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ABSTRACT

Quasi-Regression (QR) is an inference method that approximates a function of interest (e.g., black-box
model) for interpretation purposes by a linear combination of orthonormal basis functions of L?[0, 1]¢. The
coefficients are integrals that do not have an analytical solution and therefore must be estimated, using
Monte Carlo or Randomized Quasi-Monte Carlo (RQMC). The QR method can be time-consuming if the
number of basis functions is large. If the function of interest is sparse, many of these basis functions
are irrelevant and could thus be removed, but they need to be correctly identified first. We address this
challenge by proposing new adaptive basis search methods based on the RQMC method that adaptively
select important basis functions. These methods are shown to be much faster than previously proposed QR
methods and are overall more efficient.

1 INTRODUCTION

In machine learning and statistics, understanding which variables influence predictions in black-box models
remains a critical challenge (Guidotti et al. 2018; Casalicchio et al. 2019). Quasi-regression (QR) offers a
method to interpret black-box models by approximating them using orthonormal basis functions (Jiang and
Owen 2002). A common technique to interpret black-box models is using the SHapley Additive exPlanations
(SHAP) technique (Ekanayake et al. 2022) to construct an interpretable version of the model to provide
explanations for specific predictions. Another technique for interpretability is using Local Interpretable
Model-agnostic Explanations (LIME) (Ribeiro et al. 2016) to approximate a black-box model locally with
an interpretable model to visually explain the relative importance of all input characteristics. For further
information, see the recent review by Hassija et al. (2024) on interpreting black-box models through
explainable artificial intelligence. Other reasons to approximate black-box functions come from Bayesian
Optimization (Garnett 2023), which uses Gaussian Processes regression (Williams and Rasmussen 2006)
to approximate black-boxes to find the global optimum when the black-box evaluations are expensive. An
alternative to Gaussian Process regression to approximate the black-box function is to use a polynomial
surrogate instead to find the minimum of the black-box function. This is called Polynomial-Model-Based
Optimization (PMBO) (Schreiber et al. 2024). This is similar to the quasi-regression approach proposed
by Jiang and Owen (2002), but where the end use is optimization rather than inference.

Traditional QR methods suffer from slow convergence and computational bottlenecks due to the many
coefficients involved. To improve efficiency, we propose Adaptive Quasi-Regression (AQR), which leverages
randomized quasi-Monte Carlo (RQMC) sampling to accelerate computations. Inspired by Friedman’s
multivariate adaptive regression splines (MARS) method (Friedman 1991), our approach dynamically
selects and prunes basis functions, significantly reducing runtime while maintaining accuracy. Empirical
results show that AQR outperforms QR with either RQMC or shrinkage in terms of efficiency performance.

This paper is organized as follows: Section 2 provides background on QMC/RQMC and QR; Section
3 introduces our adaptive basis search method and a convergence result; Section 4 outlines the evaluation
framework; Section 5 presents numerical experiments; and Section 6 concludes with key findings.
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2 BACKGROUND
2.1 Quasi-Monte Carlo (QMC) and Randomized quasi-Monte Carlo (RQMC)

The QMC method replaces independent uniform random points with a low-discrepancy point set P, =
{X1,...,X,}, which is distributed more evenly over [0,1]%. Tt then uses P, to evaluate yu = Jio e f(x)dx
via I, =Y, f(x;)/n. A key measure of uniformity is the star discrepancy D*(P,) (Niederreiter 1992),
which measures the distance between the uniform distribution and the empirical distribution induced by
the point set P,.

For QMC-based numerical integration, the Koksma-Hlawka inequality provides an error bound: |y —
| <V (f)D*(P,), where V(f) measures function smoothness (Niederreiter 1992). However, this bound
is often difficult to compute or too loose to be practical.

Certain point set constructions such as digital nets and sequences achieve D*(P,) = O(n~'log(n)?~")
("Ecuyer 2018), outperforming the MC integration error rate of O(n_l/ 2), making QMC advantageous
for large n. In this paper, we use Sobol’ sequences (Sobol’ 1967), which are computationally efficient due
to their base-2 construction (L’Ecuyer 2018). See L’Ecuyer and Lemieux (2002) for more details.

A challenge with QMC is the lack of sample-based error estimates due to its deterministic nature. A
solution is RQMC, which preserves low-discrepancy properties while allowing unbiased estimation and
standard error computation via replication. Various randomization techniques exist, such as digital b-ary
shift and scrambling (L’Ecuyer and Lemieux 2002; Owen 1997a).

2.2 Quasi-Regression (QR)

Quasi-Regression (QR) was introduced by Owen (2000) to assess the linearity of high-dimensional functions.
An and Owen (2001) later evaluated QR’s quality of fit using real-world problems, measuring accuracy
via the Lack-of-Fit (LOF) metric, which quantifies the unexplained variance in f.

