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ABSTRACT

We consider the problem of adaptively determining the optimal number of servers in an M/G/c queueing
system in which the unknown arrival rate must be estimated using data that arrive sequentially over a series
of observation periods. We propose a stochastic simulation-based approach that uses iteratively updated
parameters within a greedy decision-making policy, with the selected number of servers minimizing a
Monte Carlo estimate of a chosen objective function. Under minimal assumptions, we derive a central
limit theorem for the Monte Carlo estimator and derive an asymptotic bound on the probability of incorrect
selection of the policy. We also demonstrate the empirical performance of the policy in a finite-time
numerical experiment.

1 INTRODUCTION

Simulation optimization is a popular tool that can be used as a method for effectively optimizing complex
stochastic systems (He and Song 2024). This is typically considered to be an offline procedure, where
model input parameters are estimated from some fixed collection of observations and a chosen policy is
used to find the optimal system conditions. Recently, a body of work has emerged focusing on tackling
simulation optimization problems in an online setting. Specifically, it considers problems where system
observations are not fixed and instead are obtained sequentially, also known as streaming data. Such
problems are of interest for two main reasons. Firstly, when solving these problems we require a different
set of analytical and methodological tools to those used in the classical simulation optimization literature,
often taking inspiration from fields such as machine learning and online decision-making. Secondly, with
recent technological advancements, streaming data is more prevalent across a wide range of domains,
facilitating the need for adaptive optimization procedures for complex and evolving stochastic systems.

The first instance of extending simulation optimization procedures to account for streaming observations
was within the context of Ranking and Selection (R&S) problems. Wu and Zhou (2019) propose an
extension of the Optimal Computing Budget Allocation (OCBA) algorithm that accounts for diminishing
input uncertainty as a consequence of the sequential accumulation of observations. Wu, Wang, and Zhou
(2024) also extend existing fixed-confidence R&S procedures to account for streaming input data. They
propose extensions of Sequential Elimination algorithms that allow for the aggregation of simulation output
across periods with changing underlying input parameters.

Song and Shanbhag (2019) consider a multi-period simulation optimization problem, specifically
focusing on optimizing over a continuous decision space. During each period, they receive a new batch
of i.i.d. system observations and collate them with all those acquired over previous rounds. They then
iteratively update unknown system parameters, before implementing a warm-started stochastic gradient
descent algorithm to minimize some expected cost function. This work is extended in He, Shanbhag, and
Song (2024), where additional variants of the original algorithm are proposed and assumptions, such as
access to an unbiased gradient estimator, are relaxed.
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In this paper, we consider optimizing the number of servers within a multi-server queueing system
with streaming observations. This is a problem with a discrete decision space, similar to that considered by
Wu and Zhou (2019) and Wu, Wang, and Zhou (2024). However, rather than adopting an R&S approach,
we develop a policy and evaluate its performance using a stochastic process framework, similar to that of
Gibbons, Grant, and Szechtman (2023). We consider the motivating problem of an M /G/c queueing system
which is both widely applicable and analytically challenging, due to the general service time distribution.
We contribute to the streaming simulation literature by providing a detailed theoretical analysis for a
generalizable class of objective functions, allowing for a broader range of applications.

The remainder of the paper is structured as follows. In Section 2 we formally introduce the sequential
optimization problem. Section 3 outlines the proposed decision-making policy that utilizes streaming
simulation data. In Section 4 we evaluate the asymptotic performance of the policy, deriving a central limit
theorem for the simulated Monte Carlo estimate, as well as a vanishing bound on the asymptotic probability
of incorrect selection. In Section 5, the finite-time empirical performance of the policy is evaluated in a
numerical experiment.

