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ABSTRACT 

This paper employs System Dynamics (SD) to model and analyze DC power distribution systems, focusing 
on methodological development and using microgrids as case studies. The approach follows a bottom-up 
methodology, starting with the fundamentals of DC systems and building toward more complex 
configurations. We coin this approach “Power Dynamics,” which uses stocks and flows to represent 
electrical components such as resistors, batteries, and power converters. SD offers a time-based, feedback-
driven approach that captures component behaviors and system-wide interactions. This framework provides 

computational efficiency, adaptability, and visualization, enabling the integration of control logic and 
qualitative decision-making elements. Three case studies of microgrids powered by renewable energy 
demonstrate the framework’s effectiveness in simulating energy distribution, load balancing, and dynamic 
power flow. The results highlight SD’s potential as a valuable modeling tool for studying modern energy 
systems, supporting the design of flexible and resilient infrastructures.  

1 INTRODUCTION 

Global trends shift from fossil fuels toward distributed renewable energy systems due to environmental 
concerns and sustainable development goals. Technological advances and reduced costs have accelerated 
renewable adoption, driving the transition to smart microgrids. Microgrids offer local generation, intelligent 
load management, enhanced resilience, and flexible grid interactions, mitigating issues like severe weather 
impacts, aging infrastructure, cybersecurity risks, and economic inefficiencies (Hu et al. 2024). They 
effectively manage intermittent renewable sources, boosting energy efficiency, reliability, and 

sustainability, and are pivotal for future smart cities (Sodiq et al. 2019). Microgrids are complex systems 
integrating solar, wind, and energy storage technologies, requiring dynamic load management and system 
interaction modeling (Sandelic et al. 2022). DC microgrids offer advantages such as efficient renewable 
energy integration, reduced conversion losses, lower infrastructure costs, and compact size (Planas et al. 
2015). Hybrid DC systems pairing renewable energy with storage optimize efficiency by balancing supply 
and demand (Gonzalez de Durana and Barambones 2018). Growing adoption in smart buildings, data 

centers, electric vehicles, and aircraft systems underscores the need for effective DC microgrid modeling 
and simulation tools. 

 Many papers investigate DC power flow modeling using traditional techniques and simulation 
approaches. Solving power flow equations, essential for determining steady-state network conditions like 
voltages and system losses, relies on computational methods such as Gauss-Seidel and Newton-Raphson 
(Montoya et al. 2018). Other applied methods include Taylor-based (Montoya et al. 2019), graph-based 

(Feng et al. 2018), and convex approaches (Li et al. 2018). Control systems typically treat power demand 
as input and generation as output, necessitating dynamic adjustments for stability (Faraji et al. 2022). 
Conventional grids use a slack bus, while microgrids balance power at the common coupling point (CCP) 
(Lone and Gupta 2023). These methods excel at steady-state analysis but have limited capability for 
modeling dynamics or variable generation scenarios. 
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 Simulation techniques for microgrid modeling include agent-based simulation (ABM) (Gonzalez de 
Durana et al. 2014), discrete-event simulation (DES) (Fellah et al. 2021), and system dynamics (Gonzalez 
de Durana and Barambones 2018). ABM effectively represents generalized energy networks and 

investigates behavioral factors influencing microgrid decisions (Egbue and Uko 2020). DES is useful for 
event-driven operational management but fails to capture long-term feedback and emergent behaviors. 

 SD effectively captures feedback and long-term dynamics in power systems, requiring complexity 
enhancements for broader applicability. Hybrid approaches combining SD and ABM model multi-carrier 
energy networks and multi-power flows (Gonzalez de Durana and Barambones 2018). SD has also 
supported policy analysis and demand-side management (DSM), demonstrating utility in dynamic energy 

modeling (Ahmad et al. 2016). Platforms like AnyLogic facilitate flexible SD modeling and hybrid 
integrations, making them suitable for complex microgrid analysis (Kondoro et al. 2017; Gonzalez de 
Durana and Barambones 2018). 

