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ABSTRACT

This paper focuses on a Research and Development (R&D) semiconductor manufacturing system. By
virtue of their vocation, R&D facilities tolerate much more variability in processes and outcomes than
industrial-scale ones. In such environments, operating under conditions characterized by high uncertainty
and occurrences of (un)knowns corresponds to normal operating conditions rather than abnormal ones.
This paper characterizes the key entities and operational aspects of a semiconductor R&D cleanroom
and introduces a discrete-event simulation model that captures these elements. The simulation model is
grounded in empirical data and reflects real-life operations management practices observed in actual R&D
cleanroom settings. Preliminary computational results based on real-life instances are presented, and future
research directions are outlined to support resilient decision-making in environments where high levels of
uncertainty are part of normal operating conditions.

1 CONTEXT, MOTIVATIONS, AND RELATED BACKGROUND

While industrial-scale facilities (fabs, for short) are focused on efficiently manufacturing large volumes of
chips with high yield and low cost, R&D semiconductor manufacturing systems are driven by innovation
and the development of new technologies, materials, and processes (see Table 1). These systems are
specifically designed to support experimentation and rapid iteration, enabling the creation and refinement of
next-generation manufacturing techniques. In this context, time-to-market for new technologies is critical.
R&D fabs frequently run experimental lots to test process changes, identify and mitigate defect mechanisms,
and enhance device performance. The success of an R&D fab is ultimately measured by how effectively
it transfers mature technologies into industrial-scale manufacturing and meets performance targets.

More specifically, semiconductor R&D fabs differ significantly from industrial-scale ones in several
key aspects, including production scale, level of production control, manufacturing modus operandi, and
performance metrics (Kim et al. 2008; Chen et al. 2017; Borodin et al. 2024). While extensive
research has focused on operations management for industrial-scale semiconductor manufacturing fabs (see
e.g., Monch et al. (2011)), there is a noticeable lack of studies aimed at improving the performance of
R&D fabs (Ramamurthi et al. 2005).

This gap in the literature can be partly explained by two main factors: (i) The deployment of automation
is not so straightforward as in industrial-scale fabs, where operating conditions are known beforehand and
manufacturing schemes are predictable. Automation in R&D fabs is implemented cautiously, as these
environments must remain highly versatile (Fischer et al. 2023). For instance, while Manufacturing
Execution Systems (MES) in industrial-scale fabs enforce fixed recipes and standard operating procedures,
MES in R&D fabs must allow for on-the-fly modifications. Since automation relies on standardized
processes, it often conflicts with the inherent flexibility required in R&D. Engineers frequently need to
manually create new recipes for experimental steps that are too novel to be predefined in the MES (Fischer
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Table 1: Semiconductor manufacturing fabs: R&D versus industrial-scale

Aspect

R&D

Industrial-scale

Objectives

Innovation and acceleration of learning

Low throughput

Market supply, cost efficiency, and yield

High throughput

Key characteristics

Experimentation driven by engineers and
statistical analysis: High tolerance to vari-
ability

Limited redundancy, extensive equipment
diversity

Bypassable automation enabling customized
executions (Fischer et al. 2023; Fischer et al.
2025)

Rigorous process control: Minimal toler-
ance to variability, see e.g., (Moyne and
Iskandar 2017)

(Quasi-) complete automation to standard-
ize and stabilize operations

Philosophy of oper-
ations management
and process control

Optimization for flexibility, exploration, and
knowledge acquisition; time-to-market for
new nodes is critical (Kuhl et al. 2004)

Optimization for stability, efficiency, and
competitiveness, see e.g., (Moyne et al.
2016; Monch et al. 2018)

Key performance | Agility and learning: Number of experi- | Stability and efficiency: Throughput, cy-

indicators ments conducted, achieved technology mile- | cle time, on-time delivery, productivity,
stones, speed of knowledge acquisition and cost

Related literature in | Application still very limited, mainly fo- | Extensive literature covering all decision

manufacturing sci-
ences

cused on production control (dispatching),
see e.g., (Ramamurthi et al. 2005; Kim et al.
2008; Kuhl et al. 2004; Borodin et al. 2024)

levels of supply chain planning (strate-
gic, tactical, operational) with advanced
predictive and prescriptive tools, see e.g.,

(Monch et al. 2011; Monch et al. 2018)

et al. 2023). (ii) R&D fabs are subject to and tolerate significantly higher variability in both processes and
outcomes (Loriferne et al. 2025).

