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ABSTRACT

Reducing waiting times in specialized healthcare has become a pressing concern in many countries,
particularly in high-demand services such as traumatology. This study introduces a simulation-based
approach to support strategic decision-making for redesigning the referral interface between Primary Care
and specialized care, as well as reorganizing internal pathways in the Traumatology Service of the
University Hospital of Navarre (Spain). A discrete-event simulation model, developed using real patient
data and designed to capture the system’s transient behavior from its current state, is employed to evaluate
the effects of these changes on key performance indicators such as number of consultations per patient,
physician workload, and waiting list reduction. The model also evaluates how different referral behaviors
among Primary Care physicians influence system performance. Results demonstrate the model’s capacity
to provide evidence-based guidance for strategic healthcare decisions and highlight its potential to evolve
into a digital twin for continuous improvement and operational planning.

1 INTRODUCTION

Waiting lists in specialized healthcare represent a significant challenge in many developed countries, often
leading to adverse patient outcomes and increased overall costs. For instance, according to a 2020 OECD
study (OECD 2020), 76% of the 34 countries analyzed considered reducing waiting lists a high or medium-
high priority. In the region of Navarra (Spain), 32% of the population is currently waiting to receive some
form of specialized healthcare (as of 8/03/2025). Various factors contribute to these prolonged waiting
times, including high patient demand, limited capacity, inefficient resource allocation, and suboptimal
referral and scheduling practices (OECD 2020). Addressing these issues requires a deep understanding of
how patients flow through the healthcare system and the underlying causes of delays at different levels of
care.

In recent years, a range of interventions has been reported in the medical literature to address these
challenges and improve patient referrals from Primary to Specialty Care. These include centralized referral
systems, triage protocols, and integrated scheduling platforms (Greenwood-Lee et al. 2018). While some
of these interventions have led to measurable improvements at the local level, their impact on the overall
performance of the healthcare system has often been limited. One of the main reasons is that healthcare
processes are complex and interconnected; interventions designed in isolation may produce unintended
effects when interacting with other parts of the system. This organizational complexity makes it difficult to
anticipate the impact of changes in any single component. As a result, local improvements may not translate
into meaningful reductions in overall waiting times or resource use.

To overcome these limitations, simulation models have been widely adopted in healthcare to support
decision-making and improve service delivery. Simulation allows researchers and healthcare managers to
build comprehensive representations of healthcare systems and to test proposed interventions under
controlled conditions. These models make it possible to observe the systemic effects of changes in resource
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allocation, scheduling policies, or referral protocols before implementing them in practice. The use of
simulation in healthcare has been extensively documented in the literature for many years (Fone et al. 2003;
Jun, Jacobson, and Swisher 1999; Brailsford et al. 2009) and it continues to be an essential tool for analyzing
complex systems where real-life experimentation is costly or unfeasible (see also recent reviews by
Rachuba et al. (2024) and by Wang and Demeulemeester (2023))

Most simulation studies in healthcare have focused on operational or tactical decisions. At the
operational level, models are often used to optimize patient flow through clinics or hospitals, or to assign
available resources. At the tactical level, they support decisions such as appointment scheduling or capacity
planning. However, far fewer studies have addressed strategic-level problems, particularly in the context
of integrating different levels of care. Rachuba et al. (2024) emphasize the importance of vertical integration
of hospital resources, noting that integrated planning across multiple resources holds even greater potential
for improvement than optimizing isolated departments. However, out of 319 reviewed papers on
departmental integration, only two addressed strategic decision-making in the context of admissions. One
of these papers deals with an appointment system for surgery planning that considers downstream resources
(Kianfar and Atighehchian 2023), while the other addresses medical waste planning during the COVID-19
pandemic (Rahiminia et al. 2025). More broadly, strategic decision-making represents a small minority
among simulation-based healthcare studies-only 16 out of 125 in the aforementioned review.