This paper introduces a novel methodological framework that applies SD to analyze power flow in DC 
power distribution systems. In this approach, electrical network components, nodes, lines, and loads are 
represented using stock-and-flow structures, enabling time-based analysis of power flow and system 

behavior. The methodology targets distribution networks commonly found in renewable energy microgrids. 
A bottom-up modeling strategy is employed: beginning with simple circuit elements (e.g., voltage dividers) 
and progressively integrating more complex system components, including storage devices, converters, and 
interconnected loads. The SD approach provides conceptual clarity, supports dynamic system visualization, 
and captures feedback effects and nonlinear behavior often overlooked in traditional static power flow 
analysis methods. The conventional methods typically rely on static, numerical analyses and neglect 

temporal dynamics and complex system interactions. The framework is implemented using the AnyLogic 
simulation platform and validated using two microgrid case studies incorporating renewable energy 
systems. 

The remainder of this paper is organized as follows. Section 2 discusses the methodology employed in 
this paper, beginning with the fundamentals of power systems analysis and discussing the System Dynamics 
Approach. Section 3 presents modeling of power dynamics, following our bottom-up approach. Section 4 

discusses the microgrid case studies that we employ to test our methodology. Section 5 concludes with our 
contributions and discusses potential future work. 

2 METHODOLOGY 

2.1 Power Systems Analysis Fundamentals 

An electric power system is a network comprising electric circuits and interconnected elements (generators, 
transmission lines, substations, storage devices, and loads) designed to supply, transfer, convert, store, and 

use electrical energy. These systems can be represented using circuit diagrams and one-line diagrams. 
Circuit diagrams are used to model physical components (e.g., resistors, capacitors, and voltage sources) 
using equivalent electrical elements, allowing for an analysis of power flow. One-line diagrams offer a 
graphical representation of the electric power system, simplifying multi-phase systems into simple 
representations that highlight connections between major components (e.g., generators, transformers, 
loads), to identify key nodes, buses, and connections within the system.  One-line diagrams are useful for 

system planning, operation, and analysis.  
Power distribution systems are governed by Kirchhoff’s Laws, which are essential to all electrical 

analysis techniques. Kirchhoff’s Current Law (KCL) states that the sum of currents entering a node must 
equal the sum leaving it, ensuring charge conservation, as shown in Equation 1. Kirchhoff’s Voltage Law 
(KVL) states that the algebraic sum of voltages around any closed loop is zero, reflecting energy 
conservation, as shown in Equation 2. These laws support analytical techniques such as node and mesh 

analysis, Newton-Raphson, and are essential for understanding circuit behavior in simple and complex 
networks. 

KCL ensures that charge conservation is at a node; however, it does not imply that energy conservation 
occurs at the same node, as this depends on the current entering and exiting the node and the voltage 
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difference between nodes. Power requires current and voltage, and is analyzed across circuit elements, not 
at the nodes. This distinction is important when representing energy movement through a network. Power 
flow analysis applies to the Kirchhoff laws to determine voltages, currents, and power distributions under 

steady-state conditions. Standard numerical methods are used to solve these nonlinear equations; however, 
these techniques are limited in capturing time-dependent behavior in systems that contain dynamic loads, 
energy storage, and distributed generation. 

∑𝐼𝑖𝑛 = ∑𝐼𝑜𝑢𝑡 (1) 

∑𝑉𝑠𝑜𝑢𝑟𝑐𝑒𝑠 = ∑𝑉𝑑𝑟𝑜𝑝𝑠 (2) 

2.2 System Dynamics Approach 

System Dynamics (SD) is a modeling approach used for simulating the behavior of complex systems over 
time using stocks, flows, and feedback loops. It was originally developed to understand different processes 
better and is useful for investigating the effects of different policies. When applied to electrical systems, 
SD enables the simulation and visualization of power flows, energy transfer, and feedback effects, capturing 
time-dependent dynamics rather than relying on static operating points. The modeling framework in this 
paper is formalized through SDPgraphs, which are system dynamics-based power system graphs.   