One of the earliest contributions to R&D semiconductor manufacturing was proposed by Liao et al.
(1996), who addressed the uncertainty caused by frequent equipment failures and yield fluctuations. They
proposed a daily scheduling approach that enables quick and smooth sequencing adjustments, thereby
supporting more agile manufacturing management.

Among the limited existing studies, Ramamurthi et al. (2005) examine production control strategies in
semiconductor R&D fabs, aiming to reduce time-to-market through simulation-based methods. Their work
evaluates how critical factors (such as bottleneck utilization, lot prioritization, dispatching policies, and due
date constraints) impact key performance indicators like on-time delivery and cycle time. In another study,
Borodin et al. (2024) assess and challenge a dispatching rule-based heuristic applied in real-life settings.
To improve throughput and shorten turnaround time, Kim et al. (2008) propose a fab-wide scheduling
approach that simultaneously schedules all lots across the full set of machines. Their approach combines
mixed-integer programming with constraint programming to optimize overall fab efficiency.

In terms of capacity management and productivity enhancement in R&D settings, Kuhl et al. (2004)
introduce a simulation model for a semiconductor and microsystems fabrication laboratory. The model
assesses fab performance through key indicators such as cycle time, Work-In-Progress (WIP), and throughput
of representative load lots.

Given this context and further in this direction, this paper focuses on modeling, simulating, and evaluating
the performance of operations and activities management of an R&D semiconductor manufacturing system
under conditions characterized by known unknowns. The proposed discrete-event simulation tool is designed
as a foundation for future integration with prescriptive capabilities, enabling resilient operations management
in environments where high uncertainty and (un)know unknowns are considered normal operating conditions.

The remainder of this paper is structured as follows. Section 2 defines the problem under study.
Section 3 presents the proposed discrete-event simulation framework. Section 4 discusses the results of
the numerical experiments conducted on real-world industrial data. Finally, Section 5 concludes the paper
and outlines potential directions for future research.
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2 PROBLEM DESCRIPTION

Unlike industrial-scale fabs, an R&D center in the semiconductor manufacturing domain does not produce
physical products. Instead, it develops wafer manufacturing methods by inventing, improving, modifying,
and integrating individual processes into cohesive flows. This inherently innovative nature of R&D demands
significant human expertise and intervention. Operators must parameterize machines at each process step
to fine-tune the processes. Moreover, redundancy in equipment is rare. Redundancy, when it exists, arises
from the overlap of capabilities among machines. However, certain steps require specific machines and
skilled operators, making the impact of machine failure uneven and highlighting the critical role of operator
knowledge.

Non-redundancy also arises at the lot level. Once a lot becomes deployable for industrial-scale
manufacturing, its development is usually complete, and it transitions out of the R&D center. Furthermore,
low levels of production control mean that each lot may follow a unique route, which evolves throughout
the process. This uniqueness makes traditional lot batching nearly impossible. Instead, campaigns are
used, grouping similar process steps rather than lots, based on shared parameters.

In the context of complex and innovative processes, failures and scrap must be minimized. To mitigate
these risks, wafers are often separated from their original lots, forming the so-called son lots to enable
testing. This form of /ot filiation is common for engineering steps. However, these son lots are not always
tracked independently in the MES, as they may be embedded within the step duration. Some are treated
implicitly within tasks, while others are considered separate lots.

Another form of lot filiation is the definitive split, where a single parent (or father) lot is deliberately
divided into two derivative lots that will not recombine. This practice enables parallel experimentation
with alternative process trajectories and outcomes within the scope of a single project.

The problem addressed in this paper involves the characterization, modeling, and simulation of a
semiconductor manufacturing R&D system, with the goal of supporting decision-making in environments
where high levels of uncertainty are inherent to day-to-day operations. The current focus is on the sufficiency
of the representation and analysis of system dynamics to capture the effects of critical aspects, and the
integration of optimization capabilities is left as a direction for future work.

3 DISCRETE-EVENT SIMULATION-BASED APPROACH

The discrete-event simulation, defined over a discrete time horizon 7', is lot-oriented and is based on a
Work-In-Process (WIP) object. The main building blocks are described in Section 3.1. The management
of quantitative operations is provided in Section 3.2.

