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ABSTRACT 

In stochastic manufacturing environments, disruptions such as machine breakdowns, variable processing 
times, and unexpected delays make static scheduling approaches ineffective. To address this, we propose a 
heuristic-based rolling horizon scheduling method for unrelated parallel machines. The rolling horizon 
framework addresses system stochasticity by enabling dynamic adaptation through frequent rescheduling 
of both existing jobs and those arriving within a rolling lookahead window. This method decomposes the 
global scheduling problem into smaller, more manageable subproblems. Each subproblem is solved using 
a heuristic approach based on a suitability score that incorporates key factors such as job properties, 
machine characteristics, and job-machine interactions. Simulation-based experiments show that the 
proposed method outperforms traditional dispatching rules in dynamic and stochastic manufacturing 
environments with a fixed number of jobs, achieving shorter makespans and cycle times, reduced WIP 
levels, and lower machine utilization. 

1 INTRODUCTION 

Parallel machine scheduling is a fundamental problem in production and operations management, arising 
in various industries such as semiconductor manufacturing (Kim et al. 2002), healthcare (Roshanaei et al. 
2017), and cloud computing (Kumar Bhardwaj et al. 2020). The problem involves assigning a set of jobs 
to multiple parallel machines to optimize specific performance criteria, such as minimizing makespan, total 
tardiness, or energy consumption. Due to its practical relevance, parallel machine scheduling has been 
extensively studied in operations research and scheduling theory. The literature on parallel machine 
scheduling problems is rich with over 2271 published articles (Ying et al. 2024). 

In a parallel machine scheduling problem, a set of independent jobs must be scheduled on parallel 
machines. Each job has a processing time, and depending on the problem variant, additional constraints 
such as due dates, machine eligibility, sequence-dependent setup times, or precedence relations may apply 
(Zhang et al. 2025). The most common types of parallel machine environments include identical machines, 
where all machines have the same processing speed and the processing times of jobs are independent of the 
machine; uniform machines, where the machines operate at different speeds, and the processing time of 
each job is proportional to the speed of the assigned machine; and unrelated machines, where the processing 
time of each job depends on both the specific job and the machine, with no proportional relationship 
between them. Parallel machine scheduling involves the simultaneous processing of multiple jobs across 
parallel machines, presenting two key challenges: first, each job must be assigned to one of the parallel 
machines, and second, a schedule must be determined for each machine (Agnetis et al. 2025). This problem 
is widely recognized as NP-hard, meaning that finding an optimal solution is computationally difficult, 
particularly as the problem size increases (Garey and Johnson 1979). Among the different problem variants, 
unrelated parallel machine scheduling is the most generalized form, as it allows arbitrary variations in 
processing times across machines. Kayhan and Yildiz (2023) analyzed 80 articles published from 1995 to 
2020 on machine scheduling problems from different aspects and reported that unrelated parallel machine 
scheduling is one of the most studied types of problems.  
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Existing studies in parallel machine scheduling have explored a wide range of problem constraints, 
such as machine setup times (Fonseca et al. 2024), due date constraints (Zhang et al. 2025) and other 
additional factors, including integrated scheduling with batching and heterogeneous delivery trucks (Joo 
and Kim 2017). Researchers have also investigated various solution approaches. Exact methods, such as 
branch-and-bound, guarantee optimal solutions but become computationally infeasible for large-scale or 
real-time scenarios. As a result, many studies turn to heuristic (So 1990) and metaheuristic techniques—
including genetic algorithms, simulated annealing, and particle swarm optimization, which offer near-
optimal solutions with lower computational complexity (Cao et al. 2005). For a comprehensive overview 
of these approaches in the context of unrelated parallel machine scheduling, readers are referred to the 
survey by Đurasević and Jakobović (2023), who provide a survey on heuristic and metaheuristic methods 
for the unrelated parallel machines. However, most of these studies are developed under static scheduling 
assumptions, where all job information is known in advance and system conditions are assumed stable. This 
assumption overlooks the dynamic and often unpredictable nature of real-world manufacturing 
environments. Real-world manufacturing environments are inherently stochastic, with uncertainties arising 
from machine breakdowns, variable processing times, and other unexpected disruptions. These factors 
make static scheduling approaches ineffective, as schedules created in advance can quickly become 
obsolete.  