 The flow element in the SDP graph represents power 𝑝(𝑡) flowing through the network edges and stock 
elements represent electrical nodes where power flow is accumulated as electrical energy, allowing us to 
model normal nodes (where accumulated energy must equal zero). This conceptual framework allows the 
structure of an electrical network to be represented in a form consistent with SD principles, where 
interdependent causal loops drive system behavior. The dynamic behavior of SD is based on finite 
difference equations that are described in (Forrester 1961), where SD has specific elements representing 

variable-type rates (named Flows) and inventory ones (named Stocks). Equation 3 is used to relate a stock 
𝑠 to its net input flow 𝑓, where , 𝑠(𝑡) and 𝑓(𝑡), represent the value of the stock and flow at time 𝑡, 𝛥𝑡 is the 
time increment, and where j < k are time instants. The net input flow measures the amount of all input flows 
minus all output flows. The stocks represent physical accumulation points, i.e., energy stored, or the 
nominal voltage on a bus. Another case can arise in which the net input flow is equal at times j and k, that 
is 𝑓(𝑘) = 𝑓(𝑗). Using Equation 3, we have: 𝑓(𝑘) − 𝑓(𝑗) = 0, and 𝑠(𝑘) = 𝑠(𝑗), and that indicates that the 

stock value remains constant. When electrical nodes that don’t accumulate energy are modeled (𝑠(𝑗) = 0) 
(e.g., voltage buses), the stock is held constant (Equation 4). This ensures that flow continuity is preserved 
and reflects the physical behavior of electrical networks, where charge does not build up at nodes. This 
indicates that the stock value remains equal to zero, and this can be related to the flow continuity equation 
(Euler 1757), thus relating to an SD stock with an electric node. Flows represent power transfer between 
the system elements, which can be represented through a voltage divider.  

 Compared to conventional circuit solvers and numerical power flow methods, SD enables modeling 
continuous dynamics, discrete events, and feedback effects in systems with distributed generation, control 
strategies, and variable loads. While traditional methods focus on solving equilibrium states, SD supports 
the analysis of transient responses, energy balancing, and nonlinear interactions, thus making it useful for 
modern systems such as microgrids. 

𝑓(𝑘) = 𝑓(𝑗) + 𝛥𝑡(𝑠(𝑘) − 𝑠(𝑗)) (3) 

𝑠(𝑘) = 𝑠(𝑗) = 0 (4) 

3 POWER DYNAMICS MODELING 

This section presents the SD modeling framework, which simulates energy flow and feedback in DC power 
systems. The modeling follows a bottom-up strategy, beginning with simple electrical circuits and 

progressively incorporating additional elements such as storage, converters, and loads. Each configuration 
is constructed as an SDPgraph, where system components are modeled using stocks, flows, and feedback 
loops to reflect their structure and dynamic behavior.  
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3.1 Demand-Generation-Delivery Sequence and Basic Circuits 

3.1.1 Demand-Generation-Delivery (DGD) Sequence 

The DGD sequence represents the foundational structure of power behavior in the SD framework. When a 

load is activated, it creates a demand that propagates through the system and triggers a generation response. 
Power is then delivered through the transmission infrastructure to satisfy the load. This sequence captures 
the physical power flow and the causal relationships defining system behavior. In the SD model, this logic 
is used to structure power system components: demand originates at the load, propagates upstream, and 
results in energy injection at the generation source. The generator responds dynamically to voltage changes, 
forming a feedback loop that aligns with real-world electrical system behavior. This interaction is illustrated 

in Figure 1, which depicts the DGD sequence, where a user can turn on/off. 𝑠𝑤, to connect or disconnect a 
load, 𝑟𝑜. The figure also depicts the corresponding SD model on the right.  