QR derives its name from “ignoring the denominator” (Chui and Diamond 1987). It decomposes
square-integrable functions f :[0,1]¢ — R into an infinite weighted sum of orthonormal basis functions
{Wi}rev of L2]0,1]¢, where U is an infinite index set. That is, we write f(X) = Yrey BrWr(X), where B =
f[o,l]d F(x)yp(x)dx. In practice, this sum is truncated to a finite approximation, i.e., f(X) ~ Y cr Br ¥ (X),
where R is a finite index set of size p.

Instead of using a full least squares approach to find the coefficients B, that minimize the error function
F(xX) = Yrer Brwr(x), QR leverages the above integral formulation for B, to reduce computational complexity
from O(np® + p3) to O(np). That is, the QR estimate of f is: f,(X) = Yrer ﬁr,n Y (x), where the unbiased
estimator for B is 3”, = %Zl'.‘:l W (%) f(X;).

QR uses tensor-product basis functions, often orthonormal polynomials such as transformed Legendre
polynomials. That is, the basis functions have the form . = [1%, ¢:,.(x;), where ¢;,.(x;) : [0,1] — R
is a polynomial of degree r;. The index set R is typically chosen as R := Rp, 5, 5. = {r € N¢ : [|r||o <
Bo,||r||1 <Bi,||r||l~ < B}, where the rank ||r||p describes the number of variables on which v, depends,
||r||1 is the degree of y; and the order ||r||., is the maximum degree of the univariate polynomials ¢; ,,(x).
In practice, By, B, and B.. are chosen so that the size p of R remains manageable while capturing enough
of the variability of f. Examples of common values are given in Section 5. For a fixed computational
budget, one needs to balance between increasing n or p: increasing n reduces the variance of the ﬁm while
increasing p reduces the bias caused by truncating U to R.

The accuracy of QR is assessed via Integrated Squared Error (ISE): ISE(n) = [ig 14 (f(x) — Fu(x))?dx.
Normalized by f’s variance 62, this defines the Lack-of-Fit (LOF): LOF(n) = ISE(n) /0. LOF represents
the unexplained fraction of 62, exceeding 1 when QR performs worse than a mean-based model.

QR helps analyze functions that may not be explicitly known, answering questions about linearity,
variable importance, and interactions. Even for complex functions such as black-box models, QR provides
insights into the structure and significance of terms.
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3 ADAPTIVE QUASI-REGRESSION

In QR literature, the interpretable set R is assumed to be fixed and sufficiently small for feasible computation.
QR approximation works well when f primarily consists of low-order interactions of low-degree univariate
basis functions (An and Owen 2001; Jiang 2003; Jiang and Owen 2003). This section addresses two key
issues in QR methods.

The first issue, noted in Jiang (2003), is a large truncation error when significant variability in f lies
outside R. Expanding R mitigates this but becomes computationally infeasible, requiring adaptive basis
selection. Jiang (2003) introduced an adaptive method improving runtime and LOF estimates. In our AQR
methods, we can take advantage of RQMC to speed up convergence and reduce variance. Zivanovié (2021)
similarly proposed adding basis terms independently when the initial set poorly approximates the function.
Our AQR methods leverage the fact that we can fit coefficients independently, starting with the main effects
first, and then the two-factor effects that have one of the important main effects as one of their factors, etc.
This yields faster runtimes than non-adaptive QR, as we are computing fewer coefficients.

The second issue arises when the QR approximation is sparse, causing the method to learn insignificant
variables, increasing runtime. By sparse, one means for a given index set R, only a small portion of the
Br,r € R are non-zero. Our proposed AQR methods address this problem by prioritizing key coefficients
deemed effective, and accept minor truncation errors for feasibility. Zivanovi¢ (2021) suggested removing
small basis functions post-fitting, an idea we utilize in Section 3.1 for the CutCriteria function. Unlike
Zivanovié¢ (2021), which trims after fitting all coefficients, our method trims in stages: first, we trim after
fitting all main effects, second, we trim after fitting two-factor coefficients with one of the terms being
a main effect term, and continue until we reach the maximum interaction size By. This means that we
fit fewer terms, increasing efficiency. Similarly, our approach differs from Jiang (2003), which updates
coefficients dynamically based on Sobol’ sensitivity indices.

AQR methods assume the interpretable set is sparse, aligning with the “bet on sparsity” principle (Hastie
et al. 2009; Hastie et al. 2015). If f is densely represented in R, AQR provides minimal improvement and
fails to produce a feasible approximation over traditional QR methods.

3.1 Methods

This section introduces three AQR methods: AQRNNS (Adaptive Quasi-Regression Normal Noise Shrink-
age); AQRSA (Adaptive Quasi-Regression Sensitivity Analysis); and AQROS (Adaptive Quasi-Regression
Optimal Shrinkage). They all use RQMC to approximate the coefficients f.