An additional challenge in simulation-based healthcare analysis arises when the objective is to study
the transient behavior of the system (Garcia-Vicuna et al. 2022). This is often the case when evaluating
interventions aimed at improving an ongoing situation, which requires the simulation to start from an
accurate representation of the current system state. Building such models demands exhaustive and precise
use of healthcare information systems to reconstruct the status of each patient—both those currently in care
and those still awaiting attention. When simulation models are linked to real-time data sources and
continuously updated, they begin to resemble a digital twin—a concept gaining popularity in healthcare
(Elkefi and Asan 2022)—although very few digital twins are currently applied to the management of
clinical and medical resources.

In this study, we develop a simulation model to address a strategic-level problem in healthcare
management: the redesign of the interface between Primary Care and a hospital’s Traumatology Service
(TS), as well as the reorganization of internal patient pathways within the department. The proposed
intervention involves substantial changes at multiple levels of the healthcare system. These include
modifications to how Primary Care physicians refer patients, the creation of new referral and scheduling
protocols, changes to the hospital’s information systems, and a reallocation of consultation time across
different physician roles.

Given the scale and complexity of the proposed redesign, such a decision must be supported by robust
evidence demonstrating its effectiveness and efficiency. However, since the system has not yet been
implemented, no observational data are available to assess its impact. For this reason, a simulation model
was developed and used as a virtual testbed to evaluate the proposed alternative against the current
configuration. To do so, the model incorporates real data extracted from hospital information systems and
is initialized from the current state of the TS. This allows for the analysis of the system’s transient behavior,
which is essential in understanding how long it would take to reduce current waiting lists and reach a
sustainable steady state under the new design.

Several key performance indicators (KPIs) were defined to quantify outcomes, including the total
number of consultations, the physician time required to deliver care, and the time required to eliminate the
waiting list backlog. Importantly, the success of the intervention is also dependent on how Primary Care
physicians use the new referral channels. The simulation is therefore also used to analyze different patterns
of referral behavior and to quantify their impact on system performance.

The main contributions of this study are threefold. First, we present the construction of a simulation
model based on multiple fragmented hospital electronic record systems, enabling a faithful reconstruction
of patient flows, resource use, and waiting lists. The model has been designed with the structure and data
integration capabilities required to evolve into a fully functional digital twin of the TS. Second, we apply
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this model to address a real-world strategic decision problem: the redesign of the referral interface between
Primary Care and specialized hospital care, as well as the reorganization of internal workflows. The study
demonstrates that simulation can serve as an effective decision-support tool for evaluating the impact of
large-scale organizational changes. Third, we show that the benefits of the proposed redesign are not
independent of physician behavior. The model quantifies how variations in the way Primary Care
physicians use referral channels significantly influence system performance, highlighting the importance
of aligning clinical practice with organizational reforms.

The remainder of this article is structured as follows. Section 2 describes the organizational setting and
the proposed redesign of the TS. Section 3 details the data sources and the methodology used to estimate
the parameters of the simulation model. Section 4 presents the logic of the simulation and the experimental
design. Section 5 reports the simulation results, including a sensitivity analysis and recommendations for
health policy-makers. Finally, Section 6 discusses the main findings, outlines the implications for strategic
healthcare planning, and identifies directions for future research.

2 SIMULATION FRAMEWORK: CURRENT AND PROPOSED DESIGN FOR PRIMARY
CARE INTERFACE AND PATIENT PATHWAYS IN TRAUMATOLOGY SERVICES

Specialized medical departments are complex service units due to the wide variety of patient entry points,
the presence of multiple internal subspecialties, and the diverse clinical trajectories that patients may follow.
In addition, these departments often interact with other areas of the hospital, such as diagnostic services,
surgical units, and rehabilitation facilities. The TS, the focus of this study, is a representative example of
such complexity.