To address the challenges of dynamic and stochastic manufacturing environments, we propose a rolling 
horizon scheduling framework that enables continuous adaptation to evolving system conditions by 
updating the schedule at fixed intervals or certain events. Each schedule includes only the jobs that have 
already arrived, along with those expected to arrive within a lookahead time window from each scheduling 
point. The window rolls forward as scheduling occurs over time. Sub-scheduling is performed using a 
scoring method that accounts for job-specific characteristics, machine-related factors, and job-machine 
interactions that influence processing efficiency and assignment suitability. Compared to static scheduling, 
this approach decomposes the global scheduling problem into smaller subproblems, allowing for faster and 
more responsive decision-making. Unlike traditional decision rules, this method offers a broader scope and 
a locally "optimal" perspective, as it generates a schedule that considers future job arrivals within each 
subproblem.  

To evaluate the effectiveness of the proposed heuristic, we conduct simulation-based experiments that 
model a dynamic and stochastic scheduling environment. The performance of our method is assessed across 
various scenarios and compared with traditional decision rules, which serve as widely adopted benchmarks 
in scheduling. Details of the proposed approach, its implementation, and the experimental setup are 
provided in the following sections. The remainder of this paper is organized as follows: Section 2 introduces 
the rolling horizon framework and scheduling schema. Section 3 presents the scoring method and its key 
components. In Section 4, we assess the performance of our method through a series of experiments, 
benchmarking it against existing scheduling techniques. Finally, Section 5 summarizes the findings and 
outlines potential directions for future research. 

2 ROLLING HORIZON SCHEDULING 

The rolling horizon framework enhances the resilience of manufacturing systems to stochastic events by 
periodically updating the production schedule. This approach enables the adjustment of previously 
scheduled jobs in response to unforeseen disruptions, thereby maintaining operational stability. Its inherent 
lookahead mechanism allows the system to anticipate near-future workloads, rather than merely reacting to 
the current state. This anticipatory capability is essential for preserving scheduling responsiveness and 
decision quality in dynamic manufacturing environments, where conditions such as machine availability 
and processing times may change unexpectedly.  

2.1 Rolling Horizon Framework 
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First, two key concepts are introduced: the time window and the scheduling interval. The time window 
defines how far into the future job arrivals are considered when generating or updating the schedule, while 
the scheduling interval determines how frequently scheduling occurs. Figure 1 illustrates the rolling horizon 
mechanism. The time window maintains a constant length of L, representing a fixed scheduling horizon. In 
most cases, it advances periodically by a fixed interval D, where D < L. This design ensures overlapping 
scheduling windows, enabling frequent updates and continuous adaptation. As the window shifts forward, 
it advances the scheduling horizon, offering a stable and continuous lookahead into future operations. 

 
Figure 1: Rolling horizon mechanism. 

A critical challenge of this approach lies in determining the optimal values for the time window length 
L and the rescheduling interval D. These parameters are influenced by the predefined job arrival plan 
specific to the problem instance. Since jobs arrive at scheduled times throughout the planning horizon, the 
rescheduling interval D must be carefully selected to ensure that a sufficient number of jobs are available 
at each update, while avoiding excessive computational overhead. Similarly, L must strike a balance 
between effective lookahead scheduling and uncertainty in job arrivals: if L is too short, it may fail to 
capture enough future jobs for meaningful decision-making, while an excessively long L may incorporate 
too many uncertain job arrivals. 

