
Proceedings of the 2025 Winter Simulation Conference
E. Azar, A. Djanatliev, A. Harper, C. Kogler, V. Ramamohan, A. Anagnostou, and S. J. E. Taylor, eds.

INCORPORATING ELEVATION IN TRAFFIC-VEHICLE CO-SIMULATION: ISSUES,
IMPACTS, AND SOLUTIONS

Guanhao Xu1, Anye Zhou1, Abhilasha Saroj1, Chieh (Ross) Wang1, Vivek Sujan1, Michael O. Rodgers1,
Jianfei (Max) Chen1, Oriana Calderón2, and Zejiang Wang3

1Buildings and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
2Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, USA

3Department of Mechanical Engineering, University of Texas at Dallas, Dallas, TX, USA

ABSTRACT

Traffic-vehicle co-simulation couples microscopic traffic simulation with full-body vehicle dynamics to
assess system-level impacts on mobility, energy, and safety with greater realism. Incorporating elevation is
critical for accurately modeling vehicle behavior and energy use, especially for gradient-sensitive vehicles
such as electric and heavy-duty trucks. However, raw elevation data often contain noise, discontinuities,
and inconsistencies. While such issues may be negligible in traditional traffic simulations, they significantly
affect traffic-vehicle co-simulations where vehicle dynamics are sensitive to road grade variations. This
paper investigates the impact of unprocessed elevation data on vehicle behavior and energy consumption
using a 42-mile simulation along Interstate 81. We propose an elevation processing workflow that can
mitigate the effects stem from elevation data issues, improving the realism and stability of traffic-vehicle
co-simulation. Results show that the method effectively removes noise and abrupt elevation transitions
while preserving roadway geometry.

1 INTRODUCTION

Traffic-vehicle co-simulation has emerged as a powerful tool for analyzing transportation systems with
enhanced physical realism. By coupling microscopic traffic simulation with detailed vehicle dynamics
models, co-simulation frameworks enable researchers and practitioners to more accurately evaluate the
system-level impacts of vehicle behavior on mobility, energy consumption, and safety.

One critical but often overlooked factor in traffic-vehicle co-simulation is road elevation. Elevation
changes significantly influence vehicle dynamics, powertrain load, and regenerative braking behavior,
especially for gradient-sensitive vehicle types like electric vehicles and heavy-duty vehicles. Accurately
modeling these effects is essential for reliable evaluation of energy efficiency, emissions, and mobility
under realistic roadway conditions. Despite its importance, elevation is frequently excluded or simplified
in co-simulation workflows due to difficulties in data integration.

Raw elevation data, typically sourced from digital elevation models (DEMs), map APIs, or GPS
recordings, often contain various artifacts such as noise, abrupt discontinuities, and inconsistent resolution.
These issues can propagate into the co-simulation environment, causing unstable vertical dynamics, artificial
vehicle crashes, or unrealistic spikes in energy consumption. As a result, failure to properly process elevation
inputs undermines the accuracy and reliability of simulation outcomes.

To address these limitations, this paper focuses on developing and validating an elevation data processing
workflow to support realistic traffic-vehicle co-simulation. The key contributions of this paper are as follows:

• The negative impacts of raw elevation data on traffic-vehicle co-simulation stability and vehicle
behavior are demonstrated using a simulation of a 42-mile corridor along Interstate 81 built with
real-world elevation and traffic data.

• A novel three-step elevation processing workflow consisting of outlier filtering, elevation smoothing,
and grade smoothing is proposed to produce realistic elevation and grade profiles.
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• The effectiveness of the proposed workflow is validated through improved simulation behavior and
energy consumption under various payload conditions.

2 LITERATURE REVIEW

2.1 Traffic and Vehicle Simulation

Traffic simulation is a modeling approach used to replicate the movement and interaction of vehicles on
a transportation network. It is often applied to analyze traffic operations (Xu and Gayah 2023), evaluate
safety interventions (Xu et al. 2025), and test traffic and vehicle control technologies such as signal control,
eco-driving, and connected and automated vehicles (Yuan et al. ; Zhou et al. 2022; Yu et al. 2020). Some
commonly used traffic simulation software includes AIMSUN, PTV VISSIM, CORSIM, TransModeler,
Simulation of Urban Mobility (SUMO), and Paramics (Saroj et al. 2024). These simulators, particularly
at the microscopic level, model each vehicle as an individual agent governed by driver behavior models
such as car-following and lane-changing models. However, they generally do not simulate internal vehicle
dynamics (e.g., drivetrain behavior, braking force, traction control) and thus are limited in evaluating
in-vehicle control and operation technologies.

By contrast, vehicle simulators are used to model detailed vehicle physics and control responses. These
simulators are essential for studying technologies related to Advanced Driver Assistance Systems (ADAS),
Connected and Autonomous Vehicles (CAVs), and Connected Vehicles (CVs) systems (Zhou et al. 2022).
In such simulations, control modules send commands—such as throttle, brake, and steering—through a
virtual controller area network (CAN) bus to replicate vehicle responses in a virtual environment. As
highlighted in (Zhou et al. 2022), high-quality vehicle simulators require accurate sensor models, advanced
vehicle dynamics, and photo-realistic environments. Popular vehicle simulators include CarSim (CarSim
2025), IPG CarMaker™ (IPG 2025), LGSVL (Rong et al. 2020), MATLAB/Simulink (MathWorks 2025),
and PreScan (Siemens 2025). These platforms are commonly used to study driver responses (Zhang et al.
2025), evaluate new technologies, and test features such as eco-driving strategies (Huang et al. 2018),
automated braking, and adaptive cruise control (Zhou et al. 2022).