These methods are inspired by Friedman’s MARS method (Friedman 1991), which selects basis functions
through a forward and backward pass. The AQR methods follow a similar approach, starting by fitting
main effects and then progressively incorporating higher-order interactions. We first fit main effects using
a point set of size n, and then we apply a cut-off procedure to remove noisy or insignificant coefficients.
After this, we fit all possible two-factor interactions that have a factor that has a significant main effect and
apply the cut-off procedure again. We repeat for three-factor and higher-order interactions. To be clear,
our procedure is such that we cannot repeatedly select and drop a coefficient.

We first present the general form of the AQR methods, and later explain how each of them execute
the cut-off procedure. In the pseudocode below, we assume X is the k' realization of a RQMC point set
of size n, also denoted Pn,k later on. The user must also choose the values By, B; and B.. defining R.

In the above pseudocode, the helper function FitBeta estimates a coefficient and its biased variance
for a given index using n RQMC samples X and corresponding function values f(X). The helper function
FitBetaInactive loops through each index in IndexSet, calls FitBeta and returns all fitted beta
coefficients and biased variance estimates whose index is in IndexSet. Finally, PotentInterPolyFcts
returns all the next order of interaction terms for the given Index, assuming the upper bound on the degree
is at most By and the upper bound on the order is at most B..
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Generic AQR
Input: n, By, Bi, B, X, f(X), Optional o.
Output: activeSet (the selected important basis functions interpretable indices.
activeSet = 0 // Contains all the important basis functions interpretable indices.
activeBetas = 0 // Contains all the important basis functions, coefficients and biased variance values.
// Fit the intercept.
interceptIndex = 0,4
activeSet = activeSet U {interceptIndex}
activeBetas = activeBetas U {FitBeta(n, interceptIndex, X, f(X))}
/I i stands for the current interaction that will be extended to i+ 1 interaction.
/I For example, i = 0 intercept and extending to i =1 main effect terms.
for i=0,---,Bp—1 do
newActiveSet = (0 // Contains all the new important basis functions interpretable indices.
newActiveBetas = () // Contains all the new important basis functions coefficient/variance values.
activeSetSize = size of activeSet
/I This loops through each term in the activeSet that has a current rank of i
/I and adds new extended indices that have at most order B; and degree B...
for j=0,---, activeSetSize - 1 do
if ||activeSet[j]||o == then
newActiveSet = PotentInterPolyFcts(activeSet[j], By, Be)
newActiveSet = newActiveSet \ activeSet // Difference of sets i.e,. removes duplicates.
newBetasActive = FitBetalnactive(n, newActiveSet, X, f(X))
activeSet = activeSet U newActiveSet
activeBetas = activeBetas U newActiveBetas
end if
end for
activeSet, activeBetas = CutCriteria(activeSet, activeBetas, X, f(X), &) // See Algorithms 1-3 for details on implementing CutCriteria.
end for
return activeSet

We now describe the three different variants we propose for the cut-off procedure.

Algorithm 1: Adaptive Quasi-Regression Normal Noise Shrinkage (AQRNNS)

For the AQRNNS method, the idea of the cut-off procedure comes from classical linear regression. For
each coefficient, using the a significance level, assuming normal errors, a 1 — o confidence interval is
created around the value of the coefficient being zero. If zero is contained in the confidence interval, the
coefficient is likely small and is removed.

Function CutCriteriaAQRNNS (IndexSet, BetaSet, X, Y, o)
Output: IndexSet (the selected important basis indices), BetaSet (the selected important basis coefficients and biased variances).
activeSize = size of IndexSet
7= 1(1-a/2)
for k = activeSize—1,---,0 do
Br = BetaSet[k][0], Var(f;) = BetaSet[k][1]
if |Bi| < z+/Var(By) then
Remove the k" element from IndexSet.
end if
end for
return IndexSet, BetaSet[IndexSet]
EndFunction

Algorithm 2: Adaptive Quasi-Regression Optimal Shrinkage (AQROS)
The AQROS algorithm uses a similar idea to classical linear regression, but instead of using the normal
quantile, it uses the threshold (1) for wavelet shrinkage (Donoho and Johnstone 1994), given by:

\/2108(p)Var(Be,). ()

This threshold (1) is chosen as there is no need for a cut-off parameter. Jiang (2003) utilize it in their
shrinkage method showing promise numerically when the function of interest is sparse (i.e., most of the

321



Emmett-Iwaniw, and Lemieux

coefficients are equal to 0).

