Proceedings of the 2025 Winter Simulation Conference
E. Azar, A. Djanatliev, A. Harper, C. Kogler, V. Ramamohan, A. Anagnostou, and S. J. E. Taylor, eds.

A HEURISTIC-BASED ROLLING HORIZON METHOD FOR DYNAMIC AND STOCHASTIC
UNRELATED PARALLEL MACHINE SCHEDULING

Shufang Xie!, Tao Zhang!, and Oliver Rose!

'Dept. of Computer Science, University of the Bundeswehr Munich, Neubiberg, GERMANY

ABSTRACT

In stochastic manufacturing environments, disruptions such as machine breakdowns, variable processing
times, and unexpected delays make static scheduling approaches ineffective. To address this, we propose a
heuristic-based rolling horizon scheduling method for unrelated parallel machines. The rolling horizon
framework addresses system stochasticity by enabling dynamic adaptation through frequent rescheduling
of both existing jobs and those arriving within a rolling lookahead window. This method decomposes the
global scheduling problem into smaller, more manageable subproblems. Each subproblem is solved using
a heuristic approach based on a suitability score that incorporates key factors such as job properties,
machine characteristics, and job-machine interactions. Simulation-based experiments show that the
proposed method outperforms traditional dispatching rules in dynamic and stochastic manufacturing
environments with a fixed number of jobs, achieving shorter makespans and cycle times, reduced WIP
levels, and lower machine utilization.

1 INTRODUCTION

Parallel machine scheduling is a fundamental problem in production and operations management, arising
in various industries such as semiconductor manufacturing (Kim et al. 2002), healthcare (Roshanaei et al.
2017), and cloud computing (Kumar Bhardwaj et al. 2020). The problem involves assigning a set of jobs
to multiple parallel machines to optimize specific performance criteria, such as minimizing makespan, total
tardiness, or energy consumption. Due to its practical relevance, parallel machine scheduling has been
extensively studied in operations research and scheduling theory. The literature on parallel machine
scheduling problems is rich with over 2271 published articles (Ying et al. 2024).

In a parallel machine scheduling problem, a set of independent jobs must be scheduled on parallel
machines. Each job has a processing time, and depending on the problem variant, additional constraints
such as due dates, machine eligibility, sequence-dependent setup times, or precedence relations may apply
(Zhang et al. 2025). The most common types of parallel machine environments include identical machines,
where all machines have the same processing speed and the processing times of jobs are independent of the
machine; uniform machines, where the machines operate at different speeds, and the processing time of
each job is proportional to the speed of the assigned machine; and unrelated machines, where the processing
time of each job depends on both the specific job and the machine, with no proportional relationship
between them. Parallel machine scheduling involves the simultaneous processing of multiple jobs across
parallel machines, presenting two key challenges: first, each job must be assigned to one of the parallel
machines, and second, a schedule must be determined for each machine (Agnetis et al. 2025). This problem
is widely recognized as NP-hard, meaning that finding an optimal solution is computationally difficult,
particularly as the problem size increases (Garey and Johnson 1979). Among the different problem variants,
unrelated parallel machine scheduling is the most generalized form, as it allows arbitrary variations in
processing times across machines. Kayhan and Yildiz (2023) analyzed 80 articles published from 1995 to
2020 on machine scheduling problems from different aspects and reported that unrelated parallel machine
scheduling is one of the most studied types of problems.

979-8-3315-8726-0/25/$31.00 ©2025 IEEE 1529

Xie, Zhang, and Rose

Existing studies in parallel machine scheduling have explored a wide range of problem constraints,
such as machine setup times (Fonseca et al. 2024), due date constraints (Zhang et al. 2025) and other
additional factors, including integrated scheduling with batching and heterogeneous delivery trucks (Joo
and Kim 2017). Researchers have also investigated various solution approaches. Exact methods, such as
branch-and-bound, guarantee optimal solutions but become computationally infeasible for large-scale or
real-time scenarios. As a result, many studies turn to heuristic (So 1990) and metaheuristic techniques—
including genetic algorithms, simulated annealing, and particle swarm optimization, which offer near-
optimal solutions with lower computational complexity (Cao et al. 2005). For a comprehensive overview
of these approaches in the context of unrelated parallel machine scheduling, readers are referred to the
survey by Purasevi¢ and Jakobovi¢ (2023), who provide a survey on heuristic and metaheuristic methods
for the unrelated parallel machines. However, most of these studies are developed under static scheduling
assumptions, where all job information is known in advance and system conditions are assumed stable. This
assumption overlooks the dynamic and often unpredictable nature of real-world manufacturing
environments. Real-world manufacturing environments are inherently stochastic, with uncertainties arising
from machine breakdowns, variable processing times, and other unexpected disruptions. These factors
make static scheduling approaches ineffective, as schedules created in advance can quickly become
obsolete.

