition requires both
experience and theoretical expertise to accurately identify relevant components.

Large language models (LLMs) have proven to be powerful tools, showing exceptional capabilities
across various tasks and fields. For instance, LLMs have been applied to text generation, such as creating
narratives about real-life events (Lynch et al. 2024), code generation (Wang and Chen 2023), and even
detecting changes in web archive collections (Botello et al. 2024). These tasks require the model to
understand patterns within the data, recognize contextual relationships, and generate coherent outputs. More
recently, advancements in reasoning prompting techniques have further enhanced LLMs’ ability to tackle
complex, multi-step problems (Patil 2025).

Despite the advances and the widespread application of LLMs, their use in modeling and simulation
continues to exhibit limitations, particularly in SD modeling, highlighting the need for further exploration
and intervention. Frydenlund et al. (2024) found that while LLMs like ChatGPT perform well in generating
discrete-event simulations, they struggle with SD and agent-based models (ABMs), often producing
incomplete or incorrect representations. The authors concluded that while LLMs show promise in assisting
non-expert users during the initial stages of model development, expert oversight remains essential to
ensure the accuracy and completeness of the models.

Our study focuses on the SD paradigm and explores how different prompting strategies, ranging from
no reasoning to reasoning with context, can guide the LLM toward a more accurate transition from narrative
descriptions to formal systemic structures. In particular, we are interested in how much guidance and
additional information or knowledge we need to provide to achieve this task. We compare zero-shot
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prompting strategies with chain-of-thought (CoT) iterations and evaluate the quality of the outputs. The
systemic structures we target are system archetypes, which represent recurring behavior patterns in dynamic
systems and provide a strong theoretical foundation for identifying causal relationships, feedback loops,
and dynamics in the system. We use three narratives corresponding to well-known system archetypes in the
literature: Limits to Success, Fixes that Fail, and Tragedy of the Commons. These narratives are sourced
from an SD textbook by Kim and Anderson (1998), which explains the transition from the narrative to the
formal systemic structure.

We quantitatively assessed the model’s performance to replicate the ground truth across three core
components: (1) archetype identification, (2) extraction of variables and causal connections, and (3)
matching the structure of feedback loops. Recognizing that an output may not precisely match the ground
truth but can still capture the underlying systemic structure—even with more or fewer variables than the
original model—we propose a simple metric to evaluate whether an LLM replicates the reference model’s
feedback loop structure. We also conducted a qualitative assessment of the model’s outputs across
components (2) and (3). This included a manual evaluation of variables’ coherence, causal directionality,
polarity assignment, causal connections, and systemic coherence. Our results demonstrate the potential of
reasoning-based prompts and the importance of providing guidance and knowledge to the LLM to enhance
the modeling process, grounded in theoretical SD principles. The findings also provide insights into the
complexity involved in generating and comparing models within the field. Building on our work, we present
a discussion of the limitations, implications, and future research directions aimed at enhancing the ability
of LLMs to support automated modeling and simulation in SD.

2 BACKGROUND

2.1 The System Dynamics Approach

SD modeling is characterized by five key elements (Naugle et al. 2024): (1) causal relationships expressed
through feedback loops; (2) accumulations (stocks), rates of change (flows), and time delays that capture
system changes and inertia; (3) mathematical models describing interactions among variables; (4) the
treatment of time as a continuous flow; and (5) an analytical focus on feedback dynamics to explain
behavior and identify intervention points.

Feedback loops explain how interactions between variables determine a system’s behavior over time.
There are two main types: reinforcing loops and balancing loops. Reinforcing loops amplify changes in a
particular direction. In contrast, balancing loops act as stabilizing mechanisms to maintain the system within
certain limits. The interaction between these loop types shapes a system’s overall dynamics.

Another essential concept in SD is system archetypes, which refer to generic, recurring patterns found
in the structure of dynamic systems (Senge 2006; Branz et al. 2021). Although no definitive list exists, the
literature commonly identifies a core set of eight archetypes that describe the behavior of most systems
(Kim and Anderson 1998; Akers et al. 2015): Fixes That Fail, Shifting the Burden, Limits to Success,
Drifting Goals, Growth and Underinvestment, Success to the Successful, Escalation, and Tragedy of the
Commons. Each archetype comprises one or more feedback loops—reinforcing, balancing, or both—and
provides a theoretical basis for understanding, analyzing, and addressing systemic problems.