Patients may access the TS through several channels: referrals from Emergency Care, other hospital
specialties, Hospitalization units, or most commonly, from Primary Care. Among these, Primary Care
constitutes the main gateway to the service. There are two distinct routes through which patients are referred
from Primary Care: (i) an indirect route via referral requests to specialized e-consultations, where a
specialist may either recommend a face-to-face appointment or resolve the case administratively; and (ii) a
direct referral to general outpatient consultations. Importantly, Primary Care physicians do not have the
authority to schedule appointments directly in the specialized consultation agendas (see Figure 1).
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Figure 1: Patient flow in the current design of the Traumatology Service (left) and newly proposed design
(right).
Upon entering the system, patients are categorized as either ordinary or preferential, depending on the

clinical urgency and the need for expedited care. After their initial consultation—whether in a general
consultation or a specialized consultation (either by direct access or after an e-consultation)—patients may
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follow various clinical pathways, which often include a sequence of specialized consultations. These
pathways may also involve diagnostic procedures, surgical interventions, and rehabilitation sessions, which
may take place within the TS or in coordination with other hospital departments. As a result, some patients
remain continuously within the TS throughout their treatment, while others exit the system temporarily and
re-enter at a later stage— commonly after undergoing diagnostic tests or surgical procedures.

The current organizational model of the TS has revealed several limitations that affect both clinical
efficiency and professional satisfaction. One of the main concerns raised by hospital management is the
limited clinical value of the initial general consultation, particularly when patients are seen by physicians
whose expertise does not align with the patient’s condition. This mismatch can delay appropriate care and
reduce the overall effectiveness of the clinical pathway. Furthermore, the general consultation unit has
become increasingly unattractive for senior physicians, who are reluctant to participate in this type of
activity. As a result, this responsibility is often assigned to junior doctors at the beginning of their careers.
This practice not only creates a bottleneck in patient access but also undermines the department’s ability to
attract and retain skilled professionals, especially when competing with other hospitals in the region. These
combined factors have motivated the leadership of the TS to consider a structural reorganization that
addresses both operational inefficiencies and human resource challenges.

In response to these challenges, hospital management has proposed a strategic redesign of the TS based
on two main changes: (i) the elimination of the general consultation unit and (ii) the introduction of a new
referral protocol from Primary Care. In the redesigned system, each subspecialty within the TS will
maintain its own schedule for initial consultations. All patient entry points—including Primary Care—will
be authorized to refer patients directly to these consultations with the relevant specialist. When additional
follow-up is required, the same physician will continue treating the patient through their subspecialty
consultation schedule, ensuring continuity of care. This approach removes the need for a general
consultation, thereby reducing delays and increasing the clinical relevance of the first encounter. It is also
expected to enhance physician engagement and improve the department’s appeal to new medical
professionals (see Figure 1).

The implementation of the proposed redesign involves multiple actors across different levels of the
healthcare system. Primary Care physicians will need to adopt new referral practices; hospital
administrative units must adapt scheduling protocols; IT services are required to develop and deploy new
digital tools; and Traumatology physicians will need to reorganize their agendas to accommodate the new
patient flows. Given the scale and complexity of these changes, the proposed system can only be adopted
if there is clear evidence that it offers substantial improvements over the current model. However,
evaluating its potential impact is not straightforward. The functioning of the TS is intricately linked to other
hospital departments and external services, making it difficult to isolate and measure the effects of a
structural change. Moreover, a key source of uncertainty lies in how Primary Care physicians will use the
new patient entry channel. Their decisions could either relieve or increase the burden on specialist
physicians. For instance, redirecting patients who would have been discharged through the e-consultation
system toward in-person visits may increase demand and strain capacity. Conversely, bypassing the e-
consultation step might reduce specialist workload in some cases, but in others, it may generate redundant
visits if important preliminary information is missing. Thus, the overall outcome will depend not only on
the design of the system itself but also on how it is used in practice by referring physicians.