2.2 Co-simulation Framework for Vehicle Technology Studies

To create virtual testbeds for realistic traffic movement and control environments, co-simulation frameworks
are often employed. These frameworks enable the evaluation of technologies such as ADAS and CAVs
at scale by combining a traffic simulation environment for modeling the road network and background
traffic with a vehicle simulator for high-fidelity vehicle dynamics (Shi et al. 2022; Azfar and Ke 2024).
For example, Shao et al. (Shao et al. 2023) demonstrated a co-simulation setup for CAVs using an
everything-in-the-loop (XIL) framework (Shao et al. 2023), integrating traffic simulation with software,
hardware, and vehicle simulators such as CARLA and IPG CarMaker™ to evaluate CAV control strategies.
Detailed vehicle dynamics in these simulators provide accurate estimations of the impacts of emerging
vehicle technologies on fuel efficiency and energy consumption. While these frameworks successfully
combine realistic ambient traffic with physics-based vehicle models, to the best of the authors’ knowledge,
no existing studies have discussed the impact of elevation on vehicle motion and energy consumption within
this co-simulation framework.

2.3 Role and Challenges of Elevation Data in Traffic and Vehicle Simulation

In recent years, the effects of elevation and road grade on vehicle motion and energy consumption have been
examined in several studies (Perrotta et al. 2020; Ferreira et al. 2020; Liu et al. 2019; Liu et al. 2017; Wood
et al. 2015). Traditionally, microscopic traffic simulation models are used to generate realistic vehicle speed
profiles along specific routes in a network (Ferreira et al. 2020). These speed profiles are then input into
emission and energy models such as PHEM (Lejri et al. 2018), CMEM (Kan et al. 2018), and VT-Micro
(Wang and Rakha 2017) to estimate fuel consumption or emissions. However, these simulations typically do
not account for detailed vehicle dynamics, which can limit the accuracy of energy and emissions estimates.

1024



Xu, Zhou, Saroj, Wang, Sujan, Rodgers, Chen, Calderón, and Wang

However, the traffic-vehicle co-simulation framework enables more accurate evaluation of fuel consumption
and emissions, as it considers both detailed vehicle dynamics and interactions with surrounding traffic in
realistic simulation environments. For such evaluations, incorporating road elevation data is essential, as
elevation has a direct influence on vehicle load, power demand, and regenerative braking behavior.

Elevation data are available from a variety of open-source and commercial sources, including the Shuttle
Radar Topography Mission (SRTM) (Farr et al. 2007), USGS National Elevation Dataset (NED) (U.S.
Geological Survey 2013), Google™ Maps Elevation API (Google Developers 2023), Mapbox API (Mapbox
2023), HERE™ API (HERE Technologies 2025), and LiDAR-based datasets such as the USGS 3D Elevation
Program (3DEP) (U.S. Geological Survey 2021). Although terrain elevation data is widely available, it
often does not accurately represent the elevation of the road surface itself. Some services, such as the
HERE™ API (HERE Technologies 2025), provide elevation data along roadway centerlines, but this data is
often sparse and must be smoothed to produce realistic road grades for simulation purposes. Additionally,
road elevation data frequently contains noise, outliers, or discontinuities that can result in unrealistic vehicle
behavior in simulations and inaccurate assessments of vehicle energy consumption (Fisher and Tate 2006).
Existing research on elevation data processing and smoothing focuses on improving terrain data quality
for geographic or visualization purposes (Hofer et al. 2006; Gallant 2011; Arrell et al. 2008; Chen et al.
2017), without considering its impact on traffic or vehicle simulation. This paper uniquely highlights how
unprocessed elevation data can degrade traffic-vehicle co-simulation by affecting vehicle dynamics, and
proposes a workflow to mitigate these issues and enhance simulation accuracy. The proposed method can be
applied across vehicle simulation, traffic simulation, and integrated traffic-vehicle co-simulation to ensure
realistic and reliable elevation inputs.

3 TRAFFIC-VEHICLE CO-SIMULATION OF A CORRIDOR

Figure 1: Co-simulation framework between SUMO and IPG TruckMaker™

To investigate vehicle behavior and energy consumption in a realistic traffic environment, a traffic-
vehicle co-simulation is developed for a 42-mile highway segment along Interstate 81 (I-81) following
the framework shown in Figure 1. This corridor is selected due to its notable elevation variation, ranging
from 945 ft to 1860 ft, which provides a representative terrain profile for testing elevation-sensitive vehicle
dynamics. The simulation scenario models a battery electric vehicle (BEV) truck traveling through the
corridor while interacting with surrounding traffic. Throughout the simulation, the vehicle dynamics and
energy consumption are continuously recorded.

