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ABSTRACT 

Production Planning and Control (PPC) faces increasing complexity due to volatile demand, high product 
variety, and dynamic shop floor conditions. Reinforcement Learning (RL) offers adaptive decision-making 
capabilities to address these challenges. RL often relies on simulation environments for the intensive 
training, allowing for short run times during execution. This paper reviews existing literature to examine 
how RL agents are modeled in terms of state space, action space, and reward function, focusing on order 

release and related production scheduling tasks. The findings reveal considerable variation in modeling 
approaches and a lack of theoretical guidance, particularly in reward design and feature selection. 

1 INTRODUCTION 

The increasing integration of global markets and accelerating economic processes have intensified 
competitive pressures on manufacturing companies. These manifest in fluctuating demand, high product 
variety, and persistent cost constraints (Bauernhansl, 2023). Consequently, manufacturers are confronted 

with rising expectations regarding flexibility, responsiveness, and delivery performance. All these factors 
are directly impacted by the effectiveness of Production Planning and Control (PPC) (Schuh and Stich, 
2012). Within PPC, order release represents a critical control lever, as it regulates the flow of jobs into the 
production system and thereby influences key performance indicators such as throughput, lead time, and 
work-in-progress (WIP) levels (Bauernhansl, 2020; Lödding, 2016). 

Traditional order release mechanisms, often rule-based and designed for static environments, struggle 

to cope with the increasing volatility, customization, and reduced time-to-market requirements in modern 
manufacturing. While traditional PPC approaches have been extensively studied and successfully applied 
in many settings, their static and predefined nature offers limited flexibility. (Bauernhansl, 2020; Wiendahl 
et al., 2015) In particular, they fall short in adapting to real-time data and dynamic shop floor conditions, 
leaving potential for improvement in responsiveness and decision quality. (Lödding, 2016) Recent advances 
in Reinforcement Learning (RL) offer promising capabilities to address these challenges. RL algorithms 

are well-suited for environments characterized by sequential decisions, delayed effects, and non-linear 
dynamics, all of which are typical in production settings. These developments enable autonomous agents 
to learn context-dependent control policies that dynamically balance trade-offs between competing 
objectives such as throughput, lead time, and resource utilization. This makes RL a compelling approach 
for rethinking traditional order release strategies in modern PPC systems. (Steinbacher et al., 2024) In this 
context, simulation environments and digital twins play a crucial role. They enable RL agents to learn and 

test control policies in dynamic and complex production systems without risking real-world setbacks. By 
simulating alternative control strategies in a virtual simulation, decision-making quality, and adaptability 
can be investigated. While previous literature, such as (Panzer and Bender, 2021), have provided structured 
overviews of DRL in PPC systems, this work primarily focuses on algorithmic classification and application 
areas. Yet even though there already has been some work on RL for order release, there is no systematic 
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review on the field. This paper presents a review that is grounded in the observation that the effectiveness 
of RL in production and environments depends not only on the choice of algorithm but fundamentally on 
the quality of the underlying design elements: the state space, the action space, and the reward structure. 

While significant attention in recent literature is directed toward algorithmic improvements, these can 
unfold their full potential only if the basic elements are well modeled. In this regard, modeling state, action, 
and reward can be seen as foundational to successful learning. (Altenmüller et al., 2020)  

This review therefore aims to shift attention back to these core modeling components, which often 
receive insufficient attention despite their critical role in shaping learning outcomes. Addressing the 
intersection of order release and RL within PPC, it highlights the limitations of traditional release strategies, 

the challenges posed by non-linear production dynamics, and discusses how RL can offer adaptive, 
performance-oriented control policies (Steinbacher et al., 2024). To the best of the authors’ knowledge, no 
dedicated literature review has been conducted so far. The objective is to synthesize current research, 
identify conceptual and methodological gaps, and outline directions for future work in this emerging field. 

2 RELATED WORK 

This section outlines the relevance of order release within PPC, introduces RL as a decision-making tool 

for production control and motivates its application based on recent methodological advances. 

2.1 Production System Characteristics 

Manufacturing companies operate under diverse conditions and requirements, leading to the use of different 
production system designs. Each system reflects specific operational and market constraints optimized for 
different strategies: flexibility, efficiency or adaptability. The choice of production type has a direct impact 
on planning complexity, scheduling requirements, and order release strategies (Schuh and Stich, 2012). 