The complexity of the TS and the multiple uncertainties associated with the proposed changes, makes
difficult to predict the system’s response to the new design. In this context, simulation emerges as a
powerful tool to replicate the structure and dynamics of the service, allowing for the evaluation of
interventions before they are implemented in practice. Specifically, this study employs a digital twin of the
TS—a data-driven simulation model that mirrors the real system and can be calibrated with historical and
real-time information. This digital twin enables hospital decision-makers to test different implementation
scenarios, assess their impact on patient flows and waiting lists, and explore how the behavior of Primary
Care physicians influences the system’s overall performance.
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3 DATA-DRIVEN ESTIMATION OF THE SIMULATION MODEL PARAMETERS

The construction of the simulation model required a detailed estimation of key parameters based on
historical data. However, clinical and administrative information in the hospital system is not centrally
organized around complete patient care trajectories. Instead, data are distributed across multiple databases,
each associated with specific healthcare activities. As a result, reconstructing the full patient pathways
through the TS required the integration of several heterogeneous data sources. These included consultation
records, electronic referral requests (e-consultations), surgical interventions, and diagnostic procedures.
Each dataset contains anonymized patient-level records covering the period from 2018 to 2024, and
provides information such as referral origins, appointment and procedure dates, medical specialties
involved, and care outcomes. Together, these databases comprise a total of 601,604 entries, offering a
comprehensive yet fragmented view of patient care processes. A dedicated data integration process was
therefore necessary to extract consistent, structured information (see Table 1) that was used to parameterize
the simulation model accurately. Patient trajectories were reconstructed using data from 2018 to 2024, while
demand and capacity were estimated using data only from 2022 to 2023 to avoid COVID-19 bias.

Table 1: Data sources and main extracted variables.

Data Source Main Variables Extracted Estimation Purpose

Consultation Appointment request and execution dates, | Arrival  rates,  pathway  reconstruction,

records referral source, attending physician, | consultation durations, capacity by type and
specialty, visit type. physician

E-consultation | Referral request and resolution dates, | Pathway reconstruction, timing of pre-specialist

referrals referring unit, specialty. referrals

Clinical tests Request and execution dates, procedure | Pathway reconstruction and duration of the out of
type, specialty. the system period, re-entry into the system

Surgical Procedure request and execution dates, | Pathway reconstruction and duration of the out of

interventions specialty. the system period, re-entry into the system

Rehabilitation | Procedure request and execution dates, | Pathway reconstruction and duration of the out of
specialty. the system period, re-entry into the system

Patient Pathways Analysis. First, database integration enabled the reconstruction of 203,624
individual clinical trajectories, tracing the entry point and transitions across different stages of care,
including general and specialized consultations, as well as exits and re-entries to the TS for diagnostic tests,
surgical procedures, and rehabilitation sessions when applicable. Process mining, carried out using the
pm4py Python programming library (Berti et al. 2023), revealed over 7,000 distinct care pathways,
reflecting the high variability in clinical needs (see Figure 2). These trajectories form the structural
foundation of the simulation model, allowing it to reproduce realistic patient flow patterns and to account
for the different combinations and sequences of services that patients may undergo during their treatment.

Figure 2: Patient flow chart in the Traumatology Service, extracted using process mining from real data.
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Figure 1 shows the theoretical pathways that traumatology patients would follow in an ideal system,
under both the current and proposed designs, whereas Figure 2 presents the actual patient trajectories in the
current system, extracted from historical data and used in the simulation model.

While most patient trajectories could be directly adapted to the new organizational model, some
required additional processing. This was the case for patients who had only attended a general consultation
and were discharged without further specialist care. In these situations, there was no explicit information
indicating which specialty would have been appropriate under the new system. To address this, a sample
of such patients was reviewed and classified by trauma specialists based on their diagnosis into one of five
destination specialties. The resulting distribution was then used to assign these cases probabilistically within
the simulation of the proposed design.

Patient arrival rate. To estimate the rate at which new patients enter the TS, daily counts of initial
care requests were extracted from hospital records over the entire study period. These included referrals to
general consultations, first specialized consultations across the five trauma specialties, and e-consultations
initiated from Primary Care. All arrival rates were disaggregated by referral source—Primary Care,
Emergency Care, Hospitalization, and other specialties—and by patient priority level (ordinary or
preferential). Average daily rates were computed by month to account for seasonal variations. The model
also considers the effects of public holidays.