To identify the optimal values for the time window and the rescheduling interval, a simulation-based 
approach can be adopted. First, a reasonable range for both parameters is defined based on the problem 
context, considering factors such as job processing times, expected job arrival rates, system constraints, and 
any other relevant properties of the scheduling environment. These factors help establish a set of plausible 
values for the time window and rescheduling interval. The core idea is to experiment with different 
parameter values, simulate the scheduling process for each configuration, and evaluate the resulting 
performance. 
 Theoretically, the most effective way is to perform scheduling precisely at the time when relevant 
events occur, eliminating the need for fixed-interval scheduling. However, in practice, not all critical events 
can be accurately captured. Therefore, this study primarily adopts a fixed time interval for scheduling. To 
better align the schedule with the evolving state of the manufacturing system, certain key events are still 
considered and trigger immediate scheduling when they occur: 

 
• Machine breakdowns or maintenance 
• Arrival of hot jobs 
• Significant deviation in the actual arrival time of jobs compared to their estimated arrival time 
• Significant deviation in the actual availability time of machines compared to their estimated 

availability time 
 

 Hot jobs refer to urgent, high-priority jobs that were not previously present in the system but appear 
unexpectedly and require immediate processing. Time deviations—whether earlier or later than expected—
can impact the scheduling accuracy. When any of the above events occur, the system performs scheduling 
immediately rather than waiting for the next scheduled interval. 
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2.2 Scheduling/Rescheduling Schema 

The flowchart in Figure 2 illustrates the scheduling process. Whenever scheduling is triggered, either at a 
fixed interval or by specific events, the arrival times of jobs are estimated. The time window defines the 
subset of jobs to be considered during scheduling. Only jobs that have already arrived and are eligible for 
rescheduling, along with those expected to arrive within the time window, are included in the scheduling 
list. Based on the current state of the machines, the listed jobs, and both local and global system conditions, 
a new schedule is generated. 
 According to the rolling horizon mechanism, jobs are typically scheduled either in advance or at the 
time of their arrival. Some of these jobs may already be in progress on machines, while others remain in 
the queue awaiting processing. In this study, we assume a non-preemptive scheduling policy, meaning that 
jobs already in progress cannot be rescheduled. The reschedulability of jobs that have not yet started 
depends on practical operational considerations commonly encountered in real manufacturing 
environments. For example, if preparatory activities—such as material staging or tooling—have already 
begun for a specific job on a particular machine, rescheduling may lead to unnecessary disruptions or 
inefficiencies. Conversely, jobs that remain flexible in terms of their execution timing, or for which no 
setup activities have yet been performed, can be rescheduled to better reflect the current state of the system 
and enhance overall resource utilization. 
 This selective rescheduling mechanism strikes a balance between adaptability to dynamic changes and 
the stability required for predictable and efficient execution on the shop floor. In practice, jobs that are 
about to start imminently are no longer considered reschedulable. To simplify this determination, a time-
based constraint is introduced: if the difference between a job’s scheduled start time and the current time is 
less than a predefined threshold, the job is deemed non-reschedulable. 

 
Figure 2: Periodic rolling horizon scheduling. 

It is worth noting that, in estimating job arrival times, manufacturing environments differ from systems 
with unpredictable input flows. These environments often operate under a predefined production plan, 
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allowing job arrival times to be forecasted with reasonable accuracy. Instead of relying on pattern 
recognition or statistical inference from historical data, the scheduling system can directly reference the 
production plan to determine the expected release times of upcoming jobs. This deterministic approach 
simplifies the forecasting process and enhances the reliability of scheduling decisions within the rolling 
horizon framework. 

3 SUB-SCHEDULING HEURISTICS  

Rolling horizon scheduling determines the timing of scheduling and defines the time window in which the 
jobs should be considered at each decision point. It decomposes the large-scale, complex scheduling 
problem into a sequence of smaller, more manageable subproblems, each solved independently at regular 
scheduling points. While the reduced problem size might suggest that exact optimization methods (e.g., 
mathematical programming) could be used to find optimal solutions within each period, this is not always 
practical in real-time settings. In a dynamic system with frequent rescheduling and continuous uncertainty, 
repeatedly solving even small-scale mathematical models can lead to non-negligible computational delays. 
To ensure responsiveness and maintain real-time performance, we adopt a heuristic approach that provides 
high-quality, near-optimal solutions with significantly lower computational overhead. This allows the 
system to react quickly to changing conditions without incurring intolerable delays, making the heuristic 
more suitable for our rolling scheduling context. 