2 PROBLEM STATEMENT

Consider a general M/G/c queueing system over the time interval [0,7], where T < oo. The system is
initialized as empty and customers arrive according to a Poisson process with constant arrival rate n € R...
Service times follow some light-tailed distribution parameterized by 6 € R¢, for d € N, and the system
employs ¢ € N servers. Let the random variable X(c;n,0) > 0 denote some measure of the system’s
transient behavior on [0,7], e.g., mean queue length, mean customer waiting time, or the proportion of
customers whose waiting times exceed some pre-determined threshold. Let o denote the expected value
of X, defined as

a(c;n,0) :=E[X(c:n,0)]. (D

We focus on determining the optimal number of servers to employ within an M/G/c queueing system
with finite, unknown arrival rate, A > 0. The way we infer the value of A is by observing i.i.d. realizations
of the arrival process over a number of discrete observation periods, n € N, each of length 7. We assume
that we have knowledge of the service distribution parameters 6 and let ¥ C N denote the finite set of
possible numbers of servers to employ within the system. Each period, we must use the accumulated data
within a policy that determines the optimal number of servers to implement within the system. We let
¢p € € denote the number of servers chosen by our policy during period 7.

We consider an expected objective function that is a sum of two costs. The first corresponds to the
cost incurred by implementing an inefficient system and is given by the expected performance measure
stated in (1) evaluated at 1 = A. The second is the cost associated with implementing additional servers
within the system and can be expressed as some deterministic function 8 : ¢ — R. We let f denote the
expected objective for our problem,

f(e:A,0) = alciA,0) + B(c). )

Our goal is to sequentially choose server allocations ¢, over decision periods 7 so as to minimize the
cumulative expected loss incurred across all periods. Obtaining a closed form expression for the expected
performance measure « is often not possible when considering the transient behavior of an M/G/c queue.
In Section 3, we propose a decision-making policy that approximates ¢ using a Monte Carlo estimator.

3 DECISION-MAKING POLICY

Let {N(t;4);t € [0,T]} denote the homogeneous Poisson arrival process for the M/G/c system being
optimized. In addition, let {N;(#;A4);z € [0,T]}}_, denote the i.i.d. realizations of this process observed
during periods i = 1,...,n. By considering the cumulative number of arrivals to the system, we can
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approximate the arrival rate parameter with the MLE of a Poisson process,

iM(T;;L)/T‘ (3)

We propose a decision-making policy that carries out repeated simulation to approximate the expected
objective function. Let m, € N denote the period n simulation budget allocation for each ¢ € €. In absence
of the true parameter A, we simulate i.i.d. realizations of X for each ¢ € € using the estimate Zn, which
we denote X j(c;in) for j=1,...,m,. We use a standard Monte Carlo estimator in our analysis. While
variance reduction techniques may improve finite-time efficiency, they do not affect asymptotic behavior
and yield similar results up to constant factors. Since our focus is on asymptotic properties, we prioritize
analytical tractability over variance reduction in this work.

As we assume that the service distribution is known, we omit service distribution parameters 6 € R4
from the above and all further notation. We define the nth period Monte Carlo estimator of a(c;A,) as
follows,

Xu(csAy) = — ZXJ-(C;)L”). 4)

The estimate given in expression (4) allows us to obtain the following approximation of the expected
objective (2), B B
Ja(€s2n) = X (c3 An) + B(c). &)
We propose a decision-making policy that greedily selects the number of servers that minimizes the
approximated objective B
¢, = argmin f,(c; ) (6)
ce¥
where any ties are broken arbitrarily.
Algorithm 1 gives the full pseudocode for the greedy decision-making policy.

Algorithm 1: Greedy decision-making policy

for n € N do
Observe number of arrivals, N,(7; 7L)
Update arrival rate estimate, A, = lyr N(T:;A)/T
for c € ¥ do
for j=1,....,m, do
‘ Given )_Ln, simulate stochastic performance measure, X j(c;in)
end

Obtain Monte Carlo estimate, X,(c; A,) = - Zm" X;(c; An)
Approximate objective, f,(c;4,) = X, (c; A,) + B( )
end
Greedily select minimizer ¢, = argmin f,(c; A,,)
cE?
end

For clarity and conciseness, we omit explicit dependence on ¢ € ¥ when it is clear from context.
Additionally, a subscript n indicates dependence on the parameter A,.