Service capacity. The service capacity of the TS was estimated based on consultation slot data from
the last two years, which recorded the actual appointment availability for each physician. The Hospital
Service of Management, Information, and Evaluation provided the assignment of each physician to their
corresponding specialty. These data allowed us to estimate the average number of patients attended per day,
disaggregated by patient priority level (ordinary or preferential), consultation type (general or specialized),
and visit type (initial or follow-up). The analysis also differentiates between the structural capacity of the
service (provided during regular working hours) and temporary capacity increases introduced through
reinforcement policies aimed at reducing waiting times. As these reinforcement measures are expected to
remain active until the long waiting lists are reduced and the system reaches a steady state, both capacity
levels were included in the simulation analysis. Under the proposed reorganization, physicians who
currently provide general consultations are reassigned to the first consultation schedules of their respective
specialties.

Service times. Consultation times in the TS are predefined according to hospital scheduling protocols.
Physicians are allocated 20 minutes for initial patient visits and 10 minutes for follow-up appointments.
These fixed durations are used to schedule patients and populate physicians' agendas, and were therefore
directly incorporated into the simulation model as deterministic service times for in-person consultations.
In contrast, the time required to resolve e-consultations varies depending on the case and the specialty. To
capture this variability, appointment timestamp data were analyzed to estimate the probability distributions
of time spent on each e-consultation, separately for each specialty.

Initial system state. The simulation model is designed to replicate the operation of the TS starting at
its state at a selected point in time. To construct this initial state, hospital databases (described in the
previous section) were used to identify, for a given reference date, the number of patients waiting for each
type of consultation, along with information about any previous care received. Additionally, the number of
pending e-consultations per specialty was determined, as well as the patients who had temporarily exited
the service to undergo diagnostic tests, surgical procedures, or rehabilitation sessions but were expected to
return for further care. Together, these data provide a detailed snapshot of the system’s status at any chosen
start date and allow the simulation to begin from a realistic and data-informed configuration. When
connected to real-time data sources, the model can accurately mirror the current state of the system,
functioning as a digital shadow of the TS.

4 SIMULATION MODEL AND EXPERIMENTAL DESIGN

Discrete-event simulation model. The simulation model follows a discrete-event framework with a daily
time-step, advancing the simulation clock one day at a time. The state of the system is described by a set of
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demand- and capacity-related state variables. On the demand side, the model tracks the number of patients
waiting for each type of consultation—either general or specialized—across all five specialties, as well as
the number of e-consultations pending response. Each waiting patient is represented individually, with a
unique identifier and a record of the trajectory completed so far within the TS. On the capacity side, the
model tracks the number of physicians from each specialty assigned to attend each type of consultation and
to resolve e-consultations.

At each simulated day, new patients are added to the appropriate waiting lists based on Poisson-
distributed arrival processes, using the daily rates estimated in the previous section. Each new patient’s
attributes and clinical trajectory are sampled from the historical database of treated patients. The available
service capacity for each type of consultation is also calculated daily, and patients are removed from the
corresponding waiting lists according to availability. Attended patients are then routed based on the next
step in their assigned trajectory: they may be placed on the waiting list for another consultation, discharged
permanently from the service, or temporarily leave the TS to undergo diagnostic tests, surgery, or
rehabilitation. In the latter case, each external activity has an associated duration (as defined in the patient’s
trajectory), after which the patient automatically re-enters the TS and is placed in the waiting list of the
appropriate follow-up consultation.

Simulation objectives and key performance indicators. The primary objective of the simulation
model is to assess the performance of the TS under two alternative configurations: the current organizational
structure and the new design proposed by hospital management. To compare both scenarios, several key
performance indicators (KPIs) were defined: (i) the average number of consultations per patient until
resolution (CN); (ii) the total average number of consultation-related activities, including both in-person
visits and e-consultations (TN); (iii) the average physician time per case (ATC); and (iv) the TS recovery
time (RT), defined as the time required for the system to clear the existing waiting list and reach a steady
state. Steady state is considered to be reached when the total waiting list falls below the average number of
patients observed during the steady phase of a representative instance of the proposed alternative system,
which is computed a priori using a sample parameter set.