For the traffic simulation, we use the Simulation of Urban Mobility (SUMO), a microscopic traffic
simulator capable of modeling detailed vehicle-level interactions. The traffic simulation here is to provide
realistic surrounding vehicle behavior, enabling the ego BEV truck to respond as it would in real-world traffic.
These interactions—such as accelerating, braking, or changing lanes in response to other vehicles—directly
influence the ego truck’s dynamics. Elevation further compounds this effect by altering the required power,
braking effort, and traction depending on the road grade. Note that although SUMO has models that
consider impact of elevation, it does not capture detailed longitudinal vehicle dynamics such as traction
limitations, or regenerative braking, necessitating the use of a high-fidelity vehicle simulator. We utilize
Real-Twin (Wang et al. 2025; Xu et al. 2025), a tool for automatic scenario generation for microscopic
traffic simulation developed by Oak Ridge National Laboratory, to generate the simulation network for
this corridor based on road network data from OpenStreetMap (OSM), elevation data collected at 10-meter
intervals along the road centerline of I-81 from HERE™ Maps, and traffic volume data from the Federal
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Highway Administration’s Traffic Monitoring Analysis System (TMAS) as well as Highway Performance
Monitoring System (HPMS). Specifically, HPMS Annual Average Daily Traffic (AADT) data along highway
segments and ramp exits are combined with hourly traffic data from the nearest TMAS stations to estimate
hourly traffic volumes across the network. As a preliminary step, this paper uses traffic generated by
SUMO’s tool randomTrips.py to easily create diverse traffic scenarios. Future work will incorporate more
realistic traffic estimates based on HPMS and TMAS data.

For the vehicle simulation, we use the vehicle simulator IPG TruckMaker™ which provides a high-fidelity
3D simulation environment capable of accurately modeling detailed vehicle dynamics (including drivetrain,
steering system, trailer, tires, chassis, body shell, and sensors). Additionally, Simulink is integrated into
the simulation loop to implement a customized speed planner and throttle/brake controller for the ego
vehicle. The speed planner is formulated using a model-free controller (Wang et al. 2023) that can estimate
the gradient variations of vehicle speed and acceleration based on past trajectories, and adaptively adjusts
the planned speed profile to enable desired car-following and cruising performance. The throttle/brake
controller is built upon a proportional-derivative-feedforward control mechanism, where the proportional
and integral terms seek to mitigate the impacts from operational disturbances (e.g., wind, slope, friction)
and the feedforward term devotes to maintain a consistent speed level. The controller parameters are
empirically tuned to ensure desired balance among travel time, energy consumption, and speed tracking
performance. Finally, to integrate traffic and vehicle simulation, the Real-Sim (Shao et al. 2023) tool is
utilized. Real-Sim enables multi-resolution, everything-in-the-loop co-simulation, synchronizing SUMO
and IPG TruckMaker™ in real time. This setup allows the ego BEV truck in TruckMaker™ to interact
dynamically with the traffic flow generated by SUMO, creating a tightly coupled simulation that reflects
both traffic behavior and high-fidelity vehicle dynamics mimicking real-world conditions.

4 POTENTIAL EFFECTS OF UNPROCESSED ELEVATION ON SIMULATION

Unprocessed elevation can exert negative impacts on traffic-vehicle simulations. First, the raw elevation
data is excessively choppy due to measurement limitations, leading dramatic variations in road grade. This
will then translate to a non-smooth road surface profile with multiple bumps, exaggerating trucks’ vertical
motions, creating immensely choppy and unreasonably large acceleration/deceleration in the z direction
(as shown in Figure 2), and even sending the truck into the air (as shown in Figure 3, the truck body also
experiences dramatic movements). These phenomena differ significantly from real-world I-81 operations,
reducing the realism in vehicle-traffic simulation.

Figure 2: Acceleration/deceleration in Z axis

More importantly, critical road bumps from unprocessed elevation can destabilize truck lateral movements
and create safety hazards that can disrupt simulations. This is because the truck can experience tire traction
variations (unbalanced traction force of left and right tires) and center-of-gravity shift after landing from
a road bump, triggering a rotational moment that can swing the truck to deviate from the target lane. The
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Figure 3: Screenshots of truck experiencing a bump

large weight and length of the truck further increase the challenges of steering the truck back to the target
lane and stabilizing the chassis motion. Figure 4 shows that the truck cannot center itself in the target
middle lane after experiencing the bump, producing a weaving motion and ultimately running off-road.
This undesired phenomenon can become more severe if lane-change maneuvers are involved.

Figure 4: Screenshots of truck running off road after experiencing a bump

5 WORKFLOW OF PROCESSING ELEVATION DATA

Based on the above observations, it is clear that to ensure realistic traffic-vehicle co-simulation, raw elevation
data must be preprocessed to remove noise, outliers, and abrupt variations that can distort vertical vehicle
dynamics. Therefore, this paper proposes a workflow for processing elevation data, shown in Figure 5,
which consists of three steps: outlier filtering, elevation smoothing, and grade smoothing. Once processed,
the elevation data are integrated into the traffic simulation network using the tool Real-Twin (Wang et al.
2025) and synchronized into the vehicle simulation network through the tool Real-Sim (Shao et al. 2023).