Function CutCriteriaAQROS (IndexSet, BetaSet, X,Y, )
Output: IndexSet (the selected important basis indices), BetaSet (the selected important basis coefficients and biased variances).
activeSize = size of IndexSet
for k = activeSize—1,---,0 do
Br = BetaSet[k][0], Var(B;) = BetaSet[k][1]
if [BetaSet[k]| < \/2log(activeSize)Var(f;) then
Remove the & element from IndexSet.
end if
end for
return IndexSet, BetaSet[IndexSet]
EndFunction

Algorithm 3: Adaptive Quasi-Regression Sensitivity Analysis (AQRSA)

The AQRSA algorithm cut-off procedure keeps collecting the largest coefficients whose squared values
summed together and divided by the total variability (hence the name sensitivity analysis) is greater than
1 — «. This essentially removes the coefficients that explain very little of the variability.

Function CutCriteriaAQRSA (IndexSet, BetaSet, X, Y, o)
Output: importantIndices (the selected important basis indices), importantBetas (the selected important basis coefficients).
importantBetas = 0; importantIndices = 0
importantBetas = importantBetas U {BetaSet[0]}
importantIndices = importantIndices U {IndexSet[0]}
BetaSetSize = size of BetaSet
/I Note: Here we do not need to compute biased variance.
totalVariability = yDetaSetSize BegaGet(k]?
squaredBetas = store the squared elements in BetaSet
sortedIndices = store indices of elements of squaredBetas sorted in descending order
currentVarability = 0
/I Skip k=0 as this is the intercept term.
for k=1,--- ,IndexSet.size() — 1 do
currentVarability += squaredBetas[sortedIndices[k]]
importantBetas = importantBetas U {BetaSet[sortedIndices[k]]}
importantIndices = importantIndices U {IndexSet[sortedIndices[k]]}
if currentVarability / totalVariability > 1 — « break end if
end for
return importantIndices, importantBetas
EndFunction

3.2 Choice of the Cut-Off Parameter o

Ideally, the cut-off parameter & necessary to apply our AQRNNS and AQRSA methods should be chosen
to minimize LOF. Since the ideal & is unknown, we use the following ad hoc procedure to select it: we run
a small number of pilot runs across ten potential values for ¢ and then choose the value with the lowest
LOF. Our second method AQROS has the advantage of not requiring this extra step.

3.3 Use of Quasi-Monte Carlo

As previously indicated, in both the simple (non-adaptive) QR method and the AQR ones, we use RQMC
sampling and refer to the corresponding simple QR method as RQR in this case. The expected value of
the LOF is expected to be smaller when using RQMC than MC, assuming the bias caused by truncating
to basis functions in R is dominated by the variance of the approximation f,. In the simplistic ideal case
where f can be represented exactly with a finite R, we have the following result.

Proposition 1 Assume f(x) is of the form f(x) = ¥ cg Br@r(X) for some finite set R and uses transformed
Legendre polynomials as the basis functions. Let P, be obtained as a scrambled digital net with LOF (n)
for the RQR approximation denoted as LOF,ync(n). E(LOF,ync(n)) = O((logn) /n?).
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Proof.  Given the assumption on f, we have that E(LOF,gc(n)) = Lrer E((Br — Be)?)/ e R0 BZ Where
each [ is the unbiased RQMC estimator for B. It can be shown that g.(x) = f(x)@r(x) is smooth, as

per Def. 2 in Owen (1997b), so we can apply Theorem 2 from Owen (1997b) which implies Var(ﬁr) =
E((B: — Br)?) = O((log? n) /n?) for each r, and thus E(LOF,yn.(n)) = O((log? n) /n?). O

4 FRAMEWORK FOR COMPARING METHODS

We now describe the metrics we use to compare our proposed AQR methods with other QR-based methods.
The first three metrics listed below assess function approximation quality, while the next three focus on tasks
related to sensitivity analysis. To expand further on the latter point, QR is particularly useful for inference
when combined with functional ANOVA decompositions, which help quantify the variability explained
by different effects, leading to global sensitivity indices. These indices highlight influential variables or
interactions, often computed using Monte Carlo methods (Sobol’ 1990; Sobol 2001). They can be useful
for interpreting a black-box model, as shown in Jiang and Owen (2002).

Functional ANOVA (Hoeffding 1948) decomposes a square-integrable function f into 2¢ orthogonal
component functions f,,, each corresponding to a subset « of input variables. The variance 6 of each term
f. measures its contribution to the total variability of f, and the global sensitivity index S(u) = ¢2/c?
quantifies its relative importance. These indices, often called Sobol’ indices, distinguish main effects
(lu| = 1) from interactions (|u| > 1).