Flow Shops are production systems where all jobs follow the same predefined sequence of operations 
through a series of workstations. They are typically designed for higher production volumes with 
standardized workflows, leading to more predictable processing times and efficient material flow 
(Bauernhansl, 2020, 2023; Lödding, 2016; Schuh and Stich, 2012; Wiendahl et al., 2015). Job Shops are 
production systems where products follow unique and variable routing through different workstations, 
typically characterized by high flexibility and low production volumes. Machines and workstations are 

grouped by function, allowing custom manufacturing but leading to complex scheduling (Bauernhansl, 
2020, 2023; Lödding, 2016; Schuh and Stich, 2012; Wiendahl et al., 2015). Matrix-structured Production 
Systems (MSPS) are hybrid manufacturing approaches that combine elements of both job shops and flow 
shops, allowing for flexible routing of jobs while maintaining structured workflows. Workstations are 
dynamically assigned based on real-time production requirements, enabling adaptive manufacturing in 
response to changing demand and resource availability (Greschke, 2020; Kirchberger et al., 2022; Renna, 

2023). Another distinction in production lies in how customer demand is handled. In make-to-stock (MTS) 
systems, products are manufactured based on demand forecasts and held in inventory before customer 
orders are received. This approach is typical for mass production environments where short delivery times 
and cost efficiency are prioritized. In contrast, make-to-order (MTO) systems initiate production only after 
a customer order is placed. While this results in longer lead times, it enables higher product customization 
and reduces inventory costs. As product variety increases and demand becomes more volatile, MTO 

systems are gaining importance in modern manufacturing environments. (Bauernhansl, 2020; Lödding, 
2016; Schuh and Stich, 2012; Wiendahl et al., 2015) 

2.2 Production Planning and Control 

PPC systems are critical for orchestrating the movement of materials and coordinating manufacturing 
processes. Their primary role is to balance production efficiency with demand fluctuations, ensuring that 
resources are utilized effectively while maintaining reliable and predictable lead times. These systems are 

commonly structured hierarchically. At the planning level, production activities are organized, defining 
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broad targets and constraints. At the scheduling level, operational execution is managed in detail. Bridging 
these levels, the order release process dictates the timing and selection of work orders entering production. 
Order release mechanisms, governed by predefined strategies or dynamic policies, regulate WIP levels, and 

ensure that production flow aligns with performance objectives such as minimizing delays or maximizing 
throughput. (Gómez Paredes et al., 2020; Hofmann, 2021; Lödding, 2016; Thürer et al., 2015; Wiendahl et 
al., 2015) 

During production control, orders must be scheduled onto available machines in accordance with 
capacity constraints, processing requirements, and delivery deadlines. This task is also referred to as 
production scheduling and determines the sequence of operations on the shop floor. Key performance 

criteria that should be optimized in production systems include lead time, adherence to delivery dates, and 
capacity utilization. PPC contributes to achieving these objectives through its functions order release and 
production scheduling. (Bauernhansl, 2020; Gómez Paredes et al., 2020; Hofmann, 2021; Lödding, 2016; 
Thürer et al., 2015; Wiendahl et al., 2015) In this context, lead time is the time from customer order 
placement to delivery. Adherence to delivery dates is the extent to which orders are completed and delivered 
on their promised due dates. Capacity utilization is the degree to which available production resources are 

used relative to their maximum capacity (Lödding, 2016). 

2.3 Traditional Order Release Methods 

The most basic form of order release is the immediate release, in which jobs are introduced into the 
production system without any form of restriction or optimization. While this push-based strategy is 
straightforward to implement and requires minimal coordination effort, it may lead to excessive WIP and 
poor system performance. (Lödding, 2016; Thürer et al., 2015) 

The inventory-regulating order release is used primarily in MTS systems, where production is triggered 
when inventory levels fall below predefined thresholds. However, this approach is not applicable in MTO 
environments, where production only begins after a specific customer order is received. (Lödding, 2016) 
Traditional order release methods vary according to production objectives and system constraints. A 
common approach is time-scheduled order release, where release is based on predefined dates derived from 
backward planning. Backward Infinite Loading (BIL) calculates the release date from the due date using a 

fixed planned lead time plus a time buffer, resulting in the latest possible release that still meets the delivery 
deadline. Orders are typically released periodically, such as at the beginning of a shift or workday. This 
approach primarily aims to ensure adherence to delivery dates. (Liu et al., 2023; Lödding, 2016) 