3.1 Description of Core Building Blocks

Entities and parameters. Consider a set of lots (i.e., jobs) j € ¢ in the WIP and their associated sets
of operations (i.e., steps) &; = {01,j,02,j,-..,0n; ;} of cardinality n;, and a set of machines ./ located in
a set of work areas 2. Each work area z € 2 is associated with workers w grouped into teams W,. Let
d,, be the statistically estimated processing time of machine m € .#, measured in simulation time units.

As explained in Section 2, lots in the R&D center under study are nearly unique, i.e., there are almost as
many distinct lots as there are products. The processing of job j can be started if the following constraints
are met:

* All needed resources (machine and qualified operator) must be free and available/ready for use,
* No ongoing son lots,
*  No ongoing hold for the lot.

As proposed in (Loriferne et al. 2025), let us distinguish the following resource types in an R&D
manufacturing system:
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*  Machines: Machines in an R&D fab are selected primarily for their ability to support experimental

processes and accommodate a broad spectrum of process configurations, including novel and
evolving steps. Since demand in terms of volume is typically very low in R&D settings, there may
be only one or very few machines of each type. Consequently, machine downtime is generally
higher in R&D, either due to lower utilization pressure or frequent reconfigurations by engineers.
The machine downtime is characterized by Time To Repair (77TR) and Time Between Failures
(TBF). These parameters are tracked, traced, and explicitly considered in the proposed simulation
model.
In terms of architecture, the MES of the studied R&D cleanroom distinguishes two categories of
machines: (i) Mono-module machines: Mono-module tools that process lots serially using one
specific process. Each mono-module machine can have multiple capabilities, although these are
not always cross-compatible or simultaneously available. (ii) Multi-module machines: Machines
composed of multiple modules grouped under a so-called mainframe. These are logically subdivided
into virtual machines (referred to as virtuals for short).

*  Workforce: Workforce resources are modeled at the workshop level, where each team W, is capable
of operating most machines within its assigned work area z € Z. In the simulation, operators
within a work area are considered interchangeable. To process a lot in a given work area z € &,
an operator must be available and not already engaged in another task. Nominal call behavior (i.e.,
the preemptive assignment of operators to lots) is not yet implemented, as it requires a higher level
of data granularity that is currently unavailable in the simulation framework.

States and transitions. = Machine behavior is modeled in terms of {Up, Down} states and capability
configuration. Following the approach proposed by Loriferne et al. (2025), machine failures are represented
using two key stochastic parameters: TBF and MTTR. The values of these parameters are dynamically
generated whenever a machine transitions between states, introducing time-varying randomness into the
simulation. Both TBF and TTR are defined for each mainframe and its associated modules.

It is worthwhile mentioning that lots are not processed directly on mainframes or individual modules.
Processing occurs on virtual machines. A virtual becomes eligible to process a lot only if the following
conditions are met:

* The mainframe is Up, i.e., operational.
* All modules in the virtual machine path are also Up.

The processing time of a given lot is computed based on the characteristics of the assigned virtual
machine. During processing, both the lot and the machine are considered occupied until one of two
outcomes occurs: (i) The processing time elapses and the operation completes successfully, or (ii) A failure
interrupts the operation. In the event of a failure, the lot is released without completing its step, while the
machine remains unavailable for the duration of the repair time.

The simulation is designed to reflect real-world constraints on resource availability in the cleanroom
and system dynamics. Algorithm 1 simulates the behavior of the system over one period of simulationt € T,
while accounting for jobs (i.e., lots) and their holds, machine activity and failures, and workforce availability.
The manufacturing operations are managed as described in Section 3.2. It explicitly incorporates all key
factors influencing cycle time per process step and processing speed. The model accounts for lot filiation
and holds. Holds are implemented using fixed durations and a probabilistic triggering mechanism at each
process step, calibrated using empirical historical data as described in (Loriferne et al. 2025).
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Algorithm 1 Discrete-event simulation model associated with a given period t € T'.
for j € 7, where ¢ is ordered by a dispatching policy do > Lot processing and holds
if remainingTimelnProcess(j) = 0 and isTreatable(j) then
0§ <— current step o; ; of job j
m < machine(0$"""")
if (leftoverTime(m) < 0 and isUp(m)) and 3 w € W, s.t. occupancyTime(w) < 0 then
leftoverTime(m) < d,,
remainingTimelnProcess(j) < dy,
end if
else if remainingTimelnProcess(j) > 0 then
remainingTimelnProcess(j) < remainingTimelnProcess(j) — 1
if remainingTimelnProcess(j) < 0 then
if rand(0,1) < a, where a € (0,1) is a hyper-parameter then
remainingTimelnProcess(j) < holdDuration, as defined in (Loriferne et al. 2025)
else
Go to next step 0;11,; of job j
end if
end if
end if
end for
for m € .# do > Machine activity and failures
failure(m) < elapsed time since the last state change of m as defined in (Loriferne et al. 2025)
if leftoverTime(m) > 0 then
if failure(m) > TBF (m) then
J—je 7 st 03"""”’ is processed by machine m
if j/ # Null then
remainingTimelnProces(j') <+ 0
end if
leftoverTime(m) <— TTR(m)
Change the state of machine m to Down
end if
leftoverTime(m) < leftoverTime(m) — 1
else if State of machine m is Down then
Set state of machine m to Up
Generate randomly the next TBF as defined in (Loriferne et al. 2025)
end if
end for
for z€¢ & do > Workforce aspect
for w e W, do
occupancyTime(w) < occupancyTime(w) — 1
end for
end for