Figure 5: Workflow of processing elevation data

Step 1: Outlier Filtering

Raw elevation profiles sometimes contain abnormal values such as sudden spikes, dips, or discontinuities,
often caused by GPS drift, data stitching artifacts, or mismatches in terrain data resolution. These outliers
can significantly affect downstream elevation smoothing and grade computation, leading to unrealistic
slopes and unstable simulation behavior. To address this, several outlier detection methods could be used,
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e.g., z-score filtering, Hampel filters, and percentile-based trimming (Iglewicz and Hoaglin 1993; Aguinis
et al. 2013; Pearson et al. 2016). The interquartile range (IQR) method was selected due to its ease of
use and robustness to non-Gaussian distributions and its ability to isolate extreme values without assuming
normality (Liu et al. 2007). IQR-based filtering is especially effective for elevation data with skewed
distributions or embedded noise. The IQR method identifies outliers as data points falling below:

Outliers < Q1 −1.5× IQR or Outliers > Q3 +1.5× IQR (1)

where Q1 and Q3 are the first and third quartiles, and IQR = Q3 - Q1. Points outside this range are
replaced via linear interpolation using neighboring inlier values to preserve data continuity.

Step 2: Elevation Smoothing

After outlier removal, the elevation profile may still exhibit high-frequency noise or step changes that
do not correspond to the actual grade. These variations can lead to unrealistic vehicle vertical movement,
especially on road segments that should be relatively flat or gradually changing. To reduce this noise
while preserving the real-world roadway shape, several data smoothing techniques can be applied, such as
moving average (Smith, Steven W and others 1997), Savitzky-Golay filtering (Savitzky and Golay 1964),
or Butterworth filtering (Butterworth et al. 1930). In this paper, a moving average smoothing method is
applied. Moving average provides a simple yet effective way to reduce small fluctuations without introducing
significant shifts or over-smoothing.The moving average filter replaces each point in the elevation profile
with the average of its neighboring values over a defined window size. Mathematically, for a sequence
of elevation points e1,e2, . . . ,en, the smoothed elevation ēi at position i, using a moving average with a
window size of 2k+1, is computed as:

ēi =
1

2k+1

i+k

∑
j=i−k

e j (2)

The window length is chosen based on a trade-off between reducing high-frequency noise and preserving
meaningful elevation transitions. In this study, elevation data are sampled at 10-meter intervals, and a
window length corresponding to 200 meters (i.e., 20 points) was applied for smoothing.

While a simple moving average applies equal weights across the window, a weighted moving average,
which gives more importance to central points, could be explored in the future to better preserve local
elevation features while still reducing noise.

Step 3: Grade Smoothing

Grade is the first derivative of elevation with respect to horizontal distance. As a result, even mildly
noisy elevation profiles can lead to unrealistic and erratic grade values. Therefore, realistic roadway
grade for simulation requires an additional smoothing step beyond elevation smoothing. In this paper, the
Savitzky-Golay filter is used to smooth the grade after calculating it from the smoothed elevation data.
This filter performs a local polynomial regression within a sliding window to smooth the signal. For a
window centered at index i, it fits a polynomial of the form

f (x) = a0 +a1x+ · · ·+apxp (3)

by minimizing the least-squares error:

min
a0,...,ap

k

∑
j=−k

(gi+ j − f ( j))2 (4)

where gi+ j denotes the raw grade value at position i+ j. The smoothed value at the center of the window
is then given by f (0). A polynomial order of p = 2 is used in this study.

This filter is particularly well-suited for preserving the shape and local features of the signal (e.g., grade
transitions) while reducing noise. Unlike moving average, which may flatten peaks or inflection points, the
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Savitzky-Golay filter preserves local features by fitting a polynomial to the data within a sliding window,
maintaining the shape of transitions while reducing noise.

Stopping Criteria

In this paper, smoothing is performed using fixed parameters rather than iterative refinement. We
rely on visual inspection to ensure the smoothed elevation profile maintains the overall shape of the raw
data. Additionally, the smoothed data are compared directly to the original elevation to verify minimal
distortion. Grade smoothing is further evaluated against design constraints: maximum allowable grade values
recommended by the American Association of State Highway and Transportation Officials (AASHTO)
"Green Book" (Hancock and Wright 2013) are incorporated to ensure physical realism of highway conditions.

6 RESULTS

This section presents the results of applying the proposed elevation processing workflow and its effects on
traffic-vehicle co-simulation. First, the impact of elevation smoothing is analyzed to determine how well it
preserves the original roadway shape while eliminating unrealistic variations. Second, the corresponding
grade profiles are evaluated to assess the effectiveness of smoothing in generating smooth and realistic slope
transitions. Finally, simulation results illustrate how the processed elevation and grade improve vehicle
behavior in the traffic-vehicle co-simulation and the corresponding impact on energy consumption.

6.1 Elevation after elevation processing

Figure 6 presents the elevation profiles after applying the proposed smoothing steps. Specifically, Figure
6a shows the elevation profile of the entire simulation corridor before and after smoothing, while Figure
6b focuses on the first mile (5,280 ft) to highlight local geometric features. As shown in Figure 6a, the
smoothing process preserves the overall shape and trend of the original elevation profile, indicating that
major topographic features (vertical alignment) are retained. In Figure 6b, each sag or crest corresponds
to a vertical curve commonly found in roadway design. The raw elevation data exhibits frequent and sharp
sags and crests that are unrealistic for highway geometry. After elevation smoothing, these transitions
become more gradual, eliminating abrupt changes while maintaining the general terrain contour. When
grade smoothing is also applied, the resulting elevation profile displays even smoother vertical transitions.