As these indicators are intended to reflect the transient dynamics of the system during a recovery phase,
the experimental design follows a finite-horizon approach, focusing on system behavior before equilibrium
is reached. This makes an accurate reconstruction of the initial state—described in the previous section—
especially important. Preliminary simulation tests indicated that a 10-year simulation horizon, using current
patient arrival rates and extended service capacity, is sufficient both to reach steady state and to generate a
robust sample of around 300000 patients for reliable estimation of the three main KPIs (CN, TN, ATC).

Experimental setup and exploration of referral behavior. For each of the two studied designs of the
TS (current and proposed), the simulation model was run over a time horizon of ten years and replicated 30
times. Each replication used a different random seed, and common random numbers were applied to ensure
that both designs were evaluated under identical stochastic conditions. For every replication, values of the
four KPIs (CN, TN, ATC, RT) were recorded. Final estimates, including point values and confidence
intervals, were obtained by analyzing the resulting samples of 30 observations for each scenario.

In addition to comparing the two system designs, the simulation model was used to explore how
different referral behaviors by Primary Care physicians might influence system performance under the
proposed scenario. This behavior was modelled using three parameters: o (the tendency of Primary Care
physicians to submit simple e-consultations referrals as in-person specialized consultations, due to the new
availability of this option), a2 (the tendency of Primary Care physicians to bypass e-consultations at the
beginning of a patient's treatment process, as they can now refer directly to specialized consultations), and
a3 (the proportion of cases in which the e-consultation is bypassed, and the lack of information that would
have been provided during the e-consultation makes it necessary to schedule an additional in-person
consultation). Each parameter was varied from 0% to 100% in 10% increments, resulting in a full-factorial
design of 11 x 11 x 11 = 1,331 scenarios. For each parameter combination, the simulation was executed
and the KPIs were estimated, providing a comprehensive view of how the interaction between referral
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patterns and service configuration affects system performance. The next section presents the results of this
analysis, along with recommendations for regional health policy-makers and hospital management.

5 RESULTS, ANALYSIS AND RECOMMENDATIONS TO HEALTH POLICY MAKERS

This section presents the results obtained from the simulation model under a wide range of scenarios. The
analysis is structured into three parts: (i) a comparison between the current and proposed organizational
designs under an expected behavioral scenario; (ii) a sensitivity analysis of key performance indicators
(KPIs) as a function of Primary Care physicians’ referral behavior; and (iii) recommendations for health
service managers and policy-makers based on the simulation outcomes.

5.1 Comparison Between Current and Proposed System Designs

The first analysis compares the performance of the TS under its current structure and the proposed
alternative design. The expected behavior of Primary Care physicians under the proposed design—
specifically their use of referral channels (a; = 0.25,a, = 0.5, a3 = 0.1) —was estimated by hospital
management based on expert judgement and historical data (the use of the current channels and how their
used could be transformed). This expected scenario was used as the baseline for testing the performance of
the proposed system.

Table 2 presents the estimated values of the four KPIs (CN, TN, ATC, RT) for both configurations. In
the current design, the system fails to reach a steady state due to the continuous accumulation of patients in
the general consultation waiting list. As a result, the RT is undefined, and the waiting list grows without
limit, as illustrated in Figure 3. This behavior reflects the structural limitations of the current system and
supports the need for a new organizational approach.

Table 2: Current and new design KPI comparison. CN: average number of consultations, TN: total number
of consultation-related activities, ATC: average time per consultation, RT: recovery Time.