Our study focuses on three well-established archetypes: Fixes That Fail, Limits to Success, and Tragedy
of the Commons. Fixes That Fail describes situations where short-term solutions alleviate symptoms but
inadvertently worsen the underlying problem over time. Limits to Success captures dynamics where initial
growth eventually slows or reverses due to internal or external constraints that emerge as the system
expands. Tragedy of the Commons illustrates how individuals acting in their self-interest overexploit a
shared resource, leading to its depletion and long-term collective harm. The first two archetypes are
highlighted by Clancy (2018) as essential for managers and have been used to model systemic problems
(Spicar 2014; Benninger et al. 2021). Tragedy of the Commons was selected for its complex dynamics
involving multiple actors and resource depletion and has also been applied in modeling real-world systems
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(Zambrano et al. 2023). This selection enables us to evaluate narratives with different levels of structural
complexity, from simpler to more complex configurations.

Systemic structures are commonly visualized using Causal Loop Diagrams (CLDs) or Stock and Flow
Diagrams (SFDs). CLDs offer a qualitative representation of variables, causal connections, and feedback
loops (Barbrook-Johnson and Penn 2022). SFDs provide a more detailed, quantitative view by
distinguishing between stocks and flows (Hamoudi et al. 2021). Our study focuses on CLDs to evaluate the
LLM’s ability to identify system archetypes. Future work will extend this analysis to include SFDs.

2.2 LLMs in the Context of Modeling and Simulation

Initially, the use of Natural Language Processing provided insight into semi-automating the creation of
models and simulations (Padilla et al. 2019; Shuttleworth and Padilla 2022). Since the arrival of ChatGPT,
the use of LLMs has been rapidly adopted across various fields, and modelers have begun to explore their
potential applications in different modeling and simulation contexts. Giabbanelli (2023) examined how
LLMs can be usefully and practically integrated into tasks such as explaining the structure of conceptual
models, summarizing simulation outputs, describing simulation visualizations, and explaining and
addressing simulation errors. Gao et al. (2024) provide a comprehensive overview of work on ABM and
simulation powered by LLMs. Martinez et al. (2024) used few-shot prompting and retrieval-augmented
generation (RAG) to enhance the capabilities of GPT-3.5 in generating interface elements and procedural
NetLogo code for ABM.

LLMs have also been used in the field of SD to automate the transition from narratives to models.
Veldhuis et al. (2024) compared rule-based methods with transformer-based models, such as GPT-3.5 and
fine-tuned BERT variants, including Causal News BERT, to identify causal sentences in SD-related texts.
Causal News BERT, trained on annotated news data, outperformed both GPT-3.5 and the rule-based
method. The authors concluded that transformer-based models offer advantages for SD because they can
more easily identify relevant components in narratives, especially when designed or fine-tuned for specific
tasks. Liu and Keith (2025) investigated the use of LLMs with curated prompting techniques to generate
CLDs from SD hypotheses written in text. They tested four few-shot prompting strategies and demonstrated
that LLMs can produce CLDs comparable to those created by experts, particularly for simple feedback
structures when the narrative contains a clear causal statement. Schoenberg et al. (2025) also explored how
various LLMs can transform text into CLDs. They noted that relying on coding rules to map text into causal
models remains difficult and often subjective. In contrast, LLMs can support causal modeling, particularly
for beginners who often struggle with causal logic.

A key limitation shared by the above three studies is that they do not address the generation of models
grounded in theoretical structures, such as system archetypes. This more advanced task requires not only
identifying causal links but also understanding the underlying systemic structure, especially when working
with less-structured narratives. A common observation is that the use of LLMs offers advantages for SD
over rule-based methods, which depend on fixed schemes and struggle with complex or ambiguous
language. Our interest, therefore, lies in determining how much guidance LLMs need to produce models
that align with theoretical structures rather than generate arbitrary outputs. We believe that addressing this
challenge will strengthen the foundation for evaluating LLM-generated models in SD and offer insights for
their application in more complex systems.