Figure 6c and Figure 6d display the change of elevation after the smoothing process. It can be seen
that smoothing operations introduce only minimal deviations from the original data. Both elevation and
grade smoothing yield elevation changes generally within ±5 ft, with all changes within ±10 ft. This
indicates that the smoothing workflow effectively reduces noise and abrupt changes from the raw elevation
data while preserving the overall shape and characteristics of the elevation profile, making it suitable for
integration into traffic-vehicle co-simulation while maintaining real-world roadway conditions.

6.2 Grade after elevation processing

Figure 7 compares grade calculated from the raw elevation data, grade after elevation smoothing, and grade
after both elevation and grade smoothing. Figure 7a shows the grade profile of the entire 40-mile corridor,
while Figure 7b focuses on the first 5 miles to better illustrate local fluctuations. As shown in Figure 7a,
elevation smoothing significantly reduces the large, random fluctuations present in the raw grade profile.
The grade computed from the smoothed elevation generally falls within the range of -5% to 5%, aligning
with the maximum road grade limits recommended by the "Green Book" (Hancock and Wright 2013). For
highways such as I-81, where the posted speed limit is typically 65–70 mph (with a design speed of 70–75
mph), AASHTO recommends a maximum grade of 5%. The results demonstrate that raw elevation data
can produce unrealistic slope estimates exceeding these limits, and that elevation smoothing helps preserve
geometric consistency with actual road design standards.

Moreover, from both Figure 7a and Figure 7b, it is evident that applying grade smoothing after
elevation smoothing further reduces smaller, localized fluctuations. This is particularly important because
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(a) elevation profile of entire corridor (b) elevation profile of first 1-mile (5280-ft) segment

(c) elevation difference of entire corridor (d) elevation difference of first 1-mile (5280-ft) segment

Figure 6: Elevation before and after smoothing

road grades should change gradually as vertical alignment in roadway design follows smooth curvature to
ensure drivability and safety. Sudden reversals (i.e., where a grade abruptly increases after a decrease or
vice versa) are physically unrealistic. The final smoothed grade profile reflects the continuous and smooth
nature of real-world road geometry, enhancing the reliability of simulation for gradient-sensitive vehicle.

(a) entire corridor (b) first 5-mile segment

Figure 7: Grade before and after smoothing
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6.3 Simulation after elevation processing

Figure 8 compares truck motions: the truck experiences substantially grade variations and dramatic chassis
motion before smoothing, while the chassis motion in the environment with elevation smoothing remains
steady and stable. This further removes the potential hazards of destabilizing truck lateral motions (recall
Figure 4), enhancing simulation reliability.

Figure 8: Truck vertical motions: the first (second) row shows simulation before (after) elevation smoothing

Next, we simulate the truck operations on the first 4.1 miles of the selected I-81 segment to compare the
energy consumption with and without elevation smoothing. Note that we do not use the entire corridor in
this comparison, as the truck would run off road (recall Figure 4) in the environment without proper elevation
smoothing. Table 1 demonstrates the negative impact of unprocessed elevation on energy consumption under
different trailer payloads. This is attributed to the road bumps associated with the unprocessed elevation,
which produce more tire rolling resistance and induce the truck to execute more irregular throttle/brake
actions. Interestingly, the truck without any payload suffers from the most dramatic increase in energy
consumption. This is because the truck controller behaves more aggressively when the overall weight
is reduced and the truck can be maneuvered more freely to stay close to the desired operating speed.
The vehicle controller adapts to different payloads through a parsimonious model whose parameters are
adaptively updated at each time step to capture the dynamics of vehicle motions. The model can maintain
agnostic to characterize vehicle dynamics due to varying payloads, grade, air drag, and tire frictions, so
that the controller can recognize the dynamics and properly respond to disturbances and manage desired
car-following and speed-tracking performance. Under the impacts of payloads and grade, the controller
learns the vehicle motions differently: requiring greater (smaller) reference acceleration to achieve desired
desired maneuver when confronting an uphill (downhill) and heavier (lighter) payload. Correspondingly,
the truck controller reacts even more aggressively to counteract the additional resistance from road bumps.
By contrast, when this is payload onboard, controller will leverage the induced inertial to maneuver the
truck, leading to reduced variations in energy consumption.

Table 1: Energy consumption comparison

Trailer payload (tons) 0 10 20 30

Energy consumption w/o
elevation smoothing (kWh/mi)

1.54 (38.67%↑) 2.83 (17.74%↑) 3.41 (17.79%↑) 4.03 (18.41%↑)

Energy consumption w/
elevation smoothing (kWh/mi)

1.11 2.41 2.89 3.40
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7 CONCLUSION

In summary, this paper demonstrates the significant role of elevation processing for traffic-vehicle co-
simulation. Unprocessed elevation data can severely compromise simulation stability, realism, and energy
estimation, particularly for gradient-sensitive vehicle types such as electric vehicles and heavy-duty vehicles
operating on roads with frequent elevation changes. By implementing a structured workflow consisting
of outlier filtering, elevation smoothing, and grade smoothing, we successfully mitigate vehicle vertical
instability and artificial energy fluctuations while preserving realistic roadway geometry in the traffic-vehicle
co-simulation. The results validate the effectiveness of the proposed approach in enabling a more reliable
assessment of vehicle performance in a high-fidelity simulation environment.