To address the challenges of dynamic and stochastic manufacturing environments, we propose a rolling
horizon scheduling framework that enables continuous adaptation to evolving system conditions by
updating the schedule at fixed intervals or certain events. Each schedule includes only the jobs that have
already arrived, along with those expected to arrive within a lookahead time window from each scheduling
point. The window rolls forward as scheduling occurs over time. Sub-scheduling is performed using a
scoring method that accounts for job-specific characteristics, machine-related factors, and job-machine
interactions that influence processing efficiency and assignment suitability. Compared to static scheduling,
this approach decomposes the global scheduling problem into smaller subproblems, allowing for faster and
more responsive decision-making. Unlike traditional decision rules, this method offers a broader scope and
a locally "optimal" perspective, as it generates a schedule that considers future job arrivals within each
subproblem.

To evaluate the effectiveness of the proposed heuristic, we conduct simulation-based experiments that
model a dynamic and stochastic scheduling environment. The performance of our method is assessed across
various scenarios and compared with traditional decision rules, which serve as widely adopted benchmarks
in scheduling. Details of the proposed approach, its implementation, and the experimental setup are
provided in the following sections. The remainder of this paper is organized as follows: Section 2 introduces
the rolling horizon framework and scheduling schema. Section 3 presents the scoring method and its key
components. In Section 4, we assess the performance of our method through a series of experiments,
benchmarking it against existing scheduling techniques. Finally, Section 5 summarizes the findings and
outlines potential directions for future research.

2 ROLLING HORIZON SCHEDULING

The rolling horizon framework enhances the resilience of manufacturing systems to stochastic events by
periodically updating the production schedule. This approach enables the adjustment of previously
scheduled jobs in response to unforeseen disruptions, thereby maintaining operational stability. Its inherent
lookahead mechanism allows the system to anticipate near-future workloads, rather than merely reacting to
the current state. This anticipatory capability is essential for preserving scheduling responsiveness and
decision quality in dynamic manufacturing environments, where conditions such as machine availability
and processing times may change unexpectedly.

2.1 Rolling Horizon Framework

1530

Xie, Zhang, and Rose

First, two key concepts are introduced: the time window and the scheduling interval. The time window
defines how far into the future job arrivals are considered when generating or updating the schedule, while
the scheduling interval determines how frequently scheduling occurs. Figure 1 illustrates the rolling horizon
mechanism. The time window maintains a constant length of L, representing a fixed scheduling horizon. In
most cases, it advances periodically by a fixed interval D, where D < L. This design ensures overlapping
scheduling windows, enabling frequent updates and continuous adaptation. As the window shifts forward,
it advances the scheduling horizon, offering a stable and continuous lookahead into future operations.

I i
rescheduling ; e e o meme e R A R
interval [P > :

Figure 1: Rolling horizon mechanism.

A critical challenge of this approach lies in determining the optimal values for the time window length
L and the rescheduling interval D. These parameters are influenced by the predefined job arrival plan
specific to the problem instance. Since jobs arrive at scheduled times throughout the planning horizon, the
rescheduling interval D must be carefully selected to ensure that a sufficient number of jobs are available
at each update, while avoiding excessive computational overhead. Similarly, L must strike a balance
between effective lookahead scheduling and uncertainty in job arrivals: if L is too short, it may fail to
capture enough future jobs for meaningful decision-making, while an excessively long L may incorporate
too many uncertain job arrivals.

To identify the optimal values for the time window and the rescheduling interval, a simulation-based
approach can be adopted. First, a reasonable range for both parameters is defined based on the problem
context, considering factors such as job processing times, expected job arrival rates, system constraints, and
any other relevant properties of the scheduling environment. These factors help establish a set of plausible
values for the time window and rescheduling interval. The core idea is to experiment with different
parameter values, simulate the scheduling process for each configuration, and evaluate the resulting
performance.