CN TN ATC RT

Mean (IC) Mean (IC) Mean (IC) Mean (IC)
Current Design 1.7252 1.9967 29.0062 Infinite

(1.72371, 1.72676) (1.9952, 1.9982) (28.9874, 29.0250)
New Design 1.6541 1.8501 26.8985 1402,90

(1.6526, 1.6556) (1.8486, 1.8516) (26.8831, 26.9140) (1400.09, 1405.71)

In contrast, the alternative design produces a significant improvement across all KPIs. The mean
number of consultations per patient, the total consultation load, and the physician time per patient all show
statistically significant reductions (p-value < 0.001), demonstrating that the proposed changes lead to more
efficient care. In addition, the system reaches the steady state and the waiting list stabilizes (Figure 3). The
periodic spikes observed are due to reduced capacity during the summer period.

Waiting list by specialty and general consultation. Current design. Waiting list by specialty.
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Figure 3: Patient waiting lists evolution in the current design (left) and the new design (right).
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5.2 Sensitivity Analysis of Referral Behavior

Although the new design outperforms the current system under the expected scenario, its effectiveness
depends on how Primary Care physicians use the available referral options. To test the robustness of the
improvements, a comprehensive sensitivity analysis was conducted using the three behavioral parameters
defined in Section 4:

a1: percentage of referrals submitted as in-person visits instead of e-consultations.

02: percentage of e-consultations omitted at the beginning of the patient’s trajectory.

0s: percentage of patients bypassing e-consultation and referred directly to a first specialized visit
that need and additional consultation.

The analysis of the 1,331 scenarios obtained as combination of these parameters, showed that, in a
small subset of cases, the mean number of consultations per patient (CN) could increase if e-consultations
were misused—particularly when they are bypassed or fail to resolve cases effectively (see Figure 4).
However, in all scenarios, the remaining patient and physician related KPIs (TN, ATC) consistently
improved under the alternative design.

1926 27.863

Average number of contacts Average consultation time
J Min Avg Contacts 1 76 1908 v Mn Avg Consultation time 26 45 mins 21706

1890 27549

jase

1872 27392

A
AT
85 AR U

irs

1854

Average number of contacts

27.236

LEREE R

21079

1836

.o

Average consultation time

N

1818 26922

1800 26.766

26.609

17182

1764 2% 452

1767

Average number of consultations
J Min Avg Consultations:1 64 1752

1738

1724 | Averaga numbar of consutations
| @ Less than the onginal seenann

@ 1A0Fe 1han he onginal Seenang

AR

© 170!

2

Average number of consuktations

2 169!

&

2 1661

1666

1652

1638

826



Cildoz, Baigorri, Rodrigo-Rincon, and Mallor

Figure 4: Top-left: TN; top-right: ATC; bottom-left: CN; bottom-right: region of the behavioral parameters
(in red) that leads to an increase of CN under the new design compared to the current one.

To further quantify the influence of referral behavior on system performance, regression models were
fitted to the 1,331 simulation outputs. A linear model with interaction term between two behavioral
parameters explained nearly all the observed variability in the KPIs (R? = 99.99%). Table 3 presents the
coefficients of the regression models for each KPI.

Table 3: Coefficients of the regression models for each KPI. CN: average number of consultations, TN:
total number of consultation-related activities, ATC: average time per consultation.

CN TN ATC
Intercept 1.6378 1.9256 26.9960
a, 0.0314 -0.0015 0.4943
a, 0.0060 -0.1603 -0.5485
a; * as 0.0913 0.0919 0.9160

Using these coefficients, we analyze the case in which 50% of all patients who would have previously
entered the system via e-consultation are instead assumed to access it directly through in-person
consultation. This behavioral shift equals setting a4 equal to a, (a; = 0.5, @, = 0.5, a3 = 0.1), with the
aim of illustrating the impact of behavioral changes in Primary Care physicians (Table 4).

Table 4 summarizes the results of increasing a; from 25% to 50% compared to the baseline scenario
for the new design. The results show a 0.45% increase in the average patient consultation time, which
translates into 61.79 additional hours of consultations per year—equivalent to 370 more follow-up
consultations. Similarly, a 0.46% increase of TN corresponds to 232 additional consultations per year
(including both first visits and follow-ups). These findings highlight that improper use of the new referral
options can lead to a significant increase in the workload of the TS.