4 ASYMPTOTIC RESULTS

In Section 4.1 we derive a central limit theorem (CLT) for the Monte Carlo estimate defined in (4). In
Section 4.2 we show that the greedy policy is asymptotically optimal by bounding the limiting probability
of incorrect selection.
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4.1 Central Limit Theorem

In the following analysis, we define the conditional expected performance measure o, as follows
o, (c) :=E[X(c;n) |n =A4,], forallneN. (7)

We make the following assumption about (7),
Assumption 1 For all c€ ¥, and n € N,

0 (c) < oo, w.p. 1.

Let N j(T;)_Ln) denote the total number of arrivals during simulation replication j € {1,...,m,} during
period n. We make the following assumption about the boundedness of X;(c;A,).

Assumption 2 There exists finite ¢ € N such that for all ¢ € 4 and n € N, X;(c;4,) > 0 is bounded by the
order ¢ monomial of N;(T;4,), i.e., for all j € {I,...,m,}

Xj(C;Zn) SNj(T;Zn)q7 w.p. 1.

System efficiency is largely driven by the number of customers present. It is therefore natural and
appropriate to bound performance measures, X, with functions of the arrival process, N. In particular, for
systems with light-tailed service distributions, Assumption 2 holds for many common forms of X, including
those proposed in Section 2. .

The following lemma shows that the finite moments of the centered random variable X;(c; A,) — o, (c)
are finite and is necessary for the derivation of the CLT.

Lemma 1 For finite integer p > 1, and X j(c;iﬂ) satisfying Assumptions 1 and 2,

E[(Xj(c;An) — 0t(c))P] < oo, forall je{1,...,my,}.

Proof of Lemma 1. Without loss of generality, E[X;(c;4,)] = E[Xi(c;4,)] due to the i.i.d. property of
the simulation replications. By the binomial expansion and Assumption 2,
_ _ P —
B0 A0) -~ 0(0)7] < EION e50n) + ()] = 1 (1) o) EICK: (i)
k=0

<3 ()t tEmmam.  ®

k=0
By the total law of expectation,
E[Ni(T:24,)™] = E[E[N (T:n)% | n = A,]]. ©)

Using the properties of the Poisson arrival process, N;(T;1) ~ Pois(nT). For integer gk > 0, the interior
expected value E[N;(T;1)% | n = A,] corresponds to the degree gk Touchard polynomial in A, T,

St (AT) = qf(lﬂ)’{""},

r=1 r

where the values in {} denote the Stirling numbers of the second kind.

As each term in Sy (A, T) is a finite power of 4, = 1 ¥ | N;(T; 1) /T, where system arrivals N;(T; ) ~
Poisson(AT), it follows that (9) is finite. By Assumptlon 1 o, (c) < oo and by definition, ¢, p are both
finite. Therefore, expression (8) is a linear combination of finite terms and is itself finite. O]
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The final assumption required to derive the CLT concerns the asymptotic behavior of the simulation
budget allocation.

Assumption 3 As the number of observation periods n — oo, the number of simulation replications m,
allocated to each ¢ € ¥ satisfies m,, — oo.

In the Monte Carlo estimator for «, X,, there are two sources of uncertainty. These correspond to
the parameter uncertainty in A, and the simulation uncertainty due to carrying out a finite number of

simulation replications, m,. As n — oo, by the Strong Law of Large numbers, 4, 3 A and the associated
input uncertainty vanishes in the limit. To ensure that the total variance vanishes, it is necessary to assume
that m,, — o also.

In Theorem 1 we state the CLT for X, (c;A,), letting 4 denote convergence in distribution.
Theorem 1 The Monte Carlo estimate Xn(c;iﬂ) satisfies

Sn (X (€3 2) — 0(€)) S 6(c)N(0,1),  as n— oo, (10)

where 62(c) = li_r)r.}oVar(Xl (e ).

Proof of Theorem 1. To derive the desired CLT in terms of X, (c; Ay), we first consider the standardized
random variable X;(c;A,) for each ¢ € ¢, defined as follows

\/LTH (X;(c320) = 0 (<)) , (11)

with E[X;(c;A,)] =0, for all n € N and j € {1,...,m,}.