Theoretically, the most effective way is to perform scheduling precisely at the time when relevant
events occur, eliminating the need for fixed-interval scheduling. However, in practice, not all critical events
can be accurately captured. Therefore, this study primarily adopts a fixed time interval for scheduling. To
better align the schedule with the evolving state of the manufacturing system, certain key events are still
considered and trigger immediate scheduling when they occur:

Machine breakdowns or maintenance

Arrival of hot jobs

Significant deviation in the actual arrival time of jobs compared to their estimated arrival time
Significant deviation in the actual availability time of machines compared to their estimated
availability time

Hot jobs refer to urgent, high-priority jobs that were not previously present in the system but appear
unexpectedly and require immediate processing. Time deviations—whether earlier or later than expected—
can impact the scheduling accuracy. When any of the above events occur, the system performs scheduling
immediately rather than waiting for the next scheduled interval.

1531

Xie, Zhang, and Rose

2.2 Scheduling/Rescheduling Schema

The flowchart in Figure 2 illustrates the scheduling process. Whenever scheduling is triggered, either at a
fixed interval or by specific events, the arrival times of jobs are estimated. The time window defines the
subset of jobs to be considered during scheduling. Only jobs that have already arrived and are eligible for
rescheduling, along with those expected to arrive within the time window, are included in the scheduling
list. Based on the current state of the machines, the listed jobs, and both local and global system conditions,
a new schedule is generated.

According to the rolling horizon mechanism, jobs are typically scheduled either in advance or at the
time of their arrival. Some of these jobs may already be in progress on machines, while others remain in
the queue awaiting processing. In this study, we assume a non-preemptive scheduling policy, meaning that
jobs already in progress cannot be rescheduled. The reschedulability of jobs that have not yet started
depends on practical operational considerations commonly encountered in real manufacturing
environments. For example, if preparatory activities—such as material staging or tooling—have already
begun for a specific job on a particular machine, rescheduling may lead to unnecessary disruptions or
inefficiencies. Conversely, jobs that remain flexible in terms of their execution timing, or for which no
setup activities have yet been performed, can be rescheduled to better reflect the current state of the system
and enhance overall resource utilization.

This selective rescheduling mechanism strikes a balance between adaptability to dynamic changes and
the stability required for predictable and efficient execution on the shop floor. In practice, jobs that are
about to start imminently are no longer considered reschedulable. To simplify this determination, a time-
based constraint is introduced: if the difference between a job’s scheduled start time and the current time is
less than a predefined threshold, the job is deemed non-reschedulable.

current time ¢

whenever scheduling needed length of time window L

e.g. (t% D)==0
time windows [t, t+L]

l rescheduling interval D

arrival time estimation for
jobs which will probabliy
arrive "soon"

collect state of machines
and jobs in the list

A 4 h 4

scheduling jobs in the list
according to the state of
machines

set current time window
[t t+L]

h 4 A
put jobs which have
arrived but not started or
will arrive in the time
windows into a list

Event handled

Figure 2: Periodic rolling horizon scheduling.

It is worth noting that, in estimating job arrival times, manufacturing environments differ from systems
with unpredictable input flows. These environments often operate under a predefined production plan,

15632

Xie, Zhang, and Rose

allowing job arrival times to be forecasted with reasonable accuracy. Instead of relying on pattern
recognition or statistical inference from historical data, the scheduling system can directly reference the
production plan to determine the expected release times of upcoming jobs. This deterministic approach
simplifies the forecasting process and enhances the reliability of scheduling decisions within the rolling
horizon framework.

3 SUB-SCHEDULING HEURISTICS

Rolling horizon scheduling determines the timing of scheduling and defines the time window in which the
jobs should be considered at each decision point. It decomposes the large-scale, complex scheduling
problem into a sequence of smaller, more manageable subproblems, each solved independently at regular
scheduling points. While the reduced problem size might suggest that exact optimization methods (e.g.,
mathematical programming) could be used to find optimal solutions within each period, this is not always
practical in real-time settings. In a dynamic system with frequent rescheduling and continuous uncertainty,
repeatedly solving even small-scale mathematical models can lead to non-negligible computational delays.
To ensure responsiveness and maintain real-time performance, we adopt a heuristic approach that provides
high-quality, near-optimal solutions with significantly lower computational overhead. This allows the
system to react quickly to changing conditions without incurring intolerable delays, making the heuristic
more suitable for our rolling scheduling context.