Future research points to improving grade smoothing techniques by incorporating principles from
roadway vertical alignment design. Current smoothing methods primarily target noise reduction without
fully considering geometric design standards. A more refined approach would involve identifying key
vertical alignment points such as the Point of Vertical Curvature (PVC) and Point of Vertical Intersection
(PVI) to better preserve the structure of real-world vertical curves. Additionally, the smoothing algorithm
should consider constraints such as the minimum vertical curve length and the minimum distance between
adjacent reversal vertical curves to reflect design practices used in road geometric design. In addition,
future work should consider incorporating more refined stopping criteria, such as curvature-based thresholds,
localized slope continuity checks, or constrained smoothing that preserves elevation at surveyed control
points or critical infrastructure locations. Finally, future work will explore and compare the performance
of different smoothing techniques on elevation smoothing.

ACKNOWLEDGMENT

This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with
the US Department of Energy (DOE). The publisher acknowledges the US government license to provide
public access under the DOE Public Access Plan (https://www.energy.gov/doe-public-access-plan).

This material is based upon work supported by the U.S. Department of Energy’s Office of Energy
Efficiency and Renewable Energy (EERE) under the Vehicle Technologies Office (VTO) Award Number
DE-EE0009857.

This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor any agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would
not infringe privately owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

REFERENCES
Aguinis, H., R. K. Gottfredson, and H. Joo. 2013. “Best-practice recommendations for defining, identifying, and handling

outliers”. Organizational research methods 16(2):270–301.
Arrell, K., S. Wise, J. Wood, and D. Donoghue. 2008. “Spectral filtering as a method of visualising and removing striped

artefacts in digital elevation data”. Earth Surface Processes and Landforms: The Journal of the British Geomorphological
Research Group 33(6):943–961.

Azfar, T., and R. Ke. 2024. “Traffic Co-Simulation Framework Empowered by Infrastructure Camera Sensing and Reinforcement
Learning”. Available at https://arxiv.org/abs/2412.03925.

Butterworth, S. et al. 1930. “On the theory of filter amplifiers”. Wireless Engineer 7(6):536–541.
CarSim 2025. “CarSim”. https://www.carsim.com/products/carsim/index.php. Accessed: 2025-04-10.
Chen, X., Z. Li, Y. Wang, C. Shi, H. Wu, and S. Wang. 2017. “Highway Elevation Data Smoothing Using Local Enhancement

Mechanism and Butterworth Filter”. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND
CONTROL 13(6):1887–1901.

1032

https://www.energy.gov/doe-public-access-plan
https://arxiv.org/abs/2412.03925
https://www.carsim.com/products/carsim/index.php


Xu, Zhou, Saroj, Wang, Sujan, Rodgers, Chen, Calderón, and Wang

Google Developers 2023. “Google Maps Elevation API”. Available at https://developers.google.com/maps/documentation/elevation/overview.
Farr, T. G., P. A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, et al. 2007. “Shuttle Radar Topography Mission (SRTM)

Data”. NASA Jet Propulsion Laboratory. https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003.
Ferreira, H., C. M. Rodrigues, and C. Pinho. 2020. “Impact of Road Geometry on Vehicle Energy Consumption and CO2

Emissions: An Energy-Efficiency Rating Methodology”. Energies 13(1) https://doi.org/10.3390/en13010119.
Fisher, P. F., and N. J. Tate. 2006. “Causes and consequences of error in digital elevation models”. Progress in physical

Geography 30(4):467–489.
Gallant, J. 2011. “Adaptive smoothing for noisy DEMs”. Geomorphometry 2011(2011):7–9.
Hancock, M. W., and B. Wright. 2013. “A policy on geometric design of highways and streets”. American Association of State

Highway and Transportation Officials: Washington, DC, USA 3:20.
HERE Technologies 2025. HERE Routing API Developer Guide. Accessed: 2025-04-10.
Hofer, M., G. Sapiro, and J. Wallner. 2006. “Fair polyline networks for constrained smoothing of digital terrain elevation data”.

IEEE transactions on geoscience and remote sensing 44(10):2983–2990.
Huang, Y., E. C. Ng, J. L. Zhou, N. C. Surawski, E. F. Chan, and G. Hong. 2018. “Eco-driving technology for sustainable

road transport: A review”. Renewable and Sustainable Energy Reviews 93:596–609.
Iglewicz, B., and D. C. Hoaglin. 1993. Volume 16: how to detect and handle outliers. Quality Press.
IPG 2025. “CarMaker”. https://ipg-automotive.com/products-services/simulation-software/carmaker/. Accessed: 2025-04-10.
Kan, Z., L. Tang, M.-P. Kwan, C. Ren, D. Liu, T. Pei, et al. 2018. “Fine-grained analysis on fuel-consumption and emission

from vehicles trace”. Journal of Cleaner Production 203:340–352 https://doi.org/10.1016/j.jclepro.2018.08.272.
Lejri, D., A. Can, N. Schiper, and L. Leclercq. 2018. “Accounting for traffic speed dynamics when calculating COPERT and

PHEM pollutant emissions at the urban scale”. Transportation Research Part D: Transport and Environment 63:588–
603 https://doi.org/10.1016/j.trd.2018.06.014.

Liu, H., M. O. Rodgers, and R. Guensler. 2019. “The impact of road grade on vehicle accelerations behavior, PM2.5 emissions,
and dispersion modeling”. Transportation Research Part D: Transport and Environment 75:297–319.

Liu, K., J. Wang, T. Yamamoto, and T. Morikawa. 2017. “Impact of Road Gradient on Energy Consumption of Electric
Vehicles”. Transportation Research Part D: Transport and Environment 54:74–81.