In the following, (i) and (ii) are conditions for the Lindeberg-Feller CLT to hold for the sum of
standardized random variables X j(c;in) (Lindeberg 1922; Durrett 2019). We state these conditions and
prove that they hold individually.

Xj(C;Zn) =

(i) r)ri E[Xj(c;4)?] = o(c)?,  asn— oo,
=1

As the simulation realizations for any ¢ € ¢ are i.i.d. within a given period n € N, we have

ny

ZIE [)?j(c;in)z] =E[(X(c; An) — (Xn(c))z] .
=

AsX;(c; /_l,,) >0 a.s., it follows that E [X i(c Zn)z] > 0, meaning the LHS is a summation of non-negative
terms. The RHS is independent of m, and by Lemma 1 is finite and bounded. By Assumption 3, the series

Y E [X;(c;42)?] as n — oo converges to some constant, which we denote o(c)? > 0. Thus condition (i)
holds.

(i)  Forall >0, lim ¥ E [X;(c;2)?1 {|X;(c:2)| > €}] = 0.
n Ooj:1

Within period n € N, the repeated simulations for any ¢ € ¢ are i.i.d., giving

() o]

—E [(x1 () — ) 1{ X1 (A,) — 0| > s\/nT,,}} .

ny

;E (X)L {IX;(A)| > €}] = m,E
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By the Cauchy-Schwarz inequality,

(E [(x1 () = 0)  L{|X1 (A) — | > e\/nTn}} )2 <E [(x1 () — a,,)“} P (1% (An) — G| > £4/713) -
By Lemma 1, we have E[(X;(A,) — &,)*] < . By Chebyshev’s inequality,

_ B () - )
- 2m,, '

P (1X1(An) — Q| > €1/my,)

As shown in condition (i), by Lemma 1, the numerator in the bound is finite. Therefore, as m,, — oo,
the bound tends to zero, as required. ~

As conditions (i) and (ii) hold, the Lindeberg Feller CLT applies to X i(c,An) and rearrangement results
in (10). O

Let o/(c;n) denote the partial derivative of (1) with respect to the arrival rate parameter 7,

IEX (c;n)]

e (12)

o (c;n) =

In the following analysis, we define o(c;4) and &'(c;A,) to denote the partial derivative (12) evaluated
at n = A and A, respectively. We make the following assumption about the partial derivative (12).

Assumption 4 For expected performance measure o/(c;1n), its partial derivative o'(c;n) exists for all
N >0, and o/ (c;A) #0.

The streaming budget n is beyond the control of the analyst, so there are three possible cases, depending
on the simulation budget m,, in relation to n. Intuitively, m, should be of order at least n to induce a
convergence rate of order n~'/2, while if m, = o(n) then the Monte Carlo simulation error dominates the
error originating from the streaming data. These ideas are formalized in the next result.

Theorem 2 Consider a problem instance satisfying Assumptions 1 — 4.
1) If m, is of order less than n, m, /n — 0 as n — oo, then,
Vi (Xa(e) — a(c)) % 6 (c)N(0,1), as n — oo,

where N(0, 1) is a normally distributed random variable with mean zero and unit variance.
(i)  If my, is of order bigger than n, m,/n — o as n — oo, then,

V(X (e) — () % /AT | (¢; A)[N(0,1), s n — oo,

(iii)  If my, is of order n, m,/n — a as n — oo, for a € (0,), then,

V&)~ a(e)) 5 /(AT (@ (e:A)2 +a162(cN(0,1),  as n— oo,

Proof. By the Delta method CLT, since Var(4,) = A/(nT),

V(0(c) — a(c)) S JA/T|o (c;A)N(0, 1), as n— . (13)

Therefore,
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(i) Case m,/n—0asn—oo:

Vin(Xa(c) = a(c)) = Vma(Xu(c) = au(c)) +/mu/n - Vn(0w(c) — a(c))
——

2 6(c)N(0,1) by Thm. 1 =0T o (e A)IN(0,1) by (13)