2.3 Prompting Strategies

A prompt is a set of instructions that guides an LLM by defining context, key information, format, and
content (Liu et al. 2023). Good prompts include four elements: instructions, context, input data, and an
output indicator (Giray 2023). Over time, researchers have developed various prompting strategies to
enhance model performance. Bhandari (2023) outlines several widely discussed approaches, including
zero-shot, few-shot, and CoT prompting. Zero-shot provides only instructions, while few-shot adds
examples to help the model infer tasks. CoT prompting encourages step-by-step reasoning. Wei et al. (2022)
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showed that generating intermediate steps improves performance on complex tasks. Even a simple phrase
like “Let’s think step by step” can enhance performance through zero-shot CoT prompting (Kojima et al.
2022). Our study builds on these insights by comparing simple zero-shot prompting with multiple CoT
iterations, ranging from providing minimal steps and contextual information about system archetypes to
offering complete guidance, to evaluate the LLM’s ability to reproduce system archetypes.

3 METHODOLOGY

Our study evaluates GPT-40’s ability to map less-structured narratives into SD models corresponding
to system archetypes. We developed a systematic evaluation pipeline (Figure 1) that iteratively applies
predefined prompting strategies, including zero-shot and CoT formats. We used narratives from Kim and
Anderson (1998), which outline the transition from stories to archetypes and provide the final CLD as
ground truth. In each iteration, the LLM identifies the most suitable archetype, relevant variables, causal
connections, polarities, and feedback loops to represent the systemic structure. All outputs are stored for
later evaluation.
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Figure 1. Archetype evaluation workflow for generated SD models from narratives.

3.1 Prompting Iteration and Evaluation

We designed five prompt iterations to assess how much guidance GPT-40 needs to transition from narrative
to system archetype. The iterations are: (1) prompt: baseline zero-shot; (2) CoT-il: reasoning for causal
links; (3) CoT-i2: reasoning for variables and causal links; (4) CoT-i3: reasoning for archetype, variables,
and causal links; (5) CoT-at: all prior steps plus additional context including archetype definitions and
structures. These variations progressively guide the LLM from basic extraction to whole structural
generation. As shown in Figure 2, our final prompt integrates the four key instructional elements outlined
by Giray (2023): instruction, context, input data, and output indicator. We conducted both quantitative and
gualitative evaluations of the output. The quantitative assessment measured whether the output matches the
ground truth across three core components: 1) archetype identification, 2) variable and connection
extraction, and 3) feedback loop structure matching.
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Yonm are an expert in system dynamics and skilled in constructing cansal loop diagrams.
Your task is to read the following narrative and extract its systemic structuore.

Let’s think step by step:
Step 1: Identify the system archetype best represented by the narrative.

Step 2: Identify the wvariables involved in the systemic structure described by the
narrative.

Step 3: Identify the causal relationships (connections) between the variables. Label each
connection as either "positive" or "negative".

Return your output strictly in the following structured JSON format:

{
"archetype": "<name of the archetype>",
"variables": ["<variable 1>", "<variable 2>", "..."],
"connections": [
i

"from": "<source variable>",

"to": "<target wariable>",

"type": "positive" | "negative"

be

1
1

Available archetypes: {json.duomps(archetypes, indent=2)}

Figure 2. Final Prompt Design for System Dynamics Model Extraction. The design resulted from five
iterative prompt engineering processes: (1) prompt (baseline, no reasoning), (2) CoT-il (causal links
only), (3) CoT-i2 (variables and causal links), (4) CoT-i3 (complete modeling structure), and (5) CoT-
at (complete structure with archetype definitions).

Archetype identification refers to the model’s ability to correctly recognize the system archetype that
best represents the dynamics described in the narrative. This step is crucial for determining whether the
LLM identifies systemic patterns. We used accuracy as a binary classification metric in this task.