Liu, W., P. P. Pokharel, and J. C. Principe. 2007. “Correntropy: Properties and applications in non-Gaussian signal processing”.
IEEE Transactions on signal processing 55(11):5286–5298.

Mapbox 2023. “Mapbox Terrain-RGB: Elevation Tileset”. Available at https://docs.mapbox.com/help/glossary/terrain-rgb/.
MathWorks 2025. “Automated Driving Toolbox”. https://ww2.mathworks.cn/products/automated-driving.html. Accessed: 2025-

04-10.
Pearson, R. K., Y. Neuvo, J. Astola, and M. Gabbouj. 2016. “Generalized hampel filters”. EURASIP Journal on Advances in

Signal Processing 2016:1–18.
Perrotta, D., T. Parry, and D. Cebon. 2020. “Impact of Road Geometry on Vehicle Energy Consumption and CO Emissions:

An Energy-Efficiency Rating Methodology”. Energies 13(1):119.
Rong, G., B. H. Shin, H. Tabatabaee, Q. Lu, S. Lemke, M. Mozeiko, et al. 2020. “LGSVL Simulator: A High Fidelity

Simulator for Autonomous Driving”. In 2020 IEEE 23rd International Conference on Intelligent Transportation Systems
(ITSC), 1–6: IEEE https://doi.org/10.1109/ITSC45102.2020.9294470.

Saroj, A., G. Xu, Y. Shao, and C. R. Wang. 2024. “A Systematic Comparison for Consistent Scenario Development Using
Microscopic Simulation Software”. In 2024 Winter Simulation Conference (WSC), 194–205. IEEE.

Savitzky, A., and M. J. Golay. 1964. “Smoothing and differentiation of data by simplified least squares procedures.”. Analytical
chemistry 36(8):1627–1639.

Shao, Y., P. Chambon, A. Cook, C. Wang, and D. Deter. 2023. “Evaluating Connected and Automated Vehicles in Co-simulation
Environment of Traffic Microsimulation and Vehicle Dynamics”. Accessed: 2025-04-10.

Shao, Y., A. Cook, C. Wang, J. Chen, A. Zhou, D. Deter, et al. 2023, 07. “Real-Sim Flexible Interface for X-in-the-loop
Simulation (FIXS)” https://doi.org/10.11578/dc.20230727.1.

Shi, Y., Z. Liu, Z. Wang, J. Ye, W. Tong, and Z. Liu. 2022. “An Integrated Traffic and Vehicle Co-Simulation Testing
Framework for Connected and Autonomous Vehicles”. IEEE Intelligent Transportation Systems Magazine 14(6):26–
40 https://doi.org/10.1109/MITS.2022.3188566.

Siemens 2025. “Prescan”. https://m.tass.plm.automation.siemens.com/cn/prescan-2. Accessed: 2025-04-10.
Smith, Steven W and others 1997. “The scientist and engineer’s guide to digital signal processing”.
U.S. Geological Survey 2013. “National Elevation Dataset (NED)”. Available at https://www.usgs.gov/3d-elevation-program.
U.S. Geological Survey 2021. “USGS 3D Elevation Program (3DEP)”. Available at https://www.usgs.gov/3d-elevation-program.
Wang, Chieh (Ross) and Xu, Guanhao and Saroj, Abhilasha and Luo, Xiangyong (Roy) and Yuan, Jinghui and Shao, Yunli 2025,

jun. “Real-Twin”. [Computer Software] https://doi.org/10.11578/dc.20250602.3 https://doi.org/10.11578/dc.20250602.3.
Wang, J., and H. A. Rakha. 2017. “Fuel consumption model for heavy duty diesel trucks: Model development and testing”.

Transportation Research Part D: Transport and Environment 55:127–141 https://doi.org/10.1016/j.trd.2017.06.008.
Wang, Z., A. Cook, Y. Shao, G. Xu, and J. M. Chen. 2023. “Cooperative Merging Speed Planning: A Vehicle-Dynamics-Free

Method”. In 2023 IEEE Intelligent Vehicles Symposium (IV), 1–8 https://doi.org/10.1109/IV55152.2023.10186541.

1033

https://doi.org/10.3390/en13010119
https://ipg-automotive.com/products-services/simulation-software/carmaker/
https://doi.org/10.1016/j.jclepro.2018.08.272
https://doi.org/10.1016/j.trd.2018.06.014
https://ww2.mathworks.cn/products/automated-driving.html
https://doi.org/10.1109/ITSC45102.2020.9294470
https://doi.org/10.11578/dc.20230727.1
https://doi.org/10.1109/MITS.2022.3188566
https://m.tass.plm.automation.siemens.com/cn/prescan-2
https://doi.org/10.11578/dc.20250602.3
https://doi.org/10.11578/dc.20250602.3
https://doi.org/10.1016/j.trd.2017.06.008
https://doi.org/10.1109/IV55152.2023.10186541


Xu, Zhou, Saroj, Wang, Sujan, Rodgers, Chen, Calderón, and Wang

Wood, E., J. Gonder, S. Lopp, and B. Rosen. 2015. “Evaluating the Impact of Road Grade on Simulated Commercial Vehicle
Fuel Use”. Technical Report NREL/TP-5400-64544, National Renewable Energy Laboratory.