In contrast, load-limited order release, also referred to as Workload Control (WLC), adjusts the release 
of orders based on actual shop floor capacity and current workload. The goal is to stabilize the production 
flow and reduce lead times by preventing system overloads. A well-known implementation of this principle 

is Constant Work-in-Progress (ConWIP), a pull-based mechanism that maintains a constant WIP level by 
releasing a new job only after another order has been completed. In this context, order release is event-
driven and continuous rather than periodic. The WIP level can be defined in terms of the number of jobs or 
the total lead time within the system. (Haeussler et al., 2022; Hendry et al., 2012; Lödding, 2016; Thürer et 
al., 2015) 

These systems introduce the concept of an order pool, in which unreleased jobs wait until they are 

released. When working with ConWIP, the order pool is sorted by predefined dispatching or priority rule: 
When a job is completed, the next job is selected from the pool. (Gómez Paredes et al., 2020; Haeussler et 
al., 2022; Thürer et al., 2015) Common rules are: 

• FIFO (First In, First Out): Jobs are processed in the order they arrive. 
• EDD (Earliest Due Date): Jobs with the earliest due dates are prioritized. 
• SPT (Shortest Processing Time): Jobs with the shortest processing times are released first. 

• LPT (Longest Processing Time): Jobs with the longest processing times are prioritized. 
These traditional approaches are widely used in practice and form the basis for many rule-based production 
control systems. (Bauernhansl, 2020; Gómez Paredes et al., 2020; Liu et al., 2023; Lödding, 2016; Thürer 
et al., 2015; Wiendahl et al., 2015) 
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2.4 Advanced Order Release Methods 

Beyond traditional rule-based approaches, various advanced methods have been developed to improve 
order release decisions by incorporating optimization and learning techniques. One such class includes 

metaheuristic approaches like Genetic Algorithms (GA), which evolve sequences of order releases over 
multiple generations using operators such as crossover and mutation. These methods aim to explore large 
solution spaces and can approximate near-optimal policies for complex scheduling problems. Another 
common approach is Integer Programming (IP) or Mixed-Integer Linear Programming (MILP), where order 
release and scheduling decisions are formulated as optimization problems subject to constraints on capacity, 
due dates, and resource availability. Similarly, Constraint Programming (CP) offers a framework for 

explicitly modeling logical and temporal constraints, making it well-suited for highly complex and 
combinatorial scheduling environments. (Cunha et al., 2020; Hofmann, 2021; Steinbacher et al., 2023) 

Most traditional and advanced order release methods face several limitations in dynamic and complex 
production environments. Key performance metrics such as throughput, lead time, and tardiness exhibit 
non-linear behavior in response to changes in parameters like WIP levels, machine capacity, or order 
sequencing. However, many conventional approaches rely on linear assumptions that fail to capture these 

dynamics particularly under high load or system congestion. (Hofmann, 2021) These limitations highlight 
the need for more adaptive and data-driven methods such as RL. This method has recently emerged as a 
promising alternative for deriving adaptive order release policies. Through interaction with a simulated or 
real environment, RL agents learn control strategies via trial and error, guided by performance-based 
rewards. These approaches are particularly relevant for objectives such as reducing lead times and 
maximizing machine utilization in dynamic and uncertain production settings. (Cunha et al., 2020) 

2.5 Reinforcement Learning 

Reinforcement Learning (RL) is a subfield of machine learning concerned with learning optimal decision-
making policies through interaction with the (often simulated) environment. In contrast to supervised 
learning, where labeled input-output pairs guide the learning process or unsupervised learning, which 
identifies patterns without explicit feedback, RL relies on evaluative feedback in the form of rewards to 
guide behavior over time. In this regard, RL gained significant attention due to its ability to handle 

sequential decision-making problems, where actions influence not just immediate rewards, but also long-
term outcomes. (Russell and Norvig, 2021; Sutton and Barto, 2018) 

Figure 1: The agent-environment interaction in reinforcement learning. (Sutton and Barto, 2018) 