A function has an effective dimension s in the superposition sense if most of its variance (> 99%)
comes from subsets of size s or smaller (Caflisch, Morokoff, and Owen 1997). QR methods, as used in
Lemieux and Owen (2002), help analyze effective dimension by leveraging the identity 62 = Yres, B2,
where S, ={reN?:r; >0« jecu},uc{l,--,d}. The concept of effective dimension is crucial to
understand the effectiveness of QMC methods. Functions with low effective dimension benefit from QMC'’s
evenly distributed point sets, reducing integration errors (Owen 1997a).

Notation

We analyze performance as the number of evaluation points n increases as a power of 2 until n reaches a
pre-fixed maximal value denoted N. Let 3, be the estimated coefficient for B for a QR method using
the first n points of the K replication of a d-dimensional RQMC point set ISN,k of size N (except for QRS,
where we use i.i.d. uniforms instead), and let fmk (x) denote the corresponding function approximation.

Lack-Of-Fit (LOF)

As indicated in Section 2.2, LOF quantifies approximation accuracy, with lower values indicating better fit.

Since the exact LOF cannot be computed, MC estimation is used. We estimate LOF using m = 5000, i.i.d.

uniform samples of d dimension with Q replications (i.e., {Z¢k}o=1, mi=1,-0 Ay (0,1)%) at values of

n that are powers of 2:
/6;

LOF (n) = 5 ¥ ISEk( )
where ISEy(n) = " (z,k) fuk(zix))? is the estimated integrated squared error and 67 =

Y (f(zig) = 5 T f (z J,k)) /(m—1) is the unbiased sample variance based on the z .

_ _ _ 2
Standard error is: LOF (n)sg = \/Q(Ql_l) Z/?;] <ISEk(n)/cArk2 —LOF(n)) .

Efficiency Metrics
Efficiency LOF measures method efficiency: Efficiency LOF(n) = (Run time x LOF (n))!
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Convergence Rates

Convergence rates indicate how quickly methods improve with increasing n. The rate is computed as the
slope o in a log-log regression of estimated LOF values, and is provided on Figures 5.1 and 5.2.

Sensitivity Measures

As seen in this section, global sensitivity indices quantify variability explained by effects: S(u) =
o X1 Siw),

where Sy (u) = Yres,x Eﬁk/):remﬂ [;fk with S, g ={reR|r;>0« jecu},uc{l1,2,---,d} measures
the contribution from subset u for the k" feplication.

— ——

The standard error is: S(u)g, = \/m Z,?Zl(fk(u) —S(u))?.

Effective Dimension

The effective dimension quantifies the minimum interaction size |u| needed to explain 99% of the variance.
Lower values improve RQMC effectiveness.

Average Interpretable Size

For AQR methods, the size of the interpretable sets R varies across replications, so we report the average
over Q replications.

5 NUMERICAL EXPERIMENTS

We present three examples demonstrating how AQR methods improve runtime and reduce LOF estimates
compared to RQR and QR with shrinkage (QRS). This method was first introduced by Jiang and Owen
(2003) as a generalized version of centered QR, studied in Owen (2000) and Lemieux and Owen (2002). It
consists in using the coefficients B, as control variates with multiplicative shrinkage parameters between 0
and 1, of those used in wavelet smoothing. The estimated QR coefficients are shrunk towards zero, by these
shrinkage coefficients. This reduces the variability in the estimation of the coefficients. These shrinkage
strategies provide better accuracy than ordinary QR (Jiang and Owen 2003). See Jiang and Owen (2003)
and Jiang (2003) for more details on QRS.

For each example, we compare the three AQR methods in Section 3 with RQR and QRS. While QRS
achieves low LOF estimates, it suffers from long runtimes with large interpretable sets.

First, using the artificial sparse function from Jiang (2003), we demonstrate that AQR efficiently selects
important variables with faster runtimes and lower LOF.

Second, we evaluate a neural network trained on the CPU dataset from Venables and Ripley (2013),
showing that AQR approximates the black-box model more quickly than both RQR and QRS methods
while maintaining similar LOF and variable importance.

Third, using a neural network trained on the Breast Cancer dataset from Street et al. (1993), we
illustrate AQR’s practicality in high-dimensional problems. AQR significantly outperforms QRS and RQR
in runtime while achieving comparable Sensitivity Indices and LOF estimates.

For these examples, we used Q replications, generated via Parallel Processing with the parallel R
package, leveraging the system’s maximum threads as recommended by L’Ecuyer (2018). To enhance
speed, we utilized the Repp package (Eddelbuettel and Frangois 2011) for R and C++ integration and the
qrng package (Hofert, M. and Lemieux, C. 2023) for generating digitally-shifted Sobol’ sequences. In
the tables, the two sections below the LOF estimate provide information on sensitivity measures S(u) for
main and some higher-order effects. The run time (in seconds) is for running a given QR method over Q
replications and a total of N samples.
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5.1 Artificial Sparse Function

The artificial sparse function from Jiang and Owen (2003) is f(x) = Yrcg, 0.8/l ys(x), where d = 8 is the
input dimension and {y}rcg, are the tensor products of orthonormal transformed legendre polynomials
(An and Owen 2001). The actual interpretable set R, is defined as R, = {r: ||r||o < 2,||r||1 <2,]|r|]« <2}
with a size of 45. All the QR methods are performed on the following interpretable set R = {r : ||r||op <
3,|Irlli <4,]|r|| < 3} with a size of 417. We choose the o parameter for the AQRNNS and AQRSA
methods are 0.05 and 0.02, respectively. We use N = 2!7 total samples of dimension d.