3.1.2 Voltage Divider 

A voltage divider is a linear circuit that reduces voltage through a pair of resistors connected in series. The 
output voltage (𝑣𝑜) is a fraction of q of the input voltage 𝑣𝑖 (Equation 5). In SD modeling, this circuit 
illustrates how feedback is embedded in electrical systems, where the output voltage (𝑣𝑜) affects the 

current, 𝑖, which in turn influences, 𝑣𝑜, through resistive elements and forms a causal loop. The auxiliary 
variable 𝑣1, is defined as 𝑣1 = 𝑣𝑖 − 𝑣𝑜. The SD representation of the voltage driver includes three nodes: 
d (demand node), o (output node), and r (reference node), a voltage generator, and two resistances. This 
modeling structure aligns with the SD framework by treating voltage as a stock (at a node) and current or 
power transfer as a flow between nodes. 

In the voltage divider circuit, the generator injects power into the system. This power is distributed 

across the resistors in the form of voltage drops. According to KVL, the total sum of these voltage drops 
across the resistive elements must equal the generator’s voltage. In other words, the two resistors entirely 
consume the total voltage supplied by the generator. To determine the efficiency of this system, we calculate 
the ratio of the power delivered to the load to the total power supplied by the generator. This efficiency 
depends on the values of the resistances in the circuit and is an important factor in understanding power 
distribution in more complex models. 

 

Figure 1: DGD sequence and corresponding SD model in AnyLogic. 

𝑣𝑜 = 𝑞 𝑣𝑖,  where 𝑞 =
𝑟𝑜

𝑟𝑖 + 𝑟𝑜
 (5) 

𝑝𝑖 =
1

𝜂
 𝑝𝑜 (6) 

𝑝𝑜 = 𝑝𝑖 − 𝑝𝑑  
(7) 
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3.2 Modeling Core Electrical Behaviors in SD 

3.2.1 Power, Single-Line Diagrams (SLDs), and Hybrid Buses 

In this section, we build upon the voltage divider structure introduced in Section 3.1.2 and extend the SD 

framework to more abstract representations of power flow using single-line diagrams and hybrid buses. In 
traditional power systems analysis, the power flow problem involves determining voltage magnitudes and 
phase angles at network buses, given that voltage and power levels at another set of buses is known. In DC 
systems, this problem is simplified to finding the input power 𝑝𝑖, given output power 𝑝𝑜, often under user-
controlled loads, thus when efficiency, 𝜂  (which is based on the equation 𝑝𝑜 = 𝜂𝑝𝑖 ),  is known, the 
relationship is stated in Equation 6. Efficiency is an essential part of the proposed approach. In the SD 

framework, a closed voltage divider circuit implies constant stored energy, which can be zero or greater. 
The SD stock element represents specialized busbars for battery charging and energy storage. 
 SLDs offer a simplified view of bus power transfer, illustrating current conservation at nodes 
(Kirchoff’s first law) and energy conservation across circuits (Kirchoff’s second law). The output power at 
individual nodes is less than the input power due to losses (𝑝𝑑 < 𝑝𝑖, 𝑝𝑜 < 𝑝𝑖), and total power is conserved 
𝑝𝑑 + 𝑝𝑜 = 𝑝𝑖. To illustrate this in the SD framework, we introduce the hybrid bus, which is a component 

that represents the entire voltage divider and facilitates the modeling of energy dissipation. Given efficiency 
𝜂, input power is calculated (Equation 6), and dissipated power (Equation 7), reflecting energy loss due to 
inefficiency.  

3.2.2 Long Voltage Divider (LVD) 

The LVD extends the basic voltage divider by introducing an additional resistor 𝑟𝑔, between the generator 
voltage 𝑣𝑔  and the main divider resistance 𝑟𝑑 , modeling power along transmission lines between the 

generator and the load. In this configuration, the generator supplies power 𝑝𝑔, a portion of which (𝑝𝑔𝑑) is 
dissipated at the resistor 𝑟𝑔, while the remainder, 𝑝𝑙, reaches the load segment. Further losses occur across 
the main divider resistance 𝑟𝑑, resulting in the final output power, 𝑝𝑜. This setup allows each segment’s 
energy balance to be expressed via conservation. This structure supports the SD modeling of distributed 
losses and reinforces energy conservation at each hybrid bus.  