3.2 Production Planning and Control

Focus on campaign.  As previously mentioned, the equipment park and its configuration in an R&D
fab are dimensioned for flexibility and experimental capability scope. Machines in such environments
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must often accommodate a wide variety of process settings, including entirely new or modified process
steps. For this reason, machines are frequently unique or nearly so in their configuration and use. The
different capabilities of a machine can be mutually exclusive, requiring time-consuming setup or teardown
operations to switch from one capability to another.

To manage this complexity, campaigns are used as a scheduling approach for machine capabilities. A
campaign typically spans a predefined period of duration, during which specific capabilities, deactivated by
default, are temporarily activated. Conversely, some capabilities that are normally active may be deactivated
for the duration of the campaign. Campaigns generally fall into three categories:

» Size: The machine supports only one wafer size at a time. Changing the accepted size requires
human intervention, including maintenance and qualification.

* Contamination: The campaign temporarily alters the contamination level of the machine, either
increasing or decreasing it.

* Materials: The chemical composition or target material used by the machine needs to be changed.

Campaigns are also characterized by different types of periodicity. Some campaigns follow a fixed
periodic schedule, typically on a weekly or monthly basis. Other ones occur less frequently, such as every
three months, and are planned accordingly. The remaining campaigns are project-driven, initiated due to
specific constraints, and often have a short window of anticipation.

These campaigns are managed through the control of capabilities, specifically their activation or
deactivation relative to a predefined standard state. Based on the level of control knowledge available,
campaigns can be classified into four distinct levels:

* Level 0: This level reflects the lowest degree of knowledge, typically in engineering contexts. At
this level, no specific capabilities are identified or provided.

* Level 1: At this level, there is partial knowledge regarding which capabilities should be activated
or deactivated. However, the standard state of a machine is clearly defined, which distinguishes it
from the next level.

* Level 2: In this case, there is no defined standard state. The machine operates in a permanent
campaign mode. Each campaign specifies the capabilities to be activated, as no deactivation is
required since the concept of a standard state (with default capabilities) is absent.

* Level 3: This level represents the highest degree of control. Both the standard state of a machine
and the sets of capabilities to be activated and deactivated during a campaign are fully defined.

These campaigns are characterized by the following elements: a start date, a setup time, and lists of
capabilities to be activated and deactivated. The teardown time is considered part of the setup time of
the subsequent campaign. The standard state is also modeled as a campaign with its own set of capabili-
ties. Since the setup time can vary depending on the preceding campaign, it is represented using a cost matrix.

Focus on scheduling and dispatching. No formal analytical specifications are available to determine
which machines are qualified or which recipes are suitable for a given job and operation (Fischer et al. 2023).
Instead, engineers typically rely on their experience and understanding of product requirements to select
appropriate machines and recipes. The current dispatching approach consists of two main phases (Borodin
et al. 2024):

* Bin assignment: Rather than explicitly modeling individual resources, a set of resource bins is
defined. Each resource bin corresponds to a specific combination of priority level and operation
type. These bins have fixed and limited capacities. Prior to sequencing, operations are assigned to
resource bins based on job priority, which is defined according to R&D specifications.
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* Sequencing: After bin assignment, jobs within each bin are ordered based on a compound priority
score. This score accounts for several factors, including the adjusted processing speed required to
meet the job deadline, the number of remaining operations in the job route, and the slack time.

This dispatching strategy is designed to support On-Time Delivery (OTD), as the R&D center operates
under a make-to-order production model. Time-to-market for new technology is critical.