3.1 Job-machine Pair Scoring 

At each scheduling point, the actual scheduling is carried out by a dedicated job assignment heuristic, which 
optimizes job allocation based on the current system state. The key idea behind this heuristic is to 
simultaneously consider job characteristics, machine properties, and job-machine interactions when making 
scheduling decisions. Unlike traditional reactive methods that typically rely on simple job ordering rules 
and treat machines as interchangeable, our approach evaluates the suitability of each job-machine 
assignment by incorporating multiple factors.  

The heuristic begins by generating all possible job-machine combinations. A suitability score is then 
calculated for each pair, combining job-specific attributes, machine characteristics, and their interactions to 
support more informed and context-aware scheduling decisions. The range of attributes considered may 
vary depending on the specific implementation and decision-making context. Table 1 summarizes a general 
set of job-, machine-, and job-machine-specific attributes that may be included in the evaluation of 
suitability scores. 

Table 1: Attributes potentially used in suitability score calculation. 

Category Attribute Name Description 

Job 

Arrival time Time the job becomes available 
Due date Target completion time for the job 
Priority Importance level of the job 
Job type Product family 

Machine 

Current workload Total remaining processing time for jobs in the queue 
and the job being processed 

Queue length/time Number /working time of jobs currently waiting 
Availability Status Indicates if the machine is operational 
Idle time Time the machine has been idle from the last process 
Maintenance schedule Scheduled upcoming downtime or maintenance 

Interaction Processing time Time required for one job on the specific machine 
Setup time Time to prepare the machine for one job 
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Failure risk Probability of machine failure when processing one job 
under the current state 

Energy cost Estimated energy consumption for running one job on 
the specific machine 

 
The suitability score ,j mS  is calculated as a sum of selected attributes associated with a specific job-

machine pair. Each attribute is assigned a corresponding weight to control its influence on the overall score. 
The general form of the suitability score is given by: 

 
, ( , )j m k k

k
S a j mλ=∑ 

 
where ( , )ka j m represents the value of the k -th attribute for job j on machine m, and kλ is the weight 

associated with that attribute. This flexible formulation allows the heuristic to adapt to different objectives 
or constraints by adjusting the attribute set and their corresponding weights. Weights can be defined based 
on expert knowledge, statistical analysis, optimization methods, or empirical tuning through simulation 
experiments. The specific attributes and weights used in our experimental setup are detailed in Section 4. 

3.2 Job-machine Pairs to Schedule 

A score is calculated for each job-machine pair as described in the previous section. This section explains 
how these scored job-machine pairs are translated into an actual schedule. The procedure is illustrated in 
Figure 3. 

 
Figure 3: From a sorted sequence of job-machine pairs to the corresponding schedule. 

 First, all the job-machine pairs are sorted by their suitability score in descending order, from highest to 
lowest. This ensures that the most optimal job-machine assignments are considered first. Next, invalid or 
redundant assignments are filtered out. For each job, only its first occurrence in the sorted list is retained, 
ensuring that each job is assigned to a single machine. Any subsequent appearances of the same job in the 
list are discarded, preventing duplicate assignments. 