In the RL setting, an agent interacts with its environment by observing the current state, selecting an 
action, and receiving a reward based on the resulting outcome. Over repeated interactions, the agent learns 
a policy that aims to maximize the cumulative reward. At its core, RL is grounded in the Markov Decision 
Process (MDP) framework, which provides a mathematical foundation for modeling decision-making in 
environments with stochastic transitions. A MDP consists of a set of states that represent the environment, 
a set of actions available to the agent, and transition probabilities that define the likelihood of moving from 

one state to another based on the chosen action. The reward function evaluates the effectiveness of an action, 
guiding the learning process toward favorable long-term outcomes. These components form the foundation 
for learning an optimal policy in dynamic environments. (Russell and Norvig, 2021; Sutton and Barto, 
2018)  

RL methods are commonly classified as model-free or model-based, and as value-based or policy-
based. Model-free approaches learn directly from interaction, while model-based methods incorporate 
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predictions about environmental dynamics. Value-based algorithms estimate expected returns of actions in 
a state to derive policies, whereas policy-based methods optimize policies directly. Among the most widely 
used algorithms is Q-learning, which estimates the value of state-action pairs. Its deep learning variant, 

Deep Q-Learning (DQL), uses neural networks to approximate the Q-function, enabling it to scale to larger 
or continuous state spaces. Further advancements include Double DQN (reducing overestimation bias), 
Dueling DQL (separating value and policy learning), and Actor-Critic methods (combining value and 
policy learning). In complex environments involving multiple decision-makers or decentralized control, 
multi-agent Reinforcement Learning (MARL) has gained increasing attention, enabling collaborative or 
competitive learning among several agents. (Sutton and Barto, 2018) 

3 LITERATURE RESEARCH 

This literature review investigates how state, action, and reward spaces are modeled in RL applications for 
order release within PPC. Initial attempts to restrict the review to RL-based order release alone revealed 
only a limited body of work. As it became evident that only a limited number of studies explicitly address 
this topic (Janke et al.; Samsonov et al., 2021; Schneckenreither et al., 2022; Schneckenreither and 
Haeussler, 2019; Schuh et al., 2022; Schuh et al., 2023), the scope was extended to include RL approaches 

to production scheduling, particularly when they feature job queues or order pools, which are conceptually 
and structurally similar to order release systems (Altenmüller et al., 2020; Chang et al., 2022; Da Col and 
Teppan, 2022; Dittrich and Fohlmeister, 2020; Gui et al., 2023; Kardos et al., 2021; Lei et al., 2022; Liu et 
al., 2020; Ragazzini et al., 2021; Samsonov et al., 2021; Song et al., 2023; Steinbacher et al., 2024; Wang 
and Liao, 2024; Zhang et al., 2022). These settings allow comparable insights into the design of agentic 
modeling, especially in contexts involving order selection or dispatching. The collection focused on studies 

that explicitly model an order pool, a queue, or a job list from which selections are made. Included papers 
describe the underlying state-action-reward structure of RL implementations with a preference for flexible 
production systems like job shops or MSPS. Studies not detailing the state, action, and reward design used 
were excluded. Simulation tools and experimental setups were only considered insofar as they influenced 
modeling choices for agent design. In total, 20 relevant papers were identified, among which 18 were 
addressing job shop setups, one additionally addressed a flow shop setup, and only one paper focused on a 

MSPS.  

3.1 State Space Representation 

The reviewed literature shows a broad variety of approaches to modeling the state space in RL applications 
for PPC. While certain elements such as machine status and order-related information are widely included, 
their level of granularity, representation, and encoding differ significantly across studies, reflecting varying 
assumptions about complexity, generalizability, and problem objective. 

A central component in nearly all papers is the inclusion of machine status information, which provides 
the agent with insight into resource availability, workload distribution or idle times. Some studies 
incorporate detailed, machine-specific features such as machine occupancy (availability), remaining 
processing time, the processing time of queued jobs or the queue length at individual machines (Altenmüller 
et al., 2020; Janke et al.; Lei et al., 2022; Liu et al., 2020; Schuh et al., 2022; Schuh et al., 2023; Song et 
al., 2023; Stricker et al., 2018; Zhang et al., 2022). Others like (Chang et al., 2022; Gui et al., 2023; Heger 