The rightmost term in the RHS converges in distribution to 0 by Slutsky’s Theorem. From there
the result follows, also by Slutsky’s Theorem.
(i)  Case my,/n — o0 as n — oo:

V(X (c \/n/mnx/HTn () +  Vn(o(c) —alc))

~>O

4 6(c)NO0,1) by Thm. 1 “41/A/T|a(c:A)|N(0,1) by (13)

The proof argument is identical to the one of case (ii), and is thus omitted.
(iii) ~ Case m,/n — a as n — oo (proof sketch due to space limitations): First of all, X,(c) — o4, (c) and
An are uncorrelated, and satisfy a multivariate Lindeberg-Feller CLT,

ALY (o ()

as n — oo, The multivariate Delta method then leads to the claimed result.

O]

The choice of m,, is important for practitioners. When simulation is computationally cheap, selecting
my, with order greater than n can reduce variance constants. Conversely, for complex systems, the smallest
m,, satisfying the theoretical convergence conditions is often preferable. The convergence rates for the
different m,, regimes in Theorem 2 are validated in Section 5.

4.2 Probability of incorrect selection

In this section, we evaluate the performance of the algorithm by considering the limiting behavior of the
probability of incorrect selection (PICS). Let k = |%’| denote the cardinality of the finite decision set, and
enumerate each of the elements as cl!),.. ., c¢%). Without loss of generality let ¢!) = argmin,. f(c) denote
the unique optimal number of servers. During period n € N, let P(c, # ¢{!)) denote the PICS. For each
i€{2,...,k}, define the sub-optimality gap of action c() as follows

A= £(e?) = f(e) = a(eD:2) + B(e®) — a(cD: 1) — B(eM),

with A; > 0 by the uniqueness of minimizer e,
Theorem 3 For a problem instance satisfying Assumptions 1 — 4, the nth period selected action of the

greedy policy, ¢,, converges in probability to the optimal action, W ie.,

lim P (cn ”] c(‘)) —0.

n—yeo

Proof of Theorem 3. From the deﬁnition of ¢, given in equation (6), the PICS, P(c, # c(l)) corresponds
to the probability that for any i # 1, f,(c)) < f,(cV)).
By a union bound

P(c#cV) =P <Ufn ) < fule ))s(k—l)_mgffkP(fn(c“))<fn(c<”))-
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Therefore, we must show for i # 1, P (f_,,(c(i)) < fn(c(l))) — 0.
Since

{7u(eD) = Ja(e?) > 0} = {Xa(c) + B (c!) = X (

Qﬂ
- =
\
=

we obtain

P(fule) < fule™)) <P
P

+P ()~ a(e) > 8i/4) +P (0u(c?) — a(c?) < —i/4).
By Chebyshev’s inequality,
Var(X,(c"))  Var(X,(c))
(Ai/4)? (Ai/4)2

and condition (i) in the proof of Theorem 1 means that Var(X, (c(!))) and Var(X, (c())) are of order O(1/m,,).
Lastly, P(c,(cV) — at(cV)) > A; /4) + P, (c?) — a(¢D) < —A;/4) — 0 exponentially fast in n by a large
deviations contraction principle argument, since &(c;7) is continuous by Assumption 4. O

P (Xn(c(l)) — (M) > A,~/4) 4P (X,,(c@) — (e < —A,-/4> <

5 EMPIRICAL STUDY

In this section, we evaluate the empirical performance of Algorithm 1 on a representative problem instance.
Let the expected performance measure, o(c; 1), be the expected mean length of the queue on the interval
[0,T]. We verify that such a measure satisfies Assumption 1 as the expected mean queue length over a
finite time horizon is finite almost surely for any finite arrival rate and number of servers. In addition,
Assumption 2 is satisfied with g = 1 yielding a trivial upper bound. The following lemma, whose proof is
given in Appendix A, ensures that Assumption 4 also holds.

Lemma 2 For o(c;n) defined as the expected mean length of the queue, a(c;n) satisfies Assumption 4.