Variable and Connection Extraction evaluates whether the LLMs can extract variables and their causal
connections, including the type of polarity, that represent the systemic structure and match the ground truth.
We used text similarity to compute Precision, Recall, and F1 Score for this evaluation component. Precision
refers to the percentage of variables and connections generated by the LLM that correctly match the ground
truth. Recall reflects how many of the ground truth elements the model successfully identified. The F1
Score provides an overall measure of how well the model performs on both metrics. We applied Sentence-
BERT embeddings (Reimers and Gurevych 2019) and computed cosine similarity to align predicted
elements with reference elements. While most studies consider elements with a similarity score of 0.7 or
higher as matches, we adopted a threshold of 0.5 to allow for greater flexibility. We implemented this
approach to account for cases where variable names differ from those in the reference model but still convey
the same meaning (e.g., “effort” vs. “resource investment”). For connection, we converted each causal link,
both from the ground truth and the LLM’s output, into the format: “from <variable1l> to <variable2> with
<polarity> connection” to capture both the direction and polarity between variables.

It is essential to recognize that the quality of the output should not be judged solely by whether it
matches the exact number of variables and connections in the ground truth. Different modelers may include
more or fewer variables while still preserving the structure of the theoretical archetype. For example, if the
archetype includes one reinforcing and one balancing loop, an output with ten variables might still be valid
if they are appropriately distributed across both loops, or if some serve as auxiliary variables that
complement but do not alter the systemic structure. Feedback Loop Structure Matching evaluates whether
the generated variables and causal connections form the expected loops. We propose a Loop Structure
Match Score (LSMS) as a simple, interpretable measure of this structural accuracy. To do so, we draw on
Schoenberg et al. (2020) and Schaffernicht and Groesser (2011). The former emphasizes the importance of
identifying and categorizing loops by their polarity (reinforcing or balancing) to better understand and
influence system behavior. The latter emphasized that when comparing mental models in SD, variables,
links, polarities, types of loops, and delays should be considered.
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The LSMS can be negative, positive, or equal to 1, where 1 indicates a perfect match between the
LLM’s predictions and the ground truth for both reinforcing and balancing loops. It stays between 0 and 1
when the model’s errors are moderate and close to the actual number of loop types. However, as the model
significantly overestimates the number of loops, the metric becomes increasingly negative, reflecting a
growing mismatch with the systemic structure. The metric is computed as illustrated in equation 1 for each
narrative-archetype pair, where R, and By, are the counts of reinforcing and balancing loops in the
ground truth and R4 and B,,..4 are the generated loops. The type of Loop is detected using graph traversal,
and each one is classified based on the number of negative links (even = reinforcing, odd = balancing).

LSMS=%(1—M+1_M) 0

max(R¢rye 1) max(Berye 1)

While the LSMS provides a metric for structural accuracy, it does not fully capture structural
correctness. To address this limitation, we complemented it with a qualitative human assessment, offering
an extra layer when the model does not fully match the ground truth, but may respect the theoretical
archetype structure. It covered five dimensions: (1) variable coherence, (2) causal directionality, (3)
polarity assignment, (4) causal connections, and (5) Systemic coherence. We selected and adapted these
dimensions to qualitatively capture a holistic assessment of essential aspects of structural correctness when
comparing models, as noted by Schoenberg et al. and Schaffernicht and Groesser. Variable coherence
checks if the generated variables, especially those not in the ground truth, are meaningful and derived from
the narrative. Causal directionality assesses whether relationships are logically and correctly oriented.
Polarity assignment checks if signs are correctly applied. Causal connections analyze whether the LLM
has connected all the variables or if any connections might be missing, and whether these connections make
sense from a modeling perspective. Systemic coherence complements the LSMS by evaluating whether the
full model reflects the expected dynamics. Each dimension was scored on a scale of 1 to 3, indicating
whether the model failed, partially captured, or adequately represented the dimension.

4 RESULTS

Table 1 details our results across the three quantitative evaluation dimensions: (1) archetype identification,
(2) variable and connection extraction, and (3) feedback loop structure matching.