3.1 Job-machine Pair Scoring

At each scheduling point, the actual scheduling is carried out by a dedicated job assignment heuristic, which
optimizes job allocation based on the current system state. The key idea behind this heuristic is to
simultaneously consider job characteristics, machine properties, and job-machine interactions when making
scheduling decisions. Unlike traditional reactive methods that typically rely on simple job ordering rules
and treat machines as interchangeable, our approach evaluates the suitability of each job-machine
assignment by incorporating multiple factors.

The heuristic begins by generating all possible job-machine combinations. A suitability score is then
calculated for each pair, combining job-specific attributes, machine characteristics, and their interactions to
support more informed and context-aware scheduling decisions. The range of attributes considered may
vary depending on the specific implementation and decision-making context. Table 1 summarizes a general
set of job-, machine-, and job-machine-specific attributes that may be included in the evaluation of
suitability scores.

Table 1: Attributes potentially used in suitability score calculation.

Category Attribute Name Description
Arrival time Time the job becomes available
Job Due date Target completion time for the job
Priority Importance level of the job
Job type Product family
Current workload Total remainiqg processing time for jobs in the queue
and the job being processed
Machine Queue length/time Number /working time of jobs currently waiting
Availability Status Indicates if the machine is operational
Idle time Time the machine has been idle from the last process
Maintenance schedule Scheduled upcoming downtime or maintenance
Interaction Processing time Time required for one job on the specific machine

Setup time

Time to prepare the machine for one job

1533

Xie, Zhang, and Rose

Probability of machine failure when processing one job
under the current state

Estimated energy consumption for running one job on
the specific machine

Failure risk

Energy cost

The suitability score S, , is calculated as a sum of selected attributes associated with a specific job-
machine pair. Each attribute is assigned a corresponding weight to control its influence on the overall score.
The general form of the suitability score is given by:

Sj,m = Zﬂk *a, (],m)
k

where a, (j,m)represents the value of the & -th attribute for job j on machine m, and 4, is the weight
associated with that attribute. This flexible formulation allows the heuristic to adapt to different objectives
or constraints by adjusting the attribute set and their corresponding weights. Weights can be defined based
on expert knowledge, statistical analysis, optimization methods, or empirical tuning through simulation
experiments. The specific attributes and weights used in our experimental setup are detailed in Section 4.

3.2 Job-machine Pairs to Schedule

A score is calculated for each job-machine pair as described in the previous section. This section explains

how these scored job-machine pairs are translated into an actual schedule. The procedure is illustrated in
Figure 3.

J2.M1 machine

:

J2.M2

i 1 J2,M1 J4M1
J3.M2 '

J3.M2

J3.M1 I:> |:>

J1.M2 2; J3,mM2 J1.M2

H

J1.M2

J4.M1

J1,M1

H

Ja.M1
JaMm2

sorted job-machine pairs valid job-machine pairs schedule

arrival time of J2 | --------
arrval time of J3 -F--
arrival time of J1
arrival time of J4 [=======

available time of M1 -F--
available time of M2 |[=======

Figure 3: From a sorted sequence of job-machine pairs to the corresponding schedule.

First, all the job-machine pairs are sorted by their suitability score in descending order, from highest to
lowest. This ensures that the most optimal job-machine assignments are considered first. Next, invalid or
redundant assignments are filtered out. For each job, only its first occurrence in the sorted list is retained,
ensuring that each job is assigned to a single machine. Any subsequent appearances of the same job in the
list are discarded, preventing duplicate assignments.

Once the list has been filtered, a schedule is generated using the following algorithm:

1534

Xie, Zhang, and Rose

For each machine in all machines, loop
For each pair assigned to the machine in the valid sequence, loop
start time of the job in the pair = max (job arrival time, machine available
time)
machine available time = start time of the job + processing time of the job
on the machine

Because the system is subject to various uncertainties, the generated schedule cannot be strictly
followed. For example, the scheduled start time of a job may be missed due to the random arrival time of
the job or the unpredictable processing time of the previous job on the machine. In this study, instead of
adhering strictly to the scheduled times, we focus on the sequence of jobs assigned to each machine. As a
result, the schedule is executed reactively, as shown in Figure 4. The system checks the schedule only when
a machine becomes idle or a job arrives, determining which job the machine will process next or which
machine should process the arriving job. If a machine becomes idle but the first scheduled job has not yet
arrived, the machine remains idle and waits for the job, even if other jobs are already scheduled and waiting
on the machine. Similarly, if a job arrives at an idle machine but is not the next job in the machine’s
schedule, it cannot be processed immediately.

whenever a machine

becomes idle whenever a job arrives

Are there jobs schedulet
on the machine?