Algorithm 1 is designed for queueing systems with generic service distributions. Here, we consider an
M /M /c problem instance as it allows us to obtain an accurate numerical approximation for a(c;A) which
we use as the ground truth in our numerical implementation. We discretize the interval [0, 7] into steps
of size Ar = 10~*. Given the system is empty at time 0, we use Euler’s method to numerically solve the
Kolmogorov forwards equations for an M /M /c queue. Given these approximate transition probabilities,
we compute the expected queue length for all discrete ¢ € [0, T'], which we then use to compute the expected
mean length of the queue over the whole interval. Repeating this process for all ¢ € ¥, we obtain the
ground truth estimate for the expected objective given in (2).

To verify the theoretical results derived in Theorems 2 and 3, we evaluate algorithm performance using
the empirical PICS. Accounting for the three regimes presented in Theorem 2, we consider m, = O(y/n),
my, = O(n) and m, = O(nlog(n)). In addition, we consider the expected cumulative regret of the policy as
another means of evaluating algorithm performance.

Let r,, = E[f(c,) — f(c1))] denote the expected instantaneous regret of the policy during period n € N.
This corresponds to the expected loss incurred by choosing sub-optimal action ¢, # ¢! ), Using the theoretical
bounds on the PICS given in Theorem 3, a conservative bound on the cumulative regret for the sub-linear

regime is given by
Ryi=) 1< / ridj =0 ( / j‘/zdj) =0(n'"?). (14)
s 1 1
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Similarly, for the linear and super-linear regimes, we have

v L "1,
R,,.—;r,g/l ;{,d]—0</1 J d]>_0(log(n)). (15)

Within the numerical implementation, we show the empirical mean cumulative regret for each of the regimes
satisfy the above bounds.

We construct a numerical experiment considering the following problem instance. Customers arrive to
the system according to a homogeneous Poisson process with unknown rate A =3 on the interval [0, 7],
with T = 10. Service times are exponentially distributed with mean ¢ = 1 and we consider the decision set
for the possible number of servers 4 = {1,...,10}. Finally, we consider the cost function in the objective
B(c) =c/3. We implement the greedy policy over n =200 periods and carry out a total of 500 independent
macro replications of the experiment to evaluate its performance.

Figure 1a shows the mean PICS, while Figure 1b shows the mean cumulative regret, both computed
over 500 macro replications. In both plots, we consider the three regimes for m, described in Theorem 2:
red corresponds to a sub-linear regime with m, = O(y/n), black to a linear regime with m, = O(n) and
blue to a super-linear regime with m, = O(nlog(n)). For the cumulative regret plot we do not include
confidence intervals as they are negligible.

e
-

) )
+ m,=0(nlog(n)) — m,=0(nlog(n))
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(a) Mean PICS for the three regimes of the greedy (b) Mean cumulative regret for the three regimes
policy over 500 macro replications. of the greedy policy over 500 macro replications.
Figure 1

Within Figure la, we observe that the rate of decay for the mean PICS for each regime satisfies
the bounds presented in Theorem 3. For the sub-linear regime, we observe that the PICS decays order
O(max{n~',m;'}) = O(n~'/?). Whilst for the linear and super-linear regimes, their decay is bounded above
by O(max{n~"',m,'}) = O(n~'). The cumulative regret plots shown in Figure 1b also support the findings
presented above. In addition, taking a log-log transform of the sub-linear regime cumulative regret shows
that the m, = O(y/n) regime satisfies the theoretical bound given in (14). Equivalently, log-transforming
the period n shows that the cumulative regret for linear and super-linear regimes satisfy the bound given
in (15).

6 CONCLUSION

In this paper, we considered the problem of adaptively selecting the optimal number of servers to implement
in an M/G/c queueing system with streaming observational data. We demonstrated the effectiveness of
a simple greedy decision-making policy that carries Monte Carlo estimation using repeated stochastic
simulation. We derived a CLT for the Monte Carlo estimate with rates dependent on the simulation budget
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allocation. Using this, we derived a theoretical bound on the asymptotic PICS for the policy. These results
were supported in a finite-time implementation of the policy. The empirical performance of the policy was
evaluated both in terms of the PICS, as well as the expected mean cumulative regret.