Xu, G., J. Chen, Z. Wang, A. Zhou, M. Schrader, J. Bittle et al. 2025. “Enhancing Traffic Safety Analysis with Digital Twin
Technology: Integrating Vehicle Dynamics and Environmental Factors into Microscopic Traffic Simulation”. arXiv preprint
arXiv:2502.09561.

Xu, G., and V. V. Gayah. 2023. “Non-unimodal and non-concave relationships in the network Macroscopic Fundamental
Diagram caused by hierarchical streets”. Transportation Research Part B: Methodological 173:203–227.

Xu, G., A. Saroj, C. R. Wang, and Y. Shao. 2025. “Developing an Automated Microscopic Traffic Simulation Scenario
Generation Tool”. Transportation Research Record 0(0) https://doi.org/10.1177/03611981251349433.

Yu, Z., G. Xu, V. V. Gayah, and E. Christofa. 2020. “Incorporating phase rotation into a person-based signal timing optimization
algorithm”. IEEE Transactions on Intelligent Transportation Systems 23(1):513–521.

Yuan, J., T. LaClair, C. Wang, W. Li, Y. Shao, P. Kadav, et al. “Enhancing Electric Vehicle Efficiency at Intersections Via
Connectivity: A Roadmanship-Aware Eco-Driving Strategy”. Available at SSRN 4773153.

Zhang, S., C. Zhao, Z. Zhang, and Y. Lv. 2025. “Driving simulator validation studies: A systematic review”. Simulation
Modelling Practice and Theory 138:103020 https://doi.org/https://doi.org/10.1016/j.simpat.2024.103020.

Zhou, A., S. Peeta, M. Yang, and J. Wang. 2022. “Cooperative signal-free intersection control using virtual platooning and
traffic flow regulation”. Transportation research part C: emerging technologies 138:103610.

Zhou, J., Y. Zhang, S. Guo, and Y. Guo. 2022. “A Survey on Autonomous Driving System Simulators”. 2022 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW):301–306.

AUTHOR BIOGRAPHIES
GUANHAO XU is an R&D Associate Staff in the Applied Research for Mobility Systems Group at Oak Ridge National
Laboratory. His research mainly focuses on urban mobility, digital twin, traffic flow theory, traffic simulation, and traffic signal
control and optimization. His email address is xug1@ornl.gov.

ANYE ZHOU is an R&D Associate Staff in the Applied Research for Mobility Systems Group at Oak Ridge National
Laboratory. His research interests include control and coordination of CAVs, human driving behavior analysis, personalized
advanced driver assistance systems, and hardware-in-the-loop experimental evaluation. His email address is zhoua@ornl.gov.

ABHILASHA SAROJ is an R&D Associate Staff in the Applied Research for Mobility Systems Group at Oak Ridge National
Laboratory. Her research interests focus on modeling digital twins and traffic simulation including X-in-the-loop simulations, appli-
cations of AI for improved transportation modeling, and traffic signal control optimization. Her email address is sarojaj@ornl.gov.

CHIEH (ROSS) WANG is a Senior R&D Staff and the Group Leader of the Applied Research for Mobility Systems Group at
Oak Ridge National Laboratory. His work focuses on developing innovative simulation tools, control strategies, and integrated
technologies to enhance transportation efficiency and safety. His email address is cwang@ornl.gov.

VIVEK SUJAN is a Distinguished R&D Staff in the Applied Research for Mobility Systems Group at Oak Ridge National
Laboratory. His work is focused on Hydrogen and Electrification Power Systems for On-/Off-Highway and intermodal appli-
cations. His email address is sujanva@ornl.gov.

MICHAEL O. RODGERS is a Distinguished R&D Staff in the Applied Research for Mobility Systems Group at Oak Ridge
National Laboratory. His research currently focuses on the application of quantitative methods to problems related to energy,
transportation, public health, and the environment and their impacts on decision making. His email address is rodgersmo@ornl.gov.

JIANFEI (MAX) CHEN is an R&D Associate Staff in the Applied Research for Mobility Systems Group at Oak Ridge
National Laboratory. His research focuses on aerial-ground sensing networks and integrating vehicle dynamics simulation,
visualization, and perception tools for XIL simulation. His email address is chenm@ornl.gov.

ORIANA CALDERÓN is an Assistant Professor in Department of Civil and Environmental Engineering at University of
Tennessee, Knoxville. Her primary research goal is to enhance the sustainability of urban freight systems by studying supply
chain agent behavior, for both private and societal benefits. Her email address is ocaldero@utk.edu.

ZEJIANG WANG is an Assistant Professor in Department of Mechanical Engineering at University of Texas at Dallas. His
research focuses on dynamic systems modeling, estimation, control, and optimization with applications on autonomous driving,
advanced driving assistance systems, and intelligent transportation systems. His email address is Zejiang.Wang@UTDallas.edu.

1034

https://doi.org/10.1177/03611981251349433
https://doi.org/https://doi.org/10.1016/j.simpat.2024.103020
mailto://xug1@ornl.gov
mailto://zhoua@ornl.gov
mailto://sarojaj@ornl.gov
mailto://cwang@ornl.gov
mailto://sujanva@ornl.gov
mailto://rodgersmo@ornl.gov
mailto://chenm@ornl.gov
mailto://ocaldero@utk.edu
mailto://Zejiang.Wang@UTDallas.edu

	085-con261s3-file1