3.2.3 Multiple Voltage Divider 

The simple and long voltage dividers can be extended into a multiple-voltage divider with n stages. Each 
stage consists of a resistor and load, enabling a representation of distributed electrical systems, and builds 
on the previous examples. Each segment is treated as a localized power flow unit with input power 𝑝𝑖𝑘, 
output power 𝑝𝑜𝑘 , and dissipated losses 𝑝𝑑𝑘 , governed by efficiency or resistance. Variable naming is 
adapted accordingly, with stage-wise voltages and resistances. This structure supports scalable SD models 
that preserve energy conservation at each stage.  

3.3 System Dynamics Modeling of Power Systems and Elements 

When creating the SD model of the Voltage Divider, stocks can have zero energy storage, as this is 
achievable through using a modified hybrid busbar and including it in the SD framework. We include power 
input, output, and dissipation, modeled in stock-and-flow structures within the SD model, with associated 
efficiency parameters.  

3.3.1 Transmission Lines 

Transmission lines transfer electrical power from generators to loads, with long-distance lines typically 
using high-voltage AC to minimize losses, and short-range distribution may use low-voltage AC or DC. In 
the SD framework, a transmission line is modeled like a voltage divider, due to its behavior, which is like 
a resistive element in terms of active power flow (Figure 2). 
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3.3.2 Transformer 

An AC transformer is a device that transfers power between two circuits through electromagnetic induction, 
which operates at the same frequency and adjusts voltage and current levels while preserving power. The 

model is based on Faraday’s law, which states that the rate between the input and the output voltages is 
equal to n, the ratio between the number of turns in their respective windings, i.e., Vout = n Vin.. Efficiency 
is defined as the ratio between output and input powers, i.e., 𝜂 = 𝑃𝑜𝑢𝑡/𝑃𝑖𝑛. In the SD model (Figure 2), the 
transformer SDPGraph is represented using the same structure as the previous element, with power balance 
defined by efficiency. The value for efficiency is 0.99 for the transformer, compared to 0.9 for the voltage 
divider and line previously. Although this paper refers to DC networks, the transformer model has been 

included because it can be considered a direct precedent of DC-DC converters, which perform a similar 
function in DC networks with better efficiency. 

 

Figure 2: Transmission Line and corresponding SD. 

3.3.3 Power Converters 

Power converters are essential in modern energy systems, enabling voltage adaptation and current type 

transformation. There are two types, AC/DC and DC/DC converters. AC/DC converters transform AC into 

DC at a defined voltage level, commonly used in power supplies and renewable energy systems. Their 

efficiency ranges from 80-90%, with high-performance units reaching 95%. DC/DC converters shift DC 

voltage levels, which are often used in battery storage systems or DC microgrids. The DC/DC converters 

are highly efficient, with efficiency levels between 87% and 92%, and some reaching over 99%. In the SD 

model, both types share a similar structure to transformers, with an efficiency parameter of 𝜂 =
𝑝𝑜

𝑝𝑖
The main 

distinction lies in the input and output currents. For illustrative purposes, Figure 3 shows the DC/DC 

converter SLD and its associated SD model. The AC/DC converter shares the same architecture, 

incorporating an AC generator as the input and connecting to a/DC load.  

 

Figure 3: DC/DC converter SLD and corresponding SD model. 

3.3.4 Energy Storage Elements 

In SD modeling, energy storage is represented as a stock, with stored energy, 𝑒, governed by a differential 
equation (Equation 8), where 𝑝𝑖  is input(charging) power and 𝑝𝑏  is output (discharging power). This 
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supports flexibility of varying battery behaviors, including simultaneous or independent charge/discharge 
flows, depending on system design. Charger and battery storage characteristics define the flow limits and 
efficiencies modeled within the SD model. 