Is the scheduled
machine idle?

yes yes

S the job the firs
scheduled job on the
macchine?

he first scheduled job
arrives?

yes yes
start the first scheduled start the job on the
job and remove it from the machine and remove it ne
schedule from the schedule
Y Y
Event handled < Event handled <

Figure 4: Reactive execution of schedules.

1535

Xie, Zhang, and Rose

4 EXPERIMENTS

To evaluate the effectiveness of the proposed scheduling approach, we conduct a series of simulation-based
experiments in an unrelated parallel machine scheduling environment. All simulation experiments were
conducted in AnyLogic, a versatile platform for modeling discrete-event and stochastic systems.

4.1 Simulation Environment

The simulation model consists of 5 machines and 100 dynamically arriving jobs, where each job has
different processing times on different machines, following an unrelated machine setting. All job processing
times are drawn from a uniform distribution between 1.8 and 16.8 hours, ensuring a balanced mix of short
and long tasks. All machines are assumed to be idle at time zero. Jobs arrive dynamically according to a
predefined plan, with arrival times determined in advance. A total of 100 jobs are introduced over the
planning horizon based on this arrival schedule. We assume no preemption—once a machine starts a job,
it completes it before switching to another. Stochastic events, such as machine breakdowns, are also
incorporated into the simulation. Each machine is assigned an initial failure time drawn from a uniform
distribution between 0 and 30 hours. Subsequent failure intervals and repair durations are modeled using
triangular distributions, with modes of 30 hours and 10 hours, respectively, and a variability of 10%. The
simulation continues until all 100 jobs are processed. Upon completion, performance metrics such as
makespan, cycle time, and machine utilization are recorded. Since jobs flow continuously into the
manufacturing line in real-world scenarios, there is typically no clear completion point. The primary
objective of scheduling is to minimize the average cycle time rather than the makespan.

The selection of factors and their corresponding weights in the scoring method was guided by domain
knowledge and refined through preliminary simulation experiments. This section presents the final scoring
scheme adopted in our experimental setup. Based on these considerations, the following factors are included
in the scoring method:

Processing time: Jobs with longer processing times on a given machine receive lower scores.
Machine status: Idle machines are favored with higher scores, while busy machines are penalized.
The status is represented as follows: 0 for idle, 1 for busy, and 2 for repair/maintenance.

e Machine workload: Defined as the sum of the processing times of all jobs scheduled on the
machine, plus the remaining processing time of the job currently being processed (if any). Machines
with higher workloads receive lower scores.

The score for each job-machine pair is calculated using the following equation:
Score = — processing time —100* machine status — 100* machine workload .

4.2 Parameter Selections

Before comparing the proposed heuristic with baseline methods, we first determine the optimal values for
the time window (L) and scheduling interval (D). Regardless of computational resource limitations, the
scheduling interval should be as small as possible. Therefore, we begin by assigning a very short interval
of 0.01 hours and conduct a sensitivity analysis for the time window, ranging from 0 to 8 hours with a step
size of 0.5 hours. This results in a total of 16 scenarios, each run with 100 replications. The average
makespan and cycle time for each scenario are shown in Figure 5. From this figure, we observe that the
best scheduling performance—i.e., the shortest cycle time—is achieved when the time window is
approximately 4.5 hours. Therefore, 4.5 hours is chosen as the optimal value for L in this case.

Another interesting observation from Figure 5 is that good performance is also achieved when L is set
to 0 hours. In this case, only the jobs that have already arrived are considered, and machines do not wait for
future jobs, leading to more immediate job assignments and higher utilization. However, when L is slightly
increased (e.g., to 0.5 hours), performance deteriorates significantly. This is likely because machines may

1536

Xie, Zhang, and Rose

choose to wait for jobs expected to arrive soon, resulting in idle time. When L increases further, more jobs
are visible during scheduling, reducing unnecessary waiting and improving decisions. However, if L
becomes too large, performance drops again due to over-planning or excessive anticipation of future jobs.