In the case of Archetype Identification, the LLM correctly identified “Fixes That Fail” and “Tragedy of
the Commons” across all prompts, suggesting it recognizes their underlying dynamics from our narratives.
The above may be due to prior exposure during training, where similar definitions or narratives were
present. In contrast, “Limits to Success” was often misclassified as “Growth and Underinvestment”, likely
due to its similar growth pattern followed by decline. This misclassification is a form of structural
hallucination, where the model guesses an archetype that appears reasonable but is incorrect, based on
surface-level similarities. A strategy to address this issue was evident in the final CoT-at prompt, where we
provided archetype definitions and structures, allowing the LLM to identify “Limits to Success” correctly.
This suggests that, when it comes to SD modeling, GPT-40 benefits from contextual guidance and
structured knowledge to distinguish between similar archetypes.

For Variables and connections extraction, GPT-40 often generated more variables than expected when
it lacked contextual information about the archetypes (see Figure 3), resulting in lower precision. However,
recall was often high, suggesting all ground truth variables were included in the output. Performance on
causal connections was notably weaker. This is because overgeneration of variables leads to overgeneration
of connections, and as a consequence, the output does not match the ground truth. These results suggest
that without guidance or context, the model freely generates as many variables as it considers relevant. CoT
prompting, specifically CoT-at, helps narrow the output by grounding the modeling process in a theoretical
and structural context, resulting in fewer and accurate variables and, consequently, connections that were
more likely to match the ground truth.
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Despite improvements in precision and recall, the model still failed to fully replicate the reference
model in “Limits to Success” and “Tragedy of the Commons™. This may be because, even with guidance
and structural context, the model is not yet trained to handle complex systemic archetypes.

Table 1. Summary of metrics across our three quantitative evaluation dimensions

. . Loop
Archetype Variables Connections Structure
SD Archetype  Prompt Iteration ~ Accuracy  Precision Recall Fl Precision  Recall Fl LSMS

Score Score
0.545 0.333 0.750 0.462 0.500

zero-shot prompt

Fixes That CoT-il 0.462  0.100  0.250 0.143 0.000
il CoT-i2 0545  0.200  0.500 -0.500
CoT-i3 0500  0.100  0.250
CoT-at
zero-shot prompt 0.000 0.412 0.583 -0.500
. CoT-il 0.000 0.389 | 4000 0560 0118 0250 0.160 0.000
Limits to .
SUCCRSS CoT-i2 0.000 0.467 1000 0636 0111 0250 0.154 0.000
CoT-i3 0.000 0.583 [ 1.000 0.737 -0.500
zero-shot prompt 0.125
i CoT-i1 | 1000 1000 1000 1000 0200 0154 0174  0.250
Tragedy of the CoT-2 | 10000 @ 0839 [ 1000 0941 0100 0077 0087  0.125

Commons

CoT-i3 [ 1000 1000 | 0750 0857 0125  0.077 0.095 0.000
CoT-at __ [14,000° " 119000 1| 0.750 0.857 [1110:222 " 0WS410:182 N 0:875

Although the structure of the ground truth was not exactly reproduced, we believe the model can be
viewed as a modeler who explores a broad set of variables and connections, while still capturing the logical
and dynamic identity of the system archetype. As such, the output might still be valid. With this in mind,
we also evaluated the output using the Feedback Loop Structure Matching component via the LSMS (see
results in Table 1). We complemented this metric with a qualitative assessment to account for structural
correctness. For this, we compared each iteration against the systemic structure of the archetype, using the
theoretical structure according to the version provided in the book, which represents the core components
of the system archetype.

The LSMS shows that while the basic prompt struggled to capture the correct number and type of
feedback loops, the CoT approaches, specifically CoT-at, achieved better loop matches across archetypes.
However, performance remains challenging as structural complexity increases. The above may also be due
to the model not being trained to reproduce system archetypes, suggesting that future work should explore
providing a few examples of narrative-model pairs or fine-tuning a model for this task.

Despite the challenges, the LSMS suggests that some components of the systemic structure may still
be present in the output, and our qualitative analysis (see Table 2) provides an additional layer of insight
regarding this aspect. Below, we focus on the LLM’s output for ‘Fixes That Fail’ (Figure 4) and generalize
findings across other archetypes. We compared the LLM-generated models (Figures 4b—f) with the
theoretical structure (Figure 4a).