𝑑𝑒

𝑑𝑡
= 𝑝𝑖 − 𝑝𝑏 (8) 

3.3.5 Interrupters 

Circuit breakers and interrupters disconnect power flow in a line; however, SD does not support direct line 
cuts. To replicate this behavior, we model the effect indirectly using power loss. When the breaker is closed, 
lost power is 𝑝𝑙 ≈ 0, and the output power is 𝑝2 = 𝑝1, and efficiency is 𝜂 = 1, due to efficiency being 
modeled as 𝑝2  divided by 𝑝1 . When open, 𝑝2 = 0, and 𝑝𝑙 = 𝑝1 , giving 𝜂 = 0  . Thus, efficiency 
dynamically reflects the breaker state, and in the simulation, this is modeled using the variable 𝑝𝑑, which 
is left undefined at start time and can be set by the user at runtime to emulate manual switching behavior. 

3.3.6 Exogenous Actions and Smart Meter Integration 

The previous subsections focused on internal power system components, however, external variables, such 
as user inputs and sensor feedback, can also influence real-world systems. In SD models, exogenous 
variables (e.g., user inputs, real-time sensor data) can drive dynamic behaviors and are essential in 
simulating modern grid operations and resilience strategies. Example applications of power systems are 
smart meters, which provide real-time measurements (e.g., power values) to monitor line flows and detect 

disruptions. They can enable grid optimization and enhance cybersecurity, especially when using SD to 
simulate grid vulnerabilities and system responses. Smart meters contribute to cybersecurity and grid 
resilience in modern systems through: (1) Proactive Vulnerability Assessment, (2) Anomaly detection, (3) 
Secure communication protocols, (4) Segmentation, (5) Intrusion Detection Systems (IDS) for early threat 
detection, (6) Proactive monitoring and threat mitigation. SD can enable the simulation of these different 
interactions by capturing the behavior of how smart meter data, communication layers, and operator 

responses affect grid stability over time. This can extend the presented modeling approach beyond 
simulating power flow, support cyber-physical resilience analysis, and provide informed operation 
decision-making in modern energy systems.   

4 MICROGRID CASE STUDIES 

This section presents case studies that demonstrate the application of the proposed SD methodology in 
modeling electrical power systems. The first case study models CubeSat’s electronic power system (EPS) 

using SD to simulate energy generation, storage, and consumption dynamics in orbit. The other examples 
focus on residential energy systems powered by renewable sources and explore dynamic power 
management, load balancing, and system resilience. The first microgrid case study incorporates solar and 
wind energy to supply four residential units, highlighting generation variability and demand-side dynamics. 
The second extends this to six units, incorporating a hybrid SD-ABM approach to simulate household 
behaviors and cyber threats, offering insights into grid adaptability and cybersecurity resilience. Together, 

these cases illustrate the flexibility and scalability of the SD framework in analyzing modern, distributed 
energy systems. The DC/DC and AC/DC converters used in the microgrid, and CubeSat examples are 
modeled using the same structural representation as transformers, described in Section 3.3.2, highlighting 
the role of transformer dynamics in enabling high-efficiency energy conversion. 

4.1 Basic Microgrid Structure and SD Model 

The case studies in this paper will share a common microgrid circuit, and the basic circuit is displayed in 

Figure 4 on the right. The circuit consists of three voltage sources 𝑣1, 𝑣2, 𝑣3, with internal resistances 𝑟1, 
𝑟2, 𝑟3, connected in parallel to a bus (node d). There are four loads 𝑅1, 𝑅2, 𝑅3, 𝑅4, which are also connected 
in parallel to another bus (node o), with a transmission line of resistance 𝑟𝑑 , linking both banks. This 
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structure follows the LVD model and replaces the voltage generator with three separate ones and the load 
resistor with four separate ones.  

Figure 4 illustrates the corresponding SLD of the basic circuit of a microgrid on the left, with three 

generators in parallel 𝐺1, 𝐺2, 𝐺3, and these inject power flows 𝑝𝑔1, 𝑝𝑔2, 𝑝𝑔3. There are four load resistors in 
parallel,  𝑅1, 𝑅2, 𝑅3, 𝑅4, and the consumption at each of these loads is 𝑝𝑙1, 𝑝𝑙2, 𝑝𝑙3, 𝑝𝑙4. Power losses on 
both the generator and load sides are captured as ∑ 𝑝𝑔𝑑 and ∑ 𝑝𝑔𝑜, with the total power transferred across 
the line represented by 𝑝1(Figure 4). This resultant SLD forms the basis for the SD implementation of the 
case studies presented in this paper.  