Table 1: Results are for Q = 20 replications of N = 2!7 generated samples of dimension d = 8. All results
in the table are the averages over the Q replications. In parentheses are the standard errors.

QR Methods RQR QRS AQRNNS AQRSA AQROS
LOF 2.02 x 10('57]x10 7 1.59 x 10(1 4210-9) 6.03 x 10(’l 6x10-%) 6.03 x 10(1 6x10-%) 6.03 x 10(] 6x10-%)
x1 (Similar values for x5, ,xg) | 5.28 x 10(7 32%10°9) 5.28 x lO(7 08x10-5) 5.28 x 10(6 35%10-6) 5.28 x 10(6 35%10-6) 5.28 x 10(6 35%10-6)
Total additive 4.23x 10 5134 10-5) 4.23 x 10(] 20x10-4) 4.23 x 10(5116 10-5) 4.23 x 10(5 16%10-5) 4.23 x 10(5 16%10-5)
Total two-factor 577><10534 10-5) 577><]0(121X10 ¥ 577><105116X10 5 577><1()(5 16x10-5) 577X]0(516><10 5
Total three-factor 1.48 x 10(3 8510-7) 1.82 x 10(9 19x10-7) 0 x 10(0“0“}0) 0 x 10(()><l()+00) 0 x 10(0><10+00)
Interpretable Set Size 417 417 45 45 45
Run time (Seconds) 79.79 76.51 66.79 62.45 67.71
Efficiency LOF 6.21 x 10702 8.2 x 10102 2.48 x 10104 2.66 x 10104 2.45 x 10104

As seen in Table 1, AQR methods produce lower LOF estimates than RQR and QRS because they
remove small beta coefficients that are truly 0, which aligns with the intuition of Section 3. Their sensitivity
matches RQR and QRS, except for a total three-factor effect of 0, as AQR removes all three-factor terms.
All QR methods have an effective dimension of 2, meaning that two factors explain more than 99% of
the variability. The average interpretable set of AQR is 45, less than RQR and QRS, accurately selecting
the true sparse set by trimming the coefficients. This also results in faster runtimes. The AQR methods
achieve higher efficiency in the LOF because of the speed and smaller LOF estimates. AQRSA is the most
efficient because it skips the variance estimation for coefficients.

o 4 — RQR (-2.1962)
—— QRS (-1.7809)
—— AQRNNS (-1.8983)
AQRSA (-1.8983)
g 0 AQROS (-1.8983)
—
=)
o
o |
o |
! T T T T T
7 8 9 10 11
log(n)

Figure 1: The LOF estimates for each QR method over the Q replications on the log-scale for n =
210 211 ... 216 217 Note log(.) is of base e.

In Figure 5.1, the AQR methods (AQRNNS, AQRSA, and AQROS) exhibit faster convergence than
RQR and QRS in estimating beta coefficients, particularly after n = 2!6. Their advantage comes from

325



Emmett-Iwaniw, and Lemieux

setting some beta coefficients to zero, aligning with their true values. However, the computed convergence
rate appears slower due to the inclusion of n = 2'° to n = 2!2 in the analysis.

In terms of LOF estimates, AQR methods consistently outperform RQR and QRS, achieving the lowest
LOF values. Among them, AQRSA is the fastest, while AQROS performs well without requiring a cutoff
hyperparameter. These findings highlight AQR methods’ superior efficiency in QR fitting.

5.2 Training a Neural Network on the CPU Dataset

We analyze a black-box neural network trained on the CPU dataset from Venables and Ripley (2013) to
predict computer CPU performance. The dataset contains 209 computers, with the response (speed) and
predictors log-transformed. The predictor chmin is replaced by chmax - chmin, and all six predictors are
scaled to [0, 1]°. The neural network has 6 input nodes, 3 hidden nodes, and 1 output node with a sigmoid
activation, fitted using R’s nnet function. Given the black-box nature of neural networks, we examine input
effects and relative importance using N = 2'© total samples of dimension d = 6 with Q replications. The
interpretable set R3 g 4 has size 1145. We set a to 0.05 and 0.002 for AQRNNS and AQRSA, respectively.