and Voss, 2020; Samsonov et al., 2021; Schneckenreither et al., 2022; Schneckenreither and Haeussler, 
2019; Stricker et al., 2018; Wang and Liao, 2024) apply a more aggregated perspective using system-level 
indicators such as the average machine utilization rate, estimated or actual earliness and tardiness rates or 
mean workload across machines. These aggregated representations emphasize performance-relevant 
system dynamics rather than individual machine status. This diversity is also reflected in the overall 
granularity of state information, ranging from as few as four (Chang et al., 2022) up to 210 (Altenmüller et 

al., 2020) input features. Given this variation, it is reasonable to discuss whether more detailed state vectors 
necessarily lead to better learning outcomes. It seems plausible that a more comprehensive state 
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representation enables better-informed decisions and supports more effective learning. However, it could 
also be argued that excessive detail introduces noise or redundancy, potentially obscuring relevant patterns. 
Correlated or uninformative features may cause the agent to overfit to illegitimate relationships, thereby 

reducing policy robustness. In such cases, the model may attribute importance to features that are 
statistically associated with outcomes but lack a causal connection to the underlying system dynamic. 
(Chang et al., 2022) In (Heger and Voss, 2020; Zhang et al., 2022) machine information across similar 
resource types is combined to reduce dimensionality. Grouping machines by functional equivalence is 
frequently used to strike a balance between complexity and expressiveness, as it reduces the number of 
state variables without disregarding relevant structural characteristics.  

In addition to machine states, order-related features are a second essential category. These include due 
dates, processing times, routing information, and product types. In systems operating under WLC, the order 
pool is often explicitly modeled, since the agent is typically required to select the next job to release. Higher 
product variety leads to a larger number of possible job configurations, which directly increases the 
dimensionality of the state space. Consequently, the overall size of the state vector is closely linked to both 
the structure of the production system (e.g., number of machines) and the diversity of the product catalogue. 

(Altenmüller et al., 2020; Heger and Voss, 2020; Janke et al.; Kardos et al., 2021; Lei et al., 2022; Liu et 
al., 2020; Schuh et al., 2023; Song et al., 2023; Steinbacher et al., 2024; Stricker et al., 2018) 

Another point of divergence is the encoding of state features, which varies depending on algorithmic 
requirements and the nature of the input data. When using tabular Q-learning, discretization of continuous 
variables is necessary to create a finite state space. This can be achieved via binning but may reduce 
precision and lead to information loss. In contrast deep RL methods can retain continuous variables, which 

allows for more nuanced learning but increases model complexity. (Zhang et al., 2022) Categorical features 
are typically represented using one-hot encoding. For example, in WLC environments, the currently idle 
machine waiting for a job can be encoded as a one-hot vector or product types may be represented similarly 
(Altenmüller et al., 2020; Kardos et al., 2021; Steinbacher et al., 2024). Binary encodings are often used to 
indicate the status of machines (e.g., idle or busy), while continuous values may include system-level KPIs 
such as the ratio of late jobs, average tardiness, or the proportion of busy machines. (Altenmüller et al., 

2020; Liu et al., 2020; Song et al., 2023; Zhang et al., 2022) 
Some studies also incorporate knowledge used in the reward calculation directly into the state 

representation. This design choice has been made by several authors and could be intended to improve the 
learnability of the state-action-reward relationship. By embedding performance-relevant variables into the 
state (e.g., earliness/ tardiness ratios or mean WIP), the agent might associate specific states and actions 
with observed rewards more easily. This alignment may support faster convergence and more stable policy 

development, especially when rewards are sparse or delayed. (Chang et al., 2022; Heger and Voss, 2020; 
Schneckenreither et al., 2021; Schneckenreither et al., 2022; Schuh et al., 2023) 

Despite these practical insights, there is no consistent theoretical framework guiding the design of state 
representations in the reviewed literature. Decisions regarding the number, type, and encoding of features 
are often problem-specific, heuristic or chosen by experts. As a result, a systematic understanding on how 
the state space representation influences the learning performance remains underdeveloped. Future research 

could contribute by investigating design principles for state representations, including dimensionality 
reduction techniques, relevance assessment of features, and the impact of encoding choices on policy 
generalization. 