The SD model implementation applies to a standard hybrid bus configuration and ensures that each bus 

satisfies the condition: 𝛴𝑝 = 0  (Figure 5). Generator-side losses, transmission losses, and load-side 
distribution are modeled using efficiency parameters, and input/output flows are managed with interactive 
sliders. In the SD model, one generator operates as a slack generator, automatically adjusting its output to 
maintain power balance and satisfy 𝛴𝑝 = 0. 

4.2 CubeSat Electrical Power System Modeling 

This case study applies the SD framework to model the EPS of a CubeSat. The CubeSat is a mini satellite 

used for space research and deployed in low Earth orbit for Earth observation, technology demonstration, 
or experiments or projects. The EPS is responsible for the generation, storage, distribution, and management 
of a satellite’s electric power. A CubeSat consists of the following features: solar panels for energy 
generation, batteries for storage, and electronic subsystems for consumption. The CubeSat alternates 
between sunlight and eclipse periods during its operation, where the battery is charged during sunlight 
exposure, and power is distributed to power the CubeSat during the eclipse period, thus developing a model 

that can provide insights into strategies for energy availability, system reliability, and power allocation. 
The SD modeling process for the EPS of a CubeSat is a six-step process. First, we define system 

boundaries and components, including solar generation, battery storage, and subsystem loads. Second, we 
represent key energy nodes as SD stocks, such as battery charge level and available solar power generated. 
Third, we model power flows between solar panels, battery, and loads based on orbital lighting conditions 
and system demand.  We include control logic using SD Flows to simulate energy regulation, critical load 

prioritization, and safe-mode behavior during low-power events. Fifth, we run dynamic simulations (e.g., 
high-demand scenario, contingency operations) over multiple orbit cycles to evaluate energy efficiency, 
load allocation, and system behavior. The final step is refinement and optimization of the model, which 
involves a sensitivity analysis.  

The SD model for the CubeSat EPS is shown in Figure 6, where the model captures energy generation 
from two solar arrays and distributes it into two subsystem loads. Battery behavior is modeled as a central 

stock, with inflow during sunlight and discharge during eclipse. This case study highlights the SD’s 
strengths in modeling time-dependent, resource-constrained systems and the modular nature of this 
approach, which can be extended to model larger satellite networks and incorporate adaptive control 
strategies or integrated thermal/power co-models. There is also the capability to analyze different scenarios 
under variable orbital conditions, such as solar degradation or battery aging.  

4.3 Renewable Microgrid for Four Residential Units 

This example uses SD to model a microgrid that integrates renewable energy (solar, wind) to supply four 
residential units, and a large battery and a slack generator support the microgrid. The implementation is 
illustrated in Figure 7. This allows for an insight into energy generation, load balancing, and dynamic power 
distribution when considering variations in renewable energy and household demand. Solar (gsun) and wind 
(gwind) generation are predefined inputs, while household demand powers (𝑝1, 𝑝2, 𝑝3, 𝑝4), given by the 
demands 𝑑𝑝1, 𝑑𝑝2, 𝑑𝑝3, 𝑑𝑝4are driven by individual load profiles (dpf1, dpf2, dpf3, dpf4). The amount of 

power here is absorbed from bus d, and then, through feedback, it asks for power pd. 
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Figure 4: Basic microgrid circuit (right) and corresponding SLD (left). 

 

Figure 5: SD implementation of the basic microgrid model in AnyLogic. 

 

Figure 6: SD implementation of the CubeSat EPS. 