The theoretical results within this paper lay the foundations for understanding the behavior and limitations
of simulation-based decision-making algorithms in more-complex streaming observation settings. Several
natural problem extensions remain. First, we assume a finite decision space, %, whereas, in reality we
often face problems with unbounded, countably infinite state spaces. Extending the analysis to these
settings is a natural next step. Second, we consider a problem in which the data generation process was
decision-independent. In reality, we often find that system performance depends highly on practitioner
decisions. In the forthcoming work, Lambert et al. (2025), we build upon the analysis presented in
this paper, extending the results to endogenous problem settings. Potential decision-dependent problem
instances include, but are not limited to, settings with censored streaming observations (Gibbons, Grant,
and Szechtman 2023), heterogeneous customer behavior (Inoue, Ravner, and Mandjes 2023), and decision-
dependent arrival processes (Lambert et al. 2025). Within these settings a greedy policy may no longer be
optimal, instead necessitating algorithms that achieve a balance between exploration and exploitation.
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A APPENDIX

Differentiability of expected mean queue length

Proof of Lemma 2.  Let the process Q(t;1,c) denote the length at time ¢ < oo of an M /G/c queue with
empty initial conditions and arrival rate 1 > 0. Let a¢(c;n) denote the expected mean length of the queue
over the interval [0,7] and express its partial derivative with respect to 1 as follows

da(cn) 9 _[1 (T _ 1 (TIE[Q(t;n,c)]

In (16), as Q(#;m,¢) > 0 w.p. 1, by Tonelli’s theorem we exchange the limit and the expectation. By
Leibniz’s integral rule, for E[Q(z;1,c)] that is continuous in 1] we can differentiate under the integral. We
first show that E[Q(¢;7,¢)] is convex in 7, satisfying the continuity condition for Leibniz’s rule, before
proving that E [Q(¢;n,c¢)] is differentiable with respect to 1.

Letn, 6 > 0and consider an M /G /c queueing system with arrival rate n) 4+ 8 and empty initial conditions.
By interpreting the Poisson arrival stream with rate 1 4+ 6 as a superposition of two independent streams
with rates 17 and &, we can apply a coupling argument to show that processing these streams separately
results in sub-additive congestion and queue lengths, yielding the inequality

E[Q(1:n+8,c)] 2 E[Q(1:n,¢)] + E[Q(1:6,¢)]. (17
Trivially, we note that E[Q(#;0,¢)] = 0 for all # < oo, as such, rearranging (17) yields the following inequality
E[Q(t:n+6,¢c)] —E[Q(:n,¢)] = E[Q(1:6,¢)] - E[Q(z:0,¢)]. (18)

Therefore, E[Q(7;1,c)] is convex and increasing in 1 and hence continuous. In addition, it is semi-
differentiable, admitting left and right derivatives, denoted by %E[Q(z; 1n,c¢)] and %E[Q(l; 1n,c¢)] respec-

tively, for all 7 > 0. To establish differentiability we must show that %E[Q(z;n,c)} = %E[Q(z;n,c)} for
all 1 > 0, which we demonstrate using the following sample path approach.
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Let kK, >0, and let (ay,...,a,,) denote a sequence of arrival times sampled from a Poisson process
with rate 1 +k, restricted to the interval [0,¢], where ng, is the random number of arrivals observed by time
t. Let (s1,...,8,,) denote a sequence of i.i.d. service times drawn from the known service distribution. Let
o = {(a;,s;)}*, represent the set of customer arrival-service pairs for a single random trajectory, and let Q
denote the set of all such sets of tuples. Given @ € Q, we can construct a sample path for the queue length
process of an M /G/c queue, denoted by {¢(7;®,c); T € [0,7]}. We note that unlike Q, ¢ is deterministic,
i.e., given the same set of arrival-service pairs, @, we obtain the same sample path on [0,z].