Table 2: Results are for Q = 20 replications and N = 216 generated samples of dimension d = 6. All results
in the table are the averages over the Q replications. In parentheses are the standard errors.

QR Methods RQR QRS AQRNNS AQRSA AQROS
LOF 1.6 x 10(1‘81X10 3 | 163 10(1'69X10 3 | 1.62% 10(1171 103 | 161 % 10(1‘23X10 ) 1.63 x 10(1&10 )
syct 9.9 x 10(6227><10 5y | 9:94 % 10(243><10 4 1% 10(7192><]0 5) 1 10(7178><IO 5) 1% 10(6 1x10-5)
mmin 5.69 x 10(4336X10 o | 5.64x 10(4325X10 5 | 571 10(437X10 o | 571x 10(4347><10 o | 571 10(3351X10 5
mmax 5.23x10,%, 105y | 525 %1007, g4y | 524X 102 10y | 525X 10 g, 105y | 52510556 105
cach 1.01 x 105'8 10-5) 1 x 10(2'02X10 4 | 101 10(5'73 105y | 101 % 10(6‘42 105 | 102 10(6‘09 10-5)
chmin 2.66 % 10(4121 105y | 260 10“ 12x10-4) | 267 10(4101 105y | 267X 1000 (o5 | 2.68 % 10(;3S 10)
chmax 1.48 x 10(184X10 5) | 147 % 10(726X10 5 | 148 10(—13X10 5 l48><10(1206 105 | 1:48% 10(962X10 5
Total additive 5.4 % 10(6188X10 5 | 5:39% 10(4138><10 o | SALXI00S 1) | 542x 100l 10 | 543 % 10(6‘23 10)
Total two-factor 3.13 x 10(*257 0 | 312 10(3 gou10-4) | 313 10<3 laxios) | 313% 10(414 05 | 3:14% 10(*368 0-5)
Total three-factor 1.47 x 10(54 105y | 1:49% 10(g o104y | 1:46% 10(54 105 | 1:46% 10(6 16x105) | 1:43% 10(621X10 5
Interpretable Set Size 1145 1145 208 181 147
Run time (Seconds) 161.83 164.53 113.29 95.16 101.03
Efficiency LOF 3.87 x 1072 3.74 x 1072 5.45x 1072 6.54 x 1072 6.07 x 1072

Looking at Table 2, the AQR methods have global sensitivity indices similar to RQR and QRS but
have a smaller interpretable set size. For this trained Neural Network, the QR methods explain at least
83% of the variability. The most important main effects are the minimum number of channels, the amount
of cache size in kb, and the clock time in nanoseconds. At a slight cost to the LOF metric being larger, the
AQR methods run faster. This leads to the AQR methods having higher efficiency LOF than for both RQR
and QRS methods. Note that our results are different than Jiang and Owen (2003) for the QRS method
due to random train-test set split and the random training of the neural network.

As seen in Figure 5.2, the AQR methods all have LOF curves converging faster than RQR and QRS. At
n =216 all the QR methods have a small difference in LOF fit. The added benefit of AQR methods is that
they are faster compared to both RQR and QRS while adding only a marginal increase in LOF estimates.

5.3 Breast Cancer Using a Neural Network

This example illustrates the effectiveness of AQR methods on large interpretable sets for black-box model
interpretation. We fit a Neural Network to the Breast Cancer dataset (Street et al. 1993), where the response
variable indicates whether a diagnosis is malignant or benign. The dataset contains 569 observations with
d = 30 numeric predictors describing cell nuclei characteristics. The neural network has 30 input nodes,
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Figure 2: The LOF estimates for each QR method over the Q replications on the log-scale for the log of
n=21021"... 216217 Note log(.) is base e.

10 hidden nodes, and 1 output node with a sigmoid activation function. Using R’s nnet function, data is
split 80/20 for training/testing, achieving 100% training accuracy and 97.35% test accuracy.
We set N =2 and compute coefficients using Q replications. The interpretable set R334 contains

73,026 elements. AQRNNS uses a = 1715, and AQRSA uses o = 0.001.

In this example, we used

nested uniform scrambling (Owen 1997a; Owen 1997b), instead of a digital shift randomization. This
was motivated by the higher dimensionality of this problem, which required the increased robustness of
a scrambling-based randomization. The scrambled Sobol’ sequence was generated using Art Owen’s R
scrambled code (Owen, A. B. 2021). Table 3 presents the simulation results.

Table 3: Results are for Q = 20 replications and N = 2'® generated samples of dimension d = 30. All
results in the table are the averages over the Q replications. In parentheses are the standard errors.