Table 4: Effects over the KPI of increasing a; from 25% to 50%, to match a,. CN: average number of
consultations, TN: total number of consultation-related activities, ATC: average time per consultation.

CN TN ATC
Baseline scenario with the new design 1.8497 1.6532 26.8911
Increased a; scenario 1.8493 1.6610 27.0147
Variation (%) -0.0203 0.4685 0.4595

5.3  Recommendations to Health Policy Makers and Managers

The simulation results strongly support the adoption of the proposed redesign of the TS. The new design
demonstrates a generalized improvement in system efficiency, reducing waiting times, consultation load,
and physician workload. The only KPI that may be negatively affected is the mean number of consultations
per patient, and only in cases where the new referral channels are used inappropriately.

The degree of improvement, however, is highly dependent on how Primary Care physicians engage
with the new system. Their active and informed participation is essential to ensure that the changes lead to
meaningful and sustainable improvements. Therefore, alongside the implementation of structural reforms,
health authorities should invest in communication and training strategies aimed at encouraging appropriate
use of referral options.

By quantifying how individual professional behavior affects system-wide KPIs, the simulation provides
actionable insights that make the consequences of day-to-day clinical decisions more tangible. This
evidence-based approach can help foster greater alignment between operational practice and strategic
system goals, ultimately contributing to more patient-centered care delivery.
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6 DISCUSSION AND CONCLUSIONS

This study presents a simulation model specifically designed to evaluate the transient behavior of a complex
healthcare system—the TS of a public hospital—starting from its actual state at a specific point in time. By
integrating data from multiple decentralized sources, the model reconstructs patient queues, care
trajectories, and clinical workloads with high fidelity. When the simulation is updated in real time and
synchronized with operational data, it functions as a digital shadow of the service. Moreover, when this
model is used to simulate future system evolution under different scenarios and return actionable insights
to decision-makers, it begins to operate as a digital twin. The long-term goal of the collaborative
development between hospital management, IT services, and the clinical leadership of the TS is to achieve
this fully operational digital twin. This tool will enable efficient resource allocation across key activities
such as first consultations, follow-ups, e-consultations, and surgeries.

The immediate purpose of the simulation, however, was to address an urgent question posed by health
policy-makers—which could not wait for the full development of the project: whether the implementation
of a redesigned access and internal workflow system in the TS would be effective in reducing waiting lists
to legally mandated levels. This analysis was particularly relevant because the proposed changes involve
considerable investment and organizational restructuring, including the redesign of scheduling systems, IT
development, training for Primary Care and TS physicians, and communication with patients. In this
context, the model provided quantitative evidence to support the viability and expected impact of the new
design. It also enabled the estimation of how long enhanced medical capacity would need to be maintained
until the system stabilizes and recovers from its current backlog.

Beyond the technical insights, the model has already had practical implications. An extended version
of the simulation results was included in a report presented by hospital leadership to the regional health
department as part of the formal request to authorize the new service configuration. The model’s outputs
provided the solid, data-driven justification required for such a decision. Additionally, the sensitivity
analysis revealed how essential the behavior of Primary Care physicians is in determining the effectiveness
of the new model. This finding was used internally to raise awareness among referring physicians of how
their individual decisions can influence the functioning of the entire system—an aspect that is often difficult
to convey through conventional training or guidelines. Therefore, this research highlights the critical role
of mathematical modelling—and simulation in particular—in supporting strategic decision-making in
healthcare.

Finally, as with any model-based approach, this study has limitations. It does not yet incorporate
economic evaluations, patient-reported outcomes, or staff satisfaction, which could enrich the decision-
making framework. Moreover, the assumptions regarding referral behavior—while carefully constructed
and validated through expert input—remain subject to real-world variability. Future developments will
extend the model to dynamically allocate medical capacity across activities, enabling proactive rather than
reactive management of waiting lists. The current model offers a solid methodological foundation for its
extension to other departments of specialized medicine and to other geographical areas, thus contributing
to broader systemic improvements in public healthcare planning.
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