To construct a sample path corresponding to an M/G/c system with arrival rate 11 + A for some
0 < h < min{k,n}, we apply a thinning procedure. Let @; C @ denote the set of arrival-service pairs
(ai,s;) accepted, given each pair has independent probability of acceptance (1 +h)/(n +k) and let
{q(7;@1,c);T € [0,¢]} denote the sample path constructed using @;. This thinning procedure can be
repeated two further times, to construct paths corresponding to systems with arrival rates 11 and 11 —h
respectively. First, let @, C w; denote the arrival-service pairs obtained after thinning @; with acceptance
probability 1/(n + k), with corresponding sample path {g(7;@2,c);7 € [0,¢]}. Similarly, let @3 C o
denote the arrival-service pairs obtained after thinning @, with acceptance probability (n —h)/n, with
corresponding sample path {¢(7; @3,c);7 € [0,¢]}.

By the total law of expectation, we can express the right and left derivatives of the expected queue
length at time ¢ as

o+ L Ew, 0,[q(t; 01,¢) —q(t;an,¢) | @]
FrE c)]—/%Ew[ P } (19
0~ T E@,@[Q(t;abac)_qu;ahac) | CO}
an E[Q(t;m,¢)] —}llg(l)Em[ P } , (20)

where, for instance, Eq, o, [q(f; 01,¢) —g(t; @2, ¢) | @] denotes the expected difference in the queue length
at time ¢ given initial arrival-service pairs @ € Q and thinned subsets @, ®,. The conditional expectation
is taken over all possible subsets @, C w; C w generated via the thinning procedure.

Let us consider (19). Given @ € Q, we let the random variable D; » | ® denote the difference in the
cardinalities of thinned subsets @; and @y, i.e., |@;| — |@,| given |®| = ny. By the total law of probability,
we have

Eoy,mq(t;01,¢) —q(t;0,0) | 0] = ZE(DI(UZ (tyo1,¢) —q(t;an,¢) | D12 =d,0]P(D1p =d | @). (21)

As , C w; C o, the event D » = d | o corresponds to the event where d of the customers accepted during
the first thinning step are rejected during the second thinning step. As such, D> | @ ~ Binom(ng, p)

where p = Z—:[Z (1 — ﬁ) =5 +k We can evaluate the conditional expectation in (21) as follows. For

each d € {0,...,nq}, let u(t | D12 = d, ) denote the mean change in the queue length at time 7, i.e., the

mean value of g(t; @, c) —q(t; @»,c) taken over all pairs (@, a,) satisfying D » = d. We note that this is

obtained combinatorially considering the initial g arrival-service pairs and is therefore independent of 4.
Using the above, we obtain the following expression for the right derivative (19).

Yokt | Dip=d,0)P(Dip=d| o).
h

(22)

limE, [Ewu,wz[CI(f;wl,C) —q(t;m,c) | w]]
h—0 h

Ee [11

— Eo [H(1|D1,2—1,(D)n+k . (23)

Inline (22) we exchange limit and expectation using a dominated convergence argument, as Eq,, o, [q(2; @1,¢) —
q(t;m,c) | 0] < ng and Eglng) = (N + k)t < oo for finite 7. In line (23), we note that for d = 0,
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u(t | D12 =d,w) =0 by definition. In addition, for p =h/(n+k), P(D12» =d | ®) = o(h) for d > 1.
This means that the summation term corresponding to D;> = 1 is the only one that does not vanish in
the limit. We construct a similar argument for the left derivative, given in (20). The set-up is identical to
that of the right derivative, however, we let D, 3 | @ denote the difference in the cardinalities of thinned
subsets @, and 3. As @3 C @, C @; C o, this corresponds to the event that d of the customers accepted
during the first two thinning steps were rejected during the third. We have D5 3 | @ ~ Binom(ng,q), where

9= n+kn+h n

way as U(t | D12 =d, ), the remainder of the proof is identical. Therefore, as the left and right partial
derivatives match, the partial derivative (16) with respect to 1, exists and is positive for all 7 > 0, hence
satisfying Assumption 4.

= ndh N (1 - H) = ﬁ As g=pand u(t | D3 =d, ) is calculated combinatorially in the same

O
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