As shown in Figure 4a, “Fixes That Fail” includes three core elements: (1) a problem symptom, (2) a
short-term fix, and (3) a long-term unintended consequence. These form a balancing loop (B1) and a
reinforcing loop (R1). The narrative used, drawn from Kim and Anderson (1998, p. 7), reflects “Fixes That
Fail” logic and can be modeled with three variables: Borrowing (the short-term fix), temporarily solve a
Need for Cash (the problem symptom) but increases debt over time due to Interest and Payments (the long-
term unintended consequence). The CoT-at prompt fully captured this pattern and the exact number of
variables (see Figure 4f), resulting in a score of 3 across all dimensions in the qualitative assessment, which
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System Dynamics Model Component Comparison by Prompt Iteration
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Figure 3. Performance of prompting iterations in extracting variables and causal connections matching the
ground truth.

Table 2. Summary of results from qualitative assessment.

Variables Causal Polarity Causal Systemic

SD Archetype  Prompt lteration Coherence Directionalit Assignment connections Structure

zero-shot prompt
CoT-il
CoT-i2
CoT-i3
CoT-at

zero-shot prompt
CoT-il
CoT-i2
CoT-i3
CoT-at

zero-shot prompt
CoT-il
CoT-i2
CoT-i3
CoT-at

Fixes That
Fail

Limits to
Success

Tragedy of the
Commons
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is also consistent with the quantitative analysis. For other prompt iterations, we noted that GPT-40
consistently identified variables that were either clearly stated or implicitly present in the narrative. The
cause-and-effect relationships and polarities also made sense from a modeling perspective. These results
were consistent across all the archetypes we evaluated and aligned with the current state of the art regarding
the performance of LLMs for generating cause-effect relationships.

Regarding variable connections, we observed some missing links, especially in early iterations. For
example, in the output shown for “prompt” in Figure 4b, it would be logical to include a connection between
business expenses and short-term cash needs. For “CoT-i1” in Figure 4c, no loops were generated.
However, a connection from revenue stream to short-term cash needs and then to orders could make sense
in this context as a way to complement the model and form a loop, even if it does not precisely reflect the
core structure of the archetype. Because of these omissions, we assigned a score of two, meaning the model
provided a partial output, missing some connections. We consider that the above happens because with less
guidance and theoretical foundation on how to approach the task of reproducing systemic structures, the
model is more likely to miss connections that would help to find an intended structure. This is something
that the current state-of-the-art does not consider.

When examining the system structure, the first three iterations (Figure 4b-d) failed to fully capture the
archetype’s dynamics. In contrast, the CoT-i3 (Figure 4e) output is notable. When evaluating it both
guantitatively and qualitatively, we can make the following observations: Variable extraction accuracy and
recall were 33% and 100% respectively, meaning it included all ground truth variables but added extras.
These additional variables, along with their connections and polarities, were reasonable and served as
auxiliary elements without altering the core structure. LSMS was 1, meaning it correctly reflects the loop
structure. However, connection recall was only 25%, indicating that the model failed to capture many of
the ground truth connections. This low recall resulted from the model framing the problem symptom as
cash availability instead of cash shortage. While these terms are opposites linguistically, they represent the
same underlying concept in this modeling context. At first glance, a 25% recall might suggest that the model
did not reproduce the systemic structure. However, our qualitative analysis reveals that the shift in framing
altered the polarity of certain causal links, but the overall logic of the system remained intact. In other
words, despite the quantitative mismatch, the model successfully replicated the core systemic behavior.
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Figure 4. a) Theoretical structure of the “Fixes That Fail” archetype. b—f) Diagrams of outputs generated
by LLM under different prompting iterations.
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5 DISCUSSION

Our study not only assessed how LLMs transition from narratives to system archetypes and how CoT
improves this process, but also offers broader insights for scalable, automated modeling in SD. At this
point, it is fair to ask: What is needed to enhance SD modeling and bring us closer to full automation?

We believe that grounding LLM modeling in theoretical foundations can improve both the generation
and evaluation of outputs. To achieve this, future work should focus on enhancing the identification and
articulation of feedback loops to more accurately represent systemic structures.