 Once the list has been filtered, a schedule is generated using the following algorithm: 
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For each machine in all machines, loop 
 For each pair assigned to the machine in the valid sequence, loop 

 start time of the job in the pair = max (job arrival time, machine available 
time) 

 machine available time = start time of the job + processing time of the job 
on the machine 

 

  
 Because the system is subject to various uncertainties, the generated schedule cannot be strictly 
followed. For example, the scheduled start time of a job may be missed due to the random arrival time of 
the job or the unpredictable processing time of the previous job on the machine. In this study, instead of 
adhering strictly to the scheduled times, we focus on the sequence of jobs assigned to each machine. As a 
result, the schedule is executed reactively, as shown in Figure 4. The system checks the schedule only when 
a machine becomes idle or a job arrives, determining which job the machine will process next or which 
machine should process the arriving job. If a machine becomes idle but the first scheduled job has not yet 
arrived, the machine remains idle and waits for the job, even if other jobs are already scheduled and waiting 
on the machine. Similarly, if a job arrives at an idle machine but is not the next job in the machine’s 
schedule, it cannot be processed immediately. 

 
Figure 4: Reactive execution of schedules. 
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4 EXPERIMENTS 

To evaluate the effectiveness of the proposed scheduling approach, we conduct a series of simulation-based 
experiments in an unrelated parallel machine scheduling environment. All simulation experiments were 
conducted in AnyLogic, a versatile platform for modeling discrete-event and stochastic systems. 

4.1 Simulation Environment 

The simulation model consists of 5 machines and 100 dynamically arriving jobs, where each job has 
different processing times on different machines, following an unrelated machine setting. All job processing 
times are drawn from a uniform distribution between 1.8 and 16.8 hours, ensuring a balanced mix of short 
and long tasks. All machines are assumed to be idle at time zero. Jobs arrive dynamically according to a 
predefined plan, with arrival times determined in advance. A total of 100 jobs are introduced over the 
planning horizon based on this arrival schedule. We assume no preemption—once a machine starts a job, 
it completes it before switching to another. Stochastic events, such as machine breakdowns, are also 
incorporated into the simulation. Each machine is assigned an initial failure time drawn from a uniform 
distribution between 0 and 30 hours. Subsequent failure intervals and repair durations are modeled using 
triangular distributions, with modes of 30 hours and 10 hours, respectively, and a variability of 10%. The 
simulation continues until all 100 jobs are processed. Upon completion, performance metrics such as 
makespan, cycle time, and machine utilization are recorded. Since jobs flow continuously into the 
manufacturing line in real-world scenarios, there is typically no clear completion point. The primary 
objective of scheduling is to minimize the average cycle time rather than the makespan. 
  The selection of factors and their corresponding weights in the scoring method was guided by domain 
knowledge and refined through preliminary simulation experiments. This section presents the final scoring 
scheme adopted in our experimental setup. Based on these considerations, the following factors are included 
in the scoring method: 

 
• Processing time: Jobs with longer processing times on a given machine receive lower scores. 
• Machine status: Idle machines are favored with higher scores, while busy machines are penalized. 

The status is represented as follows: 0 for idle, 1 for busy, and 2 for repair/maintenance. 
• Machine workload: Defined as the sum of the processing times of all jobs scheduled on the 

machine, plus the remaining processing time of the job currently being processed (if any). Machines 
with higher workloads receive lower scores. 
 

 The score for each job-machine pair is calculated using the following equation: 
     100*   –  100*   Score processing time machine status machine workload= − − . 

4.2 Parameter Selections 

Before comparing the proposed heuristic with baseline methods, we first determine the optimal values for 
the time window (L) and scheduling interval (D). Regardless of computational resource limitations, the 
scheduling interval should be as small as possible. Therefore, we begin by assigning a very short interval 
of 0.01 hours and conduct a sensitivity analysis for the time window, ranging from 0 to 8 hours with a step 
size of 0.5 hours. This results in a total of 16 scenarios, each run with 100 replications. The average 
makespan and cycle time for each scenario are shown in Figure 5. From this figure, we observe that the 
best scheduling performance—i.e., the shortest cycle time—is achieved when the time window is 
approximately 4.5 hours. Therefore, 4.5 hours is chosen as the optimal value for L in this case. 