QR Methods QRS RQR AQRNNS AQRSA AQROS

LOF estimate 3.93 x 10(239“0 s | LOT X100, g3 492y | 3125 100755 100y | 988X 1007, (o) | 864X 10,0 1)
compactness_mean 7.5 10, 2104 3.69 x 10<416X10 5 | 749 10(%‘95“0 5 | 764 10(9'33X10 4 | 769 % 10(3125X10 5
smoothness_mean 1.02 x 10(1 44x10-4) 5.05 x 10(63X10 4 1.03 x lO(54X10 9 1.05 x 10<1 28%10-4) 1.05 x 1055 86x10-)
concave.points_worst 2.74 x 10%6 s2x105) | 134 10(1268x10 4 | 273 106 axi0-4) | 279% 104;218 105 | 28% 10*44“10 5
fractal_dimension_worst 6.1 x 10(1 71x10 5) 2.99 x 10(3 75%10-5) 6.08 x 10(’3 18x10-5) 6.2 X 10(8 OS><]O 6 6.24 x 10(1 "45%10-6)
perimeter_mean 1.45 x 10(1 02x10-5) 7.12 x 10(3 9610-6) 1.38 x 10(I 20510-5) 1.25 x 10(1 7%10-6) 1.44 x 10(5 510-7)
symmetry_worst 9.86 x 10(6459X10 o | 48x 10(6414X10 o | 975 10(*52X10 5 | 995 10<1488X10 o | 1x107 51006
area_mean 8.41 ><10(764X10 o) 4. 13><10(5 15%10-6) 7.63 x 10(404X10 6 7.79 x lO(102X10 6 784><1()(244X10 7)
area_worst 4.58 x 10(4478X10 o | 228 10(2481 106) | 463 % 10(*2 5106y | 4T2X 10 00 | 475 10(;‘72X10 ”
perimeter_worst 2235 100345 196 | 109X 100, (o6 | 222X 1005 (o) | 2:26% 1o<3453X10 7 | 228 10(2 1107)
Total additive 8.9 x 10(—1163X10 4 | 438x 10(_547><10 ;) | 8.89% 10(468X10 5 | 9:06% 10(—1 a0y | 9-13% 10(—348X10 5
Total two-factor 8.64 % 10 %y g0y | 441X 1021 o0y | 843 %1007 (oo | 8.61x 10,7, 1) | 8.53 10(9 S8x10-5)
Total three-factor 23251073, g0y | 58X 1050 g0y | 266X 1007, o0y | 766X 1005, o) | 1835107 1o
Effective Dimension (99%) 3 3 3 2 2

Average Interpretable Set Size | 73026 73026 89 96 36

Runtime (seconds) 16956.34 16439.06 1816 881.39 825.07

Efficiency of LOF 1.5%x 1072 5.69 x 1073 1.77 x 1072 1.15x 107! 1.4x 107!

As can be seen in Table 3, for the AQR methods, all the main effects have the same ordering and are
close in value to the QRS method. The effective dimension for AQRSA and AQROS is 2 as opposed to
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3 for the others. This lower effective dimension improves RQMC ability to lower variance, as is seen in
the standard errors. The AQR methods use a much smaller interpretable set, resulting in a significantly
faster runtime. The QRS method has the lowest LOF estimate, but it takes over 15000 seconds to compute
both the coefficients and the LOF estimate. At the slight cost of a larger LOF estimate, AQRNNS takes
only 1816 seconds. Both AQRSA and AQROS result in a much faster runtime: less than 900 seconds to
compute the coefficients and the LOF estimates. This results in AQRNNS, AQRSA and AQROS having
higher efficiency of LOF. Note that the RQR method has a poor fit since many of these basis terms are
not important for the fit; thus, adding several small estimated values together can become large and cause
a poor LOF estimate. This identifies the need for AQR methods to remove these noisy terms, leading
to a better LOF estimate with the bonus of being much faster. It is recommended to use AQR methods
to investigate a sparse function when interpretable sets are large (e.g. a large number of variables). In
this example, AQROS does not need to choose a cut-off parameter and is the most efficient of the AQR
methods, being close to 10 times more efficient than QRS.

6 CONCLUSION

We introduce an adaptive version of QR, a fast and practical tool for evaluating variable importance for
any function. These methods make QR computationally feasible in high dimensions, aided by the use of
RQMC to improve convergence by lowering variance for QR in coefficient estimation. This makes AQR
useful for the interpretation of both black-box and sparse functions. Identifying key variable subsets can
also enhance QMC point sets for specific functions (Nuyens and Waterhouse 2012).

Note AQRNNS and AQRSA require selecting an appropriate cutoff parameter o, which, if mischosen,
can degrade performance. A possible improvement is applying a prior distribution to ¢, turning this into
a Bayesian problem akin to sparse sequential Bayesian regression (Bishop 2006).

Future work includes leveraging AQR for function approximation to optimize black-box models, as
done in Bayesian Optimization (Garnett 2023) using Gaussian Processes (Williams and Rasmussen 2006).
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