3.2 Action Space Representation 

The way the action space is defined in RL applications for PPC varies considerably across studies and is 
closely linked to the underlying problem formulation and control objective. Fundamentally, the action space 

specifies the set of decisions available to the agent at each decision point and thus determines the 
expressiveness and feasibility of the learned policy. A central requirement for many implementations is that 
the action space must remain consistent in size across all decisions which is typically achieved by fixing 
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the number of possible actions either by limiting the size of the order pool or by abstracting actions into 
higher-level strategies. (Altenmüller et al., 2020) 

A key aspect in RL-based order release and scheduling is the agent triggering mechanism, which 

defines when a decision is made. Two dominant patterns can be observed in the literature: episodic decision-
making, where actions are taken at fixed intervals (e.g., at the beginning of a shift or planning period) 
(Samsonov et al., 2021; Schneckenreither et al., 2022; Schneckenreither and Haeussler, 2019) and event-
driven (continuous) triggering, where the agent is activated in response to specific events such as a machine 
becoming idle or a job being completed (Altenmüller et al., 2020; Chang et al., 2022; Dittrich and 
Fohlmeister, 2020; Gui et al., 2023; Heger and Voss, 2020; Janke et al.; Kardos et al., 2021; Lei et al., 2022; 

Liu et al., 2020; Ragazzini et al., 2021; Schuh et al., 2022; Schuh et al., 2023; Song et al., 2023; Steinbacher 
et al., 2024; Stricker et al., 2018; Wang and Liao, 2024; Zhang et al., 2022). The choice of timing has 
implications for both system responsiveness and computational effort. 

Several works include specialized actions to increase flexibility and maintain feasibility. A commonly 
used addition is the no-op action, which allows the agent to explicitly decide not to act, as is especially 
useful in scenarios where premature order release may lead to congestion (Altenmüller et al., 2020; Janke 

et al.; Ragazzini et al., 2021; Samsonov et al., 2021; Schneckenreither et al., 2022; Schneckenreither and 
Haeussler, 2019; Schuh et al., 2023; Stricker et al., 2018; Zhang et al., 2022). Another important aspect is 
the handling of invalid or infeasible actions that would violate constraints. These can be releasing an order 
that cannot be processed on the selected machine or choosing an index in the order pool that does not 
correspond to a valid job. These are typically penalized with negative rewards and re-triggering of the 
decision process, enforcing adherence to feasibility constraints during training and execution. (Altenmüller 

et al., 2020; Zhang et al., 2022) 
The actual form of the action depends on the specific objective and structure of the control problem. 

Across the literature, several distinct modeling approaches can be identified: One intuitive strategy is to 
model the agent, so it is selecting the next order to release from a sorted order pool. Here the agent chooses 
from a fixed-length list of candidate jobs which is the common method in WLC settings. A challenge is 
that the number of actual orders in the pool varies dynamically depending on order reception. When the 

order reception is higher than the slots in the pool a pre-sorting must be done, for example by due date. 
When too few orders arrive, this approach requires careful handling of index validity and often includes 
placeholder actions to pad the action vector. The action space is modeled such that it chooses an index 
which is later mapped to the order pool. (Altenmüller et al., 2020; Janke et al.; Schuh et al., 2022; Schuh et 
al., 2023) 
Another straightforward alternative is to model the decision as choosing between predefined dispatching 

rules (e.g., FIFO, EDD, SPT), rather than directly optimizing the underlying control problem. This strategy 
allows the system to dynamically adapt its job selection based on the current environment’s state. Its 
advantage lies in the interpretable action space and reduced variance in learning. The next order is chosen 
from the queue according to the selected dispatching strategy. These studies (Chang et al., 2022; Heger and 
Voss, 2020; Liu et al., 2020; Wang and Liao, 2024) highlight the benefit of dynamically switching between 
dispatching strategies to respond to changing production situations and order placement, however focus on 

simplified MDP settings.  
Another action modeling approach chosen by (Ragazzini et al., 2021) is to dynamically modify the WIP 

limit. The agent decides whether to increase, decrease or retain the current release threshold. This enables 
indirect control over the release flow and adapts system load over time. The actual order selection then 
follows a predefined dispatching rule (FIFO). While this method is easy to implement and interpretable, its 
decision scope is more limited.  