4 COMPUTATIONAL EXPERIMENTS

This section discusses the accuracy of the proposed simulation model based on the real-world instances
described in Section 4.1. Numerical experiments are designed as detailed in Section 4.2. Section 4.3
provides an analysis of R&D fab performance and examines the impact of dispatching policies on key
performance indicators.

4.1 Description of Instances

Numerical experiments have been performed on real-life instances provided by CEA-Leti, one of the three
European research and technology organizations in semiconductor manufacturing. The dataset comprises
hundreds of unique products and includes approximately 2,500 lots present in the Work-In-Progress (WIP)
at any given time. During the simulation, lots are added daily to the WIP based on historical inflow patterns,
replacing those that have completed processing.

Machine parameterization is also based on historical data. Specifically, four years of data, 2021-2025,
have been used to model machines, with the chosen time span serving to mitigate the impact of the
COVID-19 pandemic, during which the cleanroom was partially closed. Following the multi-resource
modeling approach from (Loriferne et al. 2025), machines are represented using a modular approach,
where each machine is decomposed into modules (corresponding to specific capabilities) and mainframes
(physical assemblies).

4.2 Design of Experiments

Numerical experiments were conducted following an experimental plan structured around several aspects:

* Accuracy of the simulation model: The discrete-event simulation model described in Algorithm 1
has been validated against the ground truth to examine and shed light on the following key features:
— Multi-resource constraints: Two modeling approaches are compared: (i) As-is model: This
model corresponds to the machine model currently used to manage cleanroom operations; and
(ii) Proposed multi-resource model, detailed in Section 3 and in (Loriferne et al. 2025).
— Machine failures and lot holds modeled as proposed in (Loriferne et al. 2025).
* Impact of critical features: The combined effect of explicitly considering machine failures and
lot holds has been estimated and reported.
* Dispatching policies and cleanroom activity: Section 4.3 analyzes three policies within the
proposed simulation framework: (i) random lot shuffling, (ii) bin-level shuffling, and (iii) the
current dispatching heuristic.

Numerical experiments were performed on a desktop computer equipped with an Intel i5 processor
(2x 2.80Hz) and 8 GB of DDR4 RAM. With a time granularity of 5 minutes, simulating a two-month
period required approximately 13 minutes. To simulate multiple instances, a computing farm consisting
of heterogeneous machines was utilized, resulting in variable execution times. The findings reported in
this paper are derived from 20 replications of the simulation, which were empirically determined to be
sufficient for validating the current version of the model and for generating managerial insights.
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4.3 Analysis of the Obtained Results

Validation of the sufficiency of the simulation accuracy. The accuracy of the simulation model has been
validated in terms of cleanroom activity. The activity serves as a key performance indicator, corresponding
to the number of processed steps per day.

Figure 1 illustrates the capability of the proposed simulation model to replicate real-world activity
patterns within the cleanroom. Firstly, it is essential to note that, statistically speaking, the proposed
simulation approach, which integrates multi-resource modeling, lot holds, and machine failures, closely
replicates the actual cleanroom activity. From Figure 1, it is also evident that the as-is machine model
currently used to manage cleanroom operations consistently results in a lower number of processed steps
per day, with associated mean processing times appearing to be overestimated.
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Figure 1: Comparison between ground truth and simulation results, accounting for multi-resource constraints,
machine failures, and lot holds: Number of steps processed per day. The black line represents the historical
activity, while the boxplots represent the simulated daily activity over 20 replications. The y-axis values
have been intentionally omitted to preserve confidentiality.
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Figure 2: Simulation results including the proposed multi-resource model, lot holds, and with/without
machine failures: Number of steps processed per day. The black line represents the historical activity,
while the boxplots represent the simulated daily activity over 20 replications.

Let us now investigate the impact of machine failures and lot holds using the proposed simulation
model. Figure 2 illustrates the effects of machine failures on cleanroom activity. While the average level
of WIP activity remains relatively stable, its variability increases significantly when machine failures are
explicitly considered. Due to the complexity of the system and the presence of many unique machines,
activity is unevenly distributed across them. This phenomenon is closely related to the so-called big runners,
referring to machines that handle the majority of activity within each area of the cleanroom. Their impact
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on activity patterns is more pronounced in R&D contexts, where machine redundancy is very limited.
These findings highlight that adaptability to machine failures and maintenance can serve as an important
optimization lever.
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Figure 3: Simulation results including the proposed multi-resource model, machine failures, and with/without
lot holds: Number of steps processed per day. The black line represents the historical activity, while the
boxplots represent the simulated daily activity over 20 replications.