Another interesting observation from Figure 5 is that good performance is also achieved when L is set 
to 0 hours. In this case, only the jobs that have already arrived are considered, and machines do not wait for 
future jobs, leading to more immediate job assignments and higher utilization. However, when L is slightly 
increased (e.g., to 0.5 hours), performance deteriorates significantly. This is likely because machines may 

1536



Xie, Zhang, and Rose 
 

 

choose to wait for jobs expected to arrive soon, resulting in idle time. When L increases further, more jobs 
are visible during scheduling, reducing unnecessary waiting and improving decisions. However, if L 
becomes too large, performance drops again due to over-planning or excessive anticipation of future jobs. 

 
Figure 5: Sensitivity analysis of the time window. 

By setting L to 4.5 hours, a sensitivity analysis for the scheduling interval is conducted, where the 
interval ranges from 0.1 to 1.7 hours with a step size of 0.1. A total of 17 scenarios are simulated, with 100 
replications each. The makespan and average cycle time are reported and illustrated in Figure 6. From the 
trends of both curves, it is clear that smaller intervals lead to better performance. To balance the speed of 
the following experiment with minimal performance loss, the scheduling interval is set to 0.2 hours. 

 
Figure 6: Sensitivity analysis of the scheduling interval. 

4.3 Performance Comparison 

We compare the performance of our proposed approach against several widely used decision rules: Shortest 
Processing Time First (SPT), First In First Out (FIFO), and the random rule. These rules are used to select 
a job or machine to start processing when a machine with a queue becomes idle, or when a job arrives at 
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multiple idle machines. SPT prioritizes jobs/machines based on processing time, always selecting the 
job/machine with the shortest processing time. FIFO prioritizes earlier-arriving jobs or machines, and can 
also be viewed as "First Idle, First Operated" on the machine side. The random rule selects jobs and 
machines randomly. Additionally, two combined approaches are considered: SPT+FIFO and FIFO+SPT. 
In the SPT+FIFO approach, jobs are selected using SPT, and machines are chosen using FIFO. Conversely, 
in FIFO+SPT, the process is reversed. 

Since the performance of the approaches is heavily dependent on the system's capacity loading, defined 
as the ratio of total job demand to overall machine processing capacity, four loading levels (40%, 60%, 
70%, and 80%, which is the original level) are designed by randomly removing some jobs from the set of 
100 jobs. Sensitivity analysis is conducted for these levels. The optimal time window for the 40% loading 
level is 4.0 hours, while 4.5 hours is optimal for the other levels. A total of 24 scenarios are designed, with 
each scenario running 100 replications. Additional performance indicators are calculated, such as machine 
utilization, work in progress (WIP), and the deviation and margin of error (half-width confidence interval) 
of the makespan and average cycle time across the 100 replications. To facilitate a clear comparison, the 
mean average cycle time for all scenarios grouped by loading level is shown in Figure 7. The figure 
demonstrates that the proposed approach (OUR) outperforms the other rules across all loading levels. 

  
Figure 7: Comparison of mean average cycle time. 

 More comprehensive results are listed in Table 2. The proposed approach also outperforms the other 
methods in most indicators, except for the deviation and confidence interval of the makespan at the first 
loading level. It is important to note that the jobs included at each loading level are identical for all 
approaches. The desired performance is to complete these jobs as quickly as possible while using fewer 
resources, i.e., achieving lower machine utilization rather than the highest utilization. 

Table 2: Performance comparison. 