Our study also highlights the complexity of model comparison and evaluation. Quantitative metrics
enable the measurement of accuracy and structural agreement with a reference model; however, they do
not capture the whole picture. Qualitative metrics, on the other hand, allow for assessing more nuanced
aspects, such as whether the expected systemic dynamics are captured. However, these assessments may
remain subjective and depend on the evaluator’s expertise. It would be worthwhile to explore an approach
or metric that combines both when evaluating LLM-generated models that correspond to system archetypes.

While moving toward this goal, we must also consider expanding our methodological approach to
account for generalizability. We acknowledge that our dataset, while a helpful starting point for exploring
the transition from narrative to system archetypes, is limited. Future work should utilize a larger and more
diverse dataset that encompasses a broader range of narratives and archetypes.

On the other hand, as new LLMs emerge with reasoning capabilities at their core (e.g., OpenAl
03-mini), promising opportunities arise to explore, evaluate, and refine prompting techniques on these
models. It is essential to recognize that prompting is not as trivial as it may seem. It plays a critical role in
evoking the LLM’s knowledge to perform effectively on a given task. Such efforts would provide a broader
perspective on the extent to which LLMs may require intervention.

Our work with three archetypes also highlights scalability challenges where token consumption
increases as we incorporate more archetypes. The average input length was 1,768 tokens per narrative.
Including more archetypes would increase token usage, raising the cost of using LLMs like GPT. Even with
open-source models, it is important to consider that input token limits remain a key constraint. Fine-tuning
LLMs on a comprehensive set of archetypes, including mixed structures, could mitigate this and would be
a valuable direction for future work to improve LLM performance in reproducing system archetypes.

A potentially more cost-effective alternative could be leveraging Al agent architectures to reduce token
consumption. For example, one agent could specialize in identifying the archetype within a narrative and
then delegate to another agent specifically designed to model the narrative based on their expertise on the
identified archetype. This approach would narrow the model’s focus and potentially improve the ability to
transition toward system archetypes. Similarly, RAG could help by letting the LLM identify the archetype
and then retrieve relevant data to guide the generation of variables, connections, and feedback loops. The
above are some ways to move forward and an opportunity that invites us to rethink how system dynamics
modeling should evolve.

Another point to consider is that current approaches still assume complete ignorance of the modeling
context and rely solely on conceptual models. However, scaling up to real-world applications requires
contextual grounding. Modelers typically consult reference models for domain knowledge and
contextualization. For example, modeling what the Storymodelers Lab in Norfolk, VA, does requires more
than a narrative; it also needs domain-specific data. While LLMs can infer some connections, they risk
inconsistencies without context. If crucial relationships are missing from the narrative, models must query
external sources to complete their understanding. RAG and Al agent frameworks could also enable such
retrieval and processing, enriching LLM outputs with relevant context and improving structural accuracy.

As we move toward these approaches, it is essential to acknowledge that many narratives lack a clear
structure for SD modeling. This makes it hard to extract or generate all the needed components. In our
results, the model often included too many variables or formed connections that did not create coherent
loops. This shows why setting clear boundaries and scope is key, especially for complex systems. While
this is already difficult with archetypes, it becomes harder with more complex models. To address this, we
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suggest using a template-based approach to help turn unstructured narratives into structured models by
organizing key SD elements more systematically.

As we dive into this discussion, it becomes evident that several components are essential to take the
interception of Al and SD modeling to another level. Al models should be able to 1) understand systemic
structures, 2) build coherent feedback loops, 3) use context to define variables and systems, and 4) connect
different systems. This is not easy. Even with recent progress in Al, more research is needed. Reaching this
goal requires better modeling frameworks, improved prompting strategies, task-specific fine-tuning, and
tools that bring in context. All these steps can help move us closer to scalable and automated SD modeling.

6 CONCLUSION

This study explored the potential of LLMs, particularly GPT-40, to transition from narratives to system
archetypes. Our findings demonstrate that prompting strategies such as CoT have the potential to improve
performance by setting boundaries in the generation of variables and causal connections and by guiding the
model toward the identification of feedback loops. While further exploration in this field is needed, we
offer a discussion grounded in our results and insights to support progress toward scalable and automated
modeling in system dynamics. By highlighting the potential and current limitations of LLMs in this context,
our study provides a foundation for future research to advance toward automated, context-aware modeling
and simulation processes in system dynamics.
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