22 180
3 20 170
= -
[} >
g18 160 ©
= <
o 16 150 ©
S 2
(O]
< 14 140 %
oo
3 >
g 12 130
<
10 120
o 1 2 3 4 5 6 7 8

Time Window L (hour)
Figure 5: Sensitivity analysis of the time window.

By setting L to 4.5 hours, a sensitivity analysis for the scheduling interval is conducted, where the
interval ranges from 0.1 to 1.7 hours with a step size of 0.1. A total of 17 scenarios are simulated, with 100
replications each. The makespan and average cycle time are reported and illustrated in Figure 6. From the
trends of both curves, it is clear that smaller intervals lead to better performance. To balance the speed of
the following experiment with minimal performance loss, the scheduling interval is set to 0.2 hours.

15 155
5 150
21 _
- 145 5
Q
€ 13 2
= 140 T
o ©
(@) o
S 1 135
& 130 &
©
5 11
> 125
&

10 120

01 03 05 07 09 11 13 15 1.7

Scheduling Interval D (hour)

Figure 6: Sensitivity analysis of the scheduling interval.

4.3 Performance Comparison

We compare the performance of our proposed approach against several widely used decision rules: Shortest
Processing Time First (SPT), First In First Out (FIFO), and the random rule. These rules are used to select
a job or machine to start processing when a machine with a queue becomes idle, or when a job arrives at

15637

Xie, Zhang, and Rose

multiple idle machines. SPT prioritizes jobs/machines based on processing time, always selecting the
job/machine with the shortest processing time. FIFO prioritizes earlier-arriving jobs or machines, and can
also be viewed as "First Idle, First Operated" on the machine side. The random rule selects jobs and
machines randomly. Additionally, two combined approaches are considered: SPT+FIFO and FIFO+SPT.
In the SPT+FIFO approach, jobs are selected using SPT, and machines are chosen using FIFO. Conversely,
in FIFO+SPT, the process is reversed.

Since the performance of the approaches is heavily dependent on the system's capacity loading, defined
as the ratio of total job demand to overall machine processing capacity, four loading levels (40%, 60%,
70%, and 80%, which is the original level) are designed by randomly removing some jobs from the set of
100 jobs. Sensitivity analysis is conducted for these levels. The optimal time window for the 40% loading
level is 4.0 hours, while 4.5 hours is optimal for the other levels. A total of 24 scenarios are designed, with
each scenario running 100 replications. Additional performance indicators are calculated, such as machine
utilization, work in progress (WIP), and the deviation and margin of error (half-width confidence interval)
of the makespan and average cycle time across the 100 replications. To facilitate a clear comparison, the
mean average cycle time for all scenarios grouped by loading level is shown in Figure 7. The figure
demonstrates that the proposed approach (OUR) outperforms the other rules across all loading levels.

70

60 mOUR
o mSPT
é 50 FIFO
~ a0 | B RANDOM
£ 20 B FIFO+SPT
S SPT+FIFO
g 20
[®)

10

0

1

Loading Level

Figure 7: Comparison of mean average cycle time.

More comprehensive results are listed in Table 2. The proposed approach also outperforms the other
methods in most indicators, except for the deviation and confidence interval of the makespan at the first
loading level. It is important to note that the jobs included at each loading level are identical for all
approaches. The desired performance is to complete these jobs as quickly as possible while using fewer
resources, i.e., achieving lower machine utilization rather than the highest utilization.

Table 2: Performance comparison.

Load Makespan (hour) Cycle Time (hour)
%3¢ Method ~ Number WIP Utili.
level of Jobs Mean Dev MoE Mean Dev MoE
" (95%) " (95%)
OUR-4.0 34 2.17 44% 118.07 4.98 0.99 6.84 0.91 0.18
SPT 34 254 53% 123.08 4.52 0.90 8.39 1.17 0.23
FIFO 34 267 55% 125.57 6.35 1.26 9.07 1.99 0.39