Figure 3 shows the effects of lot holds on cleanroom activity. The alignment between the ground truth
and the simulation results validates the empirical approximation applied to model lot holds. This alignment
allows decision-makers to quantify the potential gains achievable by reducing lot holds.

In the studied R&D center, engineering support is required for the majority of processing steps. For
new processing steps, processing times are initially unknown, and subject matter experts must estimate the
time needed for their completion. Conversely, while the processing times of mature steps are generally
better controlled, they often still depend on feedback from engineering, inline, and offline teams before
proceeding to subsequent steps. This tuning process can introduce significant delays.

The results provided in Figure 3 can be seen as the theoretical maximum activity achievable under ideal
operating conditions, assuming lot holds are resolved immediately. The profile defined by red boxplots
serves as a best-case reference, highlighting the potential margin for improvement in operational efficiency.

Performance assessment.  Figure 4 illustrates the impact of WIP size on global activity in the
cleanroom and mean lot speed. As expected, increasing the WIP size leads to higher global activity, since a
greater number of machines can be utilized simultaneously. However, this comes at the cost of reduced lot
speed. The slowdown is primarily due to longer runner queues and increased machine occupancy, which
introduce additional delays in lot processing.
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Figure 4: Average cleanroom activity per day and lot activity per day as a function of WIP size, where
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Additional experiments have been conducted to investigate the behavior of the currently deployed
dispatching rule under conditions of high variability and uncertainties. To this end, three policies have
been implemented so far and compared in terms of daily activity, as illustrated in Figure 5. The first policy
corresponds to the as-is situation, serving as a baseline for comparison. The second policy corresponds
to a completely shuffled WIP, ignoring all dispatching prescriptions and lot splitting into bins as detailed
in Section 3.2. The third policy presents an intermediate case. It also shuffles the WIP but maintains the
separation between bins.

0.8 II!' [ ® Current dispatching policy
- * Shuffled

0.4 r 4 i
/ P » Shuffled per bin
0.2 e

zbase

Cumulative probability ~ Probability

Mean daily number of steps

Figure 5: Empirical probability distributions of mean daily activity for three dispatching policies:(i) Random
lot shuffling, (ii) bin-level shuffling, and (iii) current dispatching policy.

Together with the cleanroom activity, the distribution of On-Time Delivery (OTD) is analyzed to assess
its alignment with real-world performance. However, it should be noted that OTD heavily depends on the
assignment of lots to bins, which is influenced by external factors beyond the cleanroom environment and
is therefore difficult to reproduce accurately.

It is observed that shuffling the sequence proposed by the current dispatching rule-based heuristic
increases overall activity. This improvement is likely due to a more diverse workload distribution across
machines, resulting in better average performance, regardless of whether the shuffle is applied to the entire
WIP or separately within each bin. However, this gain comes at a cost. High-priority lots, which are
the most critical, experience significant delays, while lower-priority lots tend to finish much earlier than
necessary. Early completion for lower-priority lots is generally not beneficial. Approximately one-third of
the lots were significantly accelerated, while the remaining two-thirds suffered delays. As expected, the
current dispatching approach is more effective in terms of OTD. It better aligns completion times with
delivery priorities, minimizing the gap between scheduled and actual delivery dates.

It is worth noting the long right tails of all distributions in Figure 5. The maximal achievable activity
lies far above the mean, not only under the current dispatching policy but also across the other random-based
scenarios. This observation highlights the significant combined impact of the frequency of lot holds and
machine failures. Addressing these conditions is part of our ongoing research on supporting operations
management of the R&D cleanroom.

S CONCLUSION AND PERSPECTIVES

This paper presents the key entities, their interactions, and the contextual characteristics specific to research
and development semiconductor manufacturing systems. A simulation-based approach is proposed and
validated using real-world data and settings. The simulation tool is designed to be equipped with decision-
making capabilities, enabling it to propose resilient solutions in response to the high levels of uncertainty
that are intrinsic to normal R&D operating conditions.
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A deeper understanding of the various resource aspects provides valuable insights into the criticality of
specific machines and the distribution of workloads across workshops. In collaboration with the reporting
team, additional what-if scenarios and performance indicators are currently being developed to further
extend the decision analytics scope of the simulation-based tool.
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