Load 
 level Method 

 
Number  
of Jobs 

WIP Utili. 
Makespan (hour) Cycle Time (hour) 

Mean Dev. MoE  
(95%) Mean Dev. MoE 

 (95%) 

1 

OUR-4.0 34 2.17 44% 118.07 4.98 0.99 6.84 0.91 0.18 
SPT 34 2.54 53% 123.08 4.52 0.90 8.39 1.17 0.23 
FIFO 34 2.67 55% 125.57 6.35 1.26 9.07 1.99 0.39 

RANDOM 34 3.40 65% 128.00 6.23 1.24 11.75 1.84 0.37 
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FIFO+SPT 34 2.62 54% 124.80 6.23 1.24 8.82 1.76 0.35 
SPT+FIFO 34 2.49 52% 123.58 4.82 0.96 8.26 1.11 0.22 

2 

OUR-4.5 57 3.53 63% 129.78 4.51 0.89 7.98 0.83 0.16 
SPT 57 4.62 79% 136.87 6.27 1.24 11.03 1.28 0.25 
FIFO 57 7.11 84% 158.79 9.42 1.87 19.77 3.45 0.68 

RANDOM 57 7.42 86% 158.24 9.68 1.92 20.61 3.98 0.79 
FIFO+SPT 57 6.94 84% 156.31 9.47 1.88 19.04 4.04 0.80 
SPT+FIFO 57 4.66 80% 135.27 5.71 1.13 10.98 1.29 0.26 

3 

OUR-4.5 76 5.14 72% 133.28 4.53 0.90 8.97 1.02 0.20 
SPT 76 7.58 87% 145.95 7.88 1.56 14.48 1.82 0.36 
FIFO 76 13.88 90% 196.88 9.60 1.90 35.85 4.47 0.89 

RANDOM 76 14.97 91% 201.64 11.74 2.33 39.68 5.48 1.09 
FIFO+SPT 76 13.88 90% 198.16 10.35 2.05 36.10 4.42 0.88 
SPT+FIFO 76 7.51 87% 146.82 7.45 1.48 14.42 1.95 0.39 

4 

OUR-4.5 100 8.22 79% 142.77 6.08 1.21 11.67 1.12 0.22 
SPT 100 11.83 91% 156.84 6.33 1.25 18.44 1.43 0.28 
FIFO 100 24.03 92% 252.35 11.40 2.26 60.48 5.86 1.16 

RANDOM 100 25.53 93% 258.95 12.87 2.55 65.95 6.26 1.24 
FIFO+SPT 100 23.96 92% 254.63 11.14 2.21 60.87 5.40 1.07 
SPT+FIFO 100 11.74 90% 158.32 6.45 1.28 18.48 1.54 0.31 

 

5 CONCLUSION 

In this study, we implemented a heuristic-based rolling horizon method for unrelated parallel machine 
scheduling in dynamic and stochastic environments. This strategy updates the schedule at fixed 
rescheduling intervals or in response to special events while considering upcoming jobs expected to arrive 
within a specified time window. Our findings highlight the importance of carefully selecting both time 
window and the scheduling interval to balance responsiveness with planning scope, ultimately enhancing 
overall system performance. 
 Through the horizon strategy, the global scheduling problem is decomposed into smaller subproblems, 
each of which considers a selective subset of previously scheduled but unprocessed jobs, along with future 
jobs expected to arrive within the time window. This selective rescheduling strategy enhances schedule 
stability while improving the system's responsiveness to stochastic events, such as machine breakdowns. 
By incorporating anticipated future jobs, the scheduler becomes more proactive and better equipped to 
manage dynamic system changes. Each subproblem is solved using a scoring heuristic that evaluates job-
machine pairs based on various attributes, including job characteristics, machine conditions, and job-
machine interactions. This distinguishes our approach from traditional dispatching rules, which rely on 
fixed priorities and treat machines as interchangeable. 

Experimental results demonstrate that both the rolling horizon strategy and the proposed scoring 
method are critical to effective scheduling in dynamic and uncertain environments. While the approach 
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does not guarantee global optimality, its low computational overhead and responsiveness make it highly 
suitable for real-world applications where adaptability and decision speed are essential. Future work could 
focus on analyzing the performance of the proposed approach under different distributions of random 
variables, such as processing times, breakdown and repair times, and so on. Additionally, arrival time 
estimation could be an important direction for scheduling in the absence of a predefined arrival plan. 
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