RANDOM 34 340 65% 128.00 6.23 1.24 11.75 1.84 0.37

1538

Xie, Zhang, and Rose

FIFO+SPT 34 262 54% 124.80 6.23 1.24 8.82 1.76 ~ 0.35
SPT+FIFO 34 249 52% 12358 482 096 8.26 1.11 0.22

OUR-4.5 57 353 63% 129.78 4.51 0.89 7.98 0.83 0.16

SPT 57 4.62 79% 136.87 6.27 1.24 11.03 1.28 0.25

5 FIFO 57 7.11 84% 158779 9.42 1.87 19.77 3.45 0.68
RANDOM 57 742 86% 15824 9.68 1.92 20.61 3.98 0.79
FIFO+SPT 57 6.94 84% 15631 947 1.88 19.04 4.04 0.80
SPT+FIFO 57 4.66 80% 13527 5.71 1.13 10.98 1.29 0.26
OUR-4.5 76 514 72% 133.28 4.53 0.90 8.97 1.02 0.20

SPT 76 7.58 87% 14595 7.88 1.56 14.48 1.82 0.36

; FIFO 76 13.88 90% 196.88 9.60 1.90 3585 4.47 0.89
RANDOM 76 1497 91% 201.64 11.74 2.33 39.68 5.48 1.09
FIFO+SPT 76 13.88 90% 198.16 10.35 2.05 36.10 4.42 0.88
SPT+FIFO 76 7.51 87% 146.82 745 1.48 14.42 195 0.39
OUR-4.5 100 822 79% 142.77 6.08 1.21 11.67 1.12 0.22

SPT 100 11.83 91% 156.84 6.33 1.25 18.44 143 0.28

A FIFO 100 2403 92% 25235 1140 2.26 60.48 5.86 1.16

RANDOM 100 2553 93% 25895 12.87 2.55 65.95 6.26 1.24
FIFO+SPT 100 2396 92% 254.63 11.14 221 60.87 5.40 1.07
SPT+FIFO 100 11.74 90% 158.32 6.45 1.28 18.48 1.54 031

5 CONCLUSION

In this study, we implemented a heuristic-based rolling horizon method for unrelated parallel machine
scheduling in dynamic and stochastic environments. This strategy updates the schedule at fixed
rescheduling intervals or in response to special events while considering upcoming jobs expected to arrive
within a specified time window. Our findings highlight the importance of carefully selecting both time
window and the scheduling interval to balance responsiveness with planning scope, ultimately enhancing
overall system performance.

Through the horizon strategy, the global scheduling problem is decomposed into smaller subproblems,
each of which considers a selective subset of previously scheduled but unprocessed jobs, along with future
jobs expected to arrive within the time window. This selective rescheduling strategy enhances schedule
stability while improving the system's responsiveness to stochastic events, such as machine breakdowns.
By incorporating anticipated future jobs, the scheduler becomes more proactive and better equipped to
manage dynamic system changes. Each subproblem is solved using a scoring heuristic that evaluates job-
machine pairs based on various attributes, including job characteristics, machine conditions, and job-
machine interactions. This distinguishes our approach from traditional dispatching rules, which rely on
fixed priorities and treat machines as interchangeable.

Experimental results demonstrate that both the rolling horizon strategy and the proposed scoring
method are critical to effective scheduling in dynamic and uncertain environments. While the approach

1539

Xie, Zhang, and Rose

does not guarantee global optimality, its low computational overhead and responsiveness make it highly
suitable for real-world applications where adaptability and decision speed are essential. Future work could
focus on analyzing the performance of the proposed approach under different distributions of random
variables, such as processing times, breakdown and repair times, and so on. Additionally, arrival time
estimation could be an important direction for scheduling in the absence of a predefined arrival plan.

REFERENCES

Agnetis, A., J.-C. Billaut, M. Pinedo, and D. Shabtay. 2025. “Fifty Years of Research in Scheduling — Theory and Applications”.
European Journal of Operational Research 327(2):367-393.

Cao, D., M. Chen, and G. Wan. 2005. “Parallel Machine Selection and Job Scheduling to Minimize Machine Cost and Job
Tardiness”. Computers and Operations Research 32(8):1995-2012.

Cheng, T. C. E., and C. C. S. Sin. 1990. “A State-of-the-Art Review of Paralle]l-Machine Scheduling Research”. European Journal
of Operational Research 47(3):271-292.