A fundamentally different perspective is adopted in time-scheduled order release systems such as those 
based on the work of (Schneckenreither et al., 2022; Schneckenreither and Haeussler, 2019). Here, the agent 
does not directly decide which job to release but rather learns dynamic lead times or release offsets. The 
agents increase or decrease the lead time for an order by one time unit, which indirectly influences when 
the order is scheduled for release. The actual release is then triggered by a time-scheduled mechanism. The 
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release date is first calculated by subtracting the due date with the planned lead time and if relevant add a 
buffer (BIL). Once the release date approaches the current time the order is released in an episodic fashion 
(beginning of day or shift). Since the release logic is decoupled from the learning agent additional 

implementation is needed to manage the release mechanism. The validation/ the feasibility of calculated 
release dates as well as buffers needs to be done too. Invalid actions in this setting might include setting the 
release date too late to still meet the due date. (Schneckenreither et al., 2021; Schneckenreither et al., 2022; 
Schneckenreither and Haeussler, 2019) A variation of this approach done by (Samsonov et al., 2021) using 
predicted processing times which functions as a relative indicator. After the agent predicted the best relative 
duration for the next order, the duration is mapped to a specific order in the pool. The order which is closest 

to the agent’s time is chosen. Although both (Samsonov et al., 2021) and (Schneckenreither et al., 2022; 
Schneckenreither and Haeussler, 2019) use a continuous action space, the main difference is that a fixed 
lead time/ processing time approach is used in this variation. This approach still showed promising results. 
When extending the order release problem to a comparable production scheduling context, RL can also be 
used to assign incoming production orders directly to machines. In this case each machine maintains its 
own queue. In (Dittrich and Fohlmeister, 2020; Kardos et al., 2021; Steinbacher et al., 2024; Stricker et al., 

2018; Zhang et al., 2022) the agent selects the next machine on which the job should be processed. A special 
case is presented in (Chang et al., 2022; Gui et al., 2023; Lei et al., 2022; Song et al., 2023), where a 
composite action is introduced. Here the agent makes two decisions simultaneously. When a machine 
becomes idle, it must decide both which jobs to process from the local queue and to which machine the 
currently finished production order should be assigned. These combined actions enable more flexible 
policies and eliminate the need for a decentralized multi-agent architecture. (Gui et al., 2023)  

In summary, the reviewed literature reveals a range of action modeling strategies, each with different 
levels of abstraction, complexity, and responsiveness. The main differences lie in whether the agent selects 
concrete orders or abstract policies, whether control is exerted directly or via intermediate parameters (e.g., 
lead time or WIP limit) and the level of integration between order release and scheduling decisions. All 
approaches share the need for a well-structured and fixed-length action space to ensure compatibility with 
learning algorithms and enable scalable implementation. While the reviewed literature demonstrates that a 

variety of action space definitions can lead to effective RL policies, the choice of action representation 
should not be made arbitrarily. Instead, it should reflect the characteristics of the production environment, 
the control objectives and the constraints imposed by existing systems. One decision criterion is based on 
the already established control mechanisms. For systems using time-scheduled release logic (e.g., BIL), RL 
agents that adjust lead times or release offsets offer a seamless integration point without altering the release 
mechanism itself. In contrast, systems organized around WLC, and order pools are well-suited for RL 

agents that either select jobs directly or choose dispatching strategies, leveraging the existing logic for order 
sorting and prioritization. 

A robust and simple implementation can be provided with selecting among dispatching rules. This 
approach also improves transparency and interpretability, as the selected strategies correspond to well-
understood heuristics. Being in the context of systems with critical bottlenecks, complex shop layouts 
(complex job shop or MSPS), or which are disruption-prone (e.g., due to frequent machine failures, missing 

materials, or last-minute order changes) may justify using more sophisticated adaptive action structures. In 
any case the action space representation should align with the existing infrastructure and be tailored to the 
environment at hand, striking a balance between expressiveness, learnability, and practical integration.  

3.3 Reward Modeling 

The design of the reward function is a central component in RL and directly influences the effectiveness, 
convergence, and interpretability of the learned policy. In the context of PPC, the reward must reflect 

operational objectives such as throughput maximization, lead time reduction, adherence to delivery dates, 
WIP stabilization, or cost minimization. Across the reviewed literature, a wide range of reward formulations 
were observed, often tailored to the structure of the production environment and the nature of the control 
task.  
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A basic distinction can be made between sparse (Dittrich and Fohlmeister, 2020; Samsonov et al., 2021; 
Schneckenreither and Haeussler, 2019) and dense (Altenmüller et al., 2020; Chang et al., 2022; Gui et al., 
2023; Heger and Voss, 2020; Janke et al.; Kardos et al., 2021; Lei et al., 2022; Liu et al., 2020; Ragazzini 