The battery charges via excess solar and wind generation and discharges when household demand 
exceeds renewable generation. Power flows to the homes are only allowed if the battery energy exceeds a 
defined threshold to simulate operational thresholds. The initial battery capacity is 40 Wh, and feedback 
mechanisms manage charge/discharge flows in real time. Interactive slides can modify demand or supply 

parameters within a controlled range, supporting scenario analysis. A slack generator injects balancing 
power to maintain zero net energy at the generation-side bus. The SD model uses feedback to control flows, 
ensuring that all buses satisfy 𝛴𝑝 = 0, and simulates load balancing and storage dynamics under variable 
renewable supply.  

Compared to traditional power flow solvers, which typically evaluate steady-state behavior, the SD-
based approach allows us to model how power generation, storage, and demand interact dynamically over 

time. This supports scenario testing with renewables and control strategies, capturing feedback-driven 
interactions that reveal system dynamics often missed by equilibrium-based models. 
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4.4 Microgrid for Six Residential Units 

The final case study applies SD to model a microgrid serving six interconnected households powered by 

solar panels, wind turbines, and energy storage, aiming for self-sufficient and efficient energy use 

(Gonzalez de Durana and Barambones 2018). A Point of Common Coupling (PCC) manages energy 

exchange with the external grid (Figure 8). Solar and wind generation are modeled using GRETA-based 

profiles, while each home includes battery storage for load-based charging/discharging. A pumped water 

storage system linked to the wind turbine stores surplus energy via gravitational potential. 

 

Figure 7: Microgrid model of four residential households.  

 

Figure 8: SD model of six households with shared wind turbine and PCC connection. 

 
Each home is modeled as an agent with SD logic for energy generation, storage, and consumption 

(Figure 9). Homes include multiple appliances, can consume, store, or feed energy into the grid, and use 
discrete events for managing power flows. A central node (z) allocates energy, while storage (yellow “P” 
in Figure 9 on the left) captures surplus and discharges during deficits—dynamic demand and real-time 

feedback support local energy optimization. A wind generator agent similarly employs SD to model power 
output, storage, and load balancing (Figure 9). A central node (z) manages storage, grid, and consumption 
interactions. A yellow “P” variable in the wind turbine Agent on the right in Figure 9 relates to power 
generation capacity or wind speed influence. The model integrates SD and ABM in Anylogic, enabling 
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dynamic interactions among households, generators, and energy storage systems. Each agent responds 
autonomously to generation variability, storage levels, and load demands. This hybrid approach captures 
decentralized control strategies and adaptive behaviors, demonstrating how SD and ABM can jointly 

simulate resilient, renewable-powered energy networks.  

 

Figure 9: SD of residential household agent (left), and SD of wind turbine agent (right). 

5 CONCLUSION AND FUTURE WORK 

This paper has presented Power Dynamics, a methodology that applies SD to model and analyze DC 

distribution systems, focusing on renewable energy microgrids. In this approach, electrical network nodes 
are represented as Stock elements, and power transfers are modeled as flows. This enables a dynamic 
visualization of power evolution over time and facilitates the study of system behavior beyond traditional 
static equilibrium conditions. The power dynamics methodology provides computational efficiency, 
visualization of energy networks, and scalability. The work aims to further the understanding of the 
complex interdependencies that occur within energy systems through the use of SD, as this allows us to 

capture the dynamic feedback loops, and interactions that occur, and offers a framework for modeling DC 
power systems, such as renewable energy microgrids, as demonstrated in this paper.  

This research emphasizes the systemic interactions of power generation and consumption within critical 
infrastructures. Grafius et al. (2020) highlight that infrastructure networks function as complex adaptive 
systems with interdependencies affecting resilience and efficiency. Energy systems are embedded in 
broader socio-technical and cyber-physical contexts, where dynamic feedback loops impact operational 

stability. The proposed SD approach captures time-dependent power flows, storage dynamics, and control 
actions more effectively than steady-state methods, essential for renewable microgrids and CubeSats. 
Future research can apply SD to analyze resilience against cybersecurity threats and explore hybrid models 
integrating ABM, DES, and Machine Learning techniques (Elkamel et al. 2023; Ibrahim et al. 2023). The 
AnyLogic platform enables flexible and scalable integration of these methodologies.  
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