DPurasevi¢, M., and D. Jakobovi¢. 2023. “Heuristic and Metaheuristic Methods for the Parallel Unrelated Machines Scheduling
Problem: A Survey”. Artificial Intelligence Review 56(4):3181-3289.

Fonseca, G. H. G., G. B. Figueiroa, and T. A. M. Toffolo. 2024. “A Fix-and-Optimize Heuristic for the Unrelated Parallel Machine
Scheduling Problem”. Computers & Operations Research 163:106504.

Joo, C. M., and B. S. Kim. 2017. “Rule-Based Meta-Heuristics for Integrated Scheduling of Unrelated Parallel Machines, Batches,
and Heterogeneous Delivery Trucks”. Applied Soft Computing 53:457-476.

Kayhan, B. M., and G. Yildiz. 2023. “Reinforcement Learning Applications to Machine Scheduling Problems: A Comprehensive
Literature Review”. Journal of Intelligent Manufacturing 34(3):905-929.

Kim, D.-W., K.-H. Kim, W. Jang, and F. F. Chen. 2002. “Unrelated Parallel Machine Scheduling with Setup Times Using
Simulated Annealing”. Robotics and Computer-Integrated Manufacturing 18(3):223-231.

Kumar Bhardwaj, A., Y. Gajpal, C. Surti, S. S. Gill, and L. M. Thapar. 2020. “HEART: Unrelated Parallel Machines Problem with
Precedence Constraints for Task Scheduling in Cloud Computing Using Heuristic and Meta-Heuristic Algorithms”. Software:
Practice and Experience 50(12):2231-2251.

Roshanaei, V., C. Luong, D. M. Aleman, and D. Urbach. 2017. “Propagating Logic-Based Benders’ Decomposition Approaches
for Distributed Operating Room Scheduling”. European Journal of Operational Research 257(2):439—-455.

So, K. C. 1990. “Some Heuristics for Scheduling Jobs on Parallel Machines with Setups”. Scientia 36(4):361-369.

Ying, K. C., P. Pourhejazy, and X. Y. Huang. 2024. “Revisiting the Development Trajectory of Parallel Machine Scheduling”.
Computers & Operations Research 168:106709.

Zhang, W., M. Kong, Y. Zhang, A. M. Fathollahi-Fard, and G. Tian. 2025. “A Revised Deep Reinforcement Learning Algorithm
for Parallel Machine Scheduling Problem under Multi-Scenario Due Date Constraints”. Swarm and Evolutionary Computation
92:101808.

AUTHOR BIOGRAPHIES

SHUFANG XIE is a Research Assistant and Ph.D. student at Universitdt der Bundeswehr at the Chair of Modeling and Simulation.
Her focus is on simulation-based scheduling and optimization of production systems. She received her M.S. degree in Metallurgical
Engineering from Chonggqing University, China. Her email address is shufang.xie@unibw.de.

TAO ZHANG is a Research Assistant at the Universitit der Bundeswehr Miinchen, and he holds an M.S. in Metallurgical
Engineering from Chongqing University, China and a Ph.D. in Computer Science from the Universitit der Bundeswehr Miinchen,
Germany. His research interest is working on production planning and scheduling, the main focus of his research is on the modelling
and simulation of complex systems and intelligent optimization algorithms. His email address is tao.zhang@unibw.de.

OLIVER ROSE holds the Chair for Modeling and Simulation at the Department of Computer Science of the Universitit der
Bundeswehr, Germany. He received an M.S. degree in applied mathematics and a Ph.D. degree in computer science from Wiirzburg
University, Germany. His research focuses on the operational modelling, analysis, and material flow control of complex
manufacturing facilities such as semiconductor factories. He is a member of INFORMS Simulation Society, ASIM, and GI. His
email address is oliver.rose@unibw.de.

1540

mailto:tao.zhang@unibw.de
mailto:oliver.rose@unibw.de

	126-con242s3-file1
	ABSTRACT
	1 Introduction
	2 Rolling horizon scheduling
	2.1 Rolling Horizon Framework
	2.2 Scheduling/Rescheduling Schema

	3 Sub-scheduling heuristics
	3.1 Job-machine Pair Scoring
	3.2 Job-machine Pairs to Schedule

	4 Experiments
	4.1 Simulation Environment
	4.2 Parameter Selections
	4.3 Performance Comparison

	5 Conclusion
	REFERENCES
	AUTHOR BIOGRAPHIES