et al., 2021; Schneckenreither et al., 2022; Schuh et al., 2022; Schuh et al., 2023; Song et al., 2023; 
Steinbacher et al., 2023; Steinbacher et al., 2024; Stricker et al., 2018; Wang and Liao, 2024; Zhang et al., 
2022) reward structures. Sparse rewards, typically assigned only at the end of an episode, are conceptually 
straightforward and align well with long-term performance metrics (e.g., total tardiness at the end of a shift). 
Their simplicity, however, presents challenges for learning: the agent receives limited feedback, which can 
slow down convergence and complicate credit assignment. Nevertheless, sparse rewards may reduce the 

risk of overfitting to short-term objectives and are suitable for episodic decision settings. In contrast, dense 
rewards are provided at each decision step. This allows for immediate feedback and accelerates the learning 
process, particularly in complex environments where exploration is costly. However, dense rewards may 
introduce unintended incentives: for instance, optimizing short-term machine utilization could conflict with 
long-term delivery performance. Thus, the appropriateness of sparse vs. dense rewards often depends on 
the optimization. In (Altenmüller et al., 2020) it is suggested that a transition from dense to sparse rewards 

may yield robust policies. The idea of having dense rewards in early phases to guide learning and sparse in 
later stages to align with global objectives remains an open area for research. 

Additionally, difference rewards, which evaluate the change in system performance between 
consecutive steps, rather than the absolute value, are sometimes used. These require less domain-specific 
tuning and help the agent identify the marginal impact of its actions, making them particularly useful when 
system behavior is highly dynamic or stochastic. (Chang et al., 2022; Gui et al., 2023; Heger and Voss, 

2020; Lei et al., 2022; Song et al., 2023; Wang and Liao, 2024) 
In multi-agent settings, a distinction is made between local (Steinbacher et al., 2024; Zhang et al., 2022) 

and global (Dittrich and Fohlmeister, 2020; Liu et al., 2020; Schneckenreither et al., 2022) rewards. While 
global rewards promote system-wide optimization, they often suffer from high variance and delayed 
attribution, making learning unstable. Local rewards provide the agent with feedback on its own 
surroundings and contribution. Although only a few of the reviewed studies employed MARL, the choice 

between global and local reward assignment remains an important design consideration in decentralized 
systems. (Dittrich and Fohlmeister, 2020; Liu et al., 2020; Schneckenreither et al., 2022; Steinbacher et al., 
2024; Zhang et al., 2022) 

A notable strength of RL is its capacity to optimize multi-objective reward functions, enabling agents 
to simultaneously balance multiple KPIs, such as minimizing tardiness while maintaining ConWIP 
(Altenmüller et al., 2020; Ragazzini et al., 2021; Schuh et al., 2022; Steinbacher et al., 2024; Stricker et al., 

2018; Zhang et al., 2022). Moreover, RL offers the flexibility to incorporate system constraints directly into 
the reward formulation. Time-related constraints, WIP limits, or infeasible release dates can be penalized 
to guide the agent toward valid and efficient policies without requiring hard-coded restrictions (Altenmüller 
et al., 2020; Steinbacher et al., 2024; Zhang et al., 2022). Nevertheless, the design of multi-objective reward 
functions remains an open research challenge (Schuh et al., 2022). 

To ensure comparability across different system states, rewards are frequently normalized (Chang et 

al., 2022; Heger and Voss, 2020; Ragazzini et al., 2021; Samsonov et al., 2021; Schneckenreither and 
Haeussler, 2019; Wang and Liao, 2024; Zhang et al., 2022). This improves training stability and avoids 
scale imbalances, particularly when multiple reward components or heterogeneous production scenarios 
are involved (Ragazzini et al., 2021; Zhang et al., 2022).  

Despite its flexibility, reward shaping remains one of the most critical and delicate elements in RL 
design. Poorly designed reward functions may lead to unintended agent behavior such as optimizing easily 

achievable sub-goals while ignoring system-level performance. In (Steinbacher et al., 2024) the agents 
learned to consistently prioritize one of two product types, as this led to more frequent short-term rewards 
at the expense of balanced system utilization. Similarly, in (Altenmüller et al., 2020), a locally rewarded 
agent focused on maximizing throughput by completing as many early jobs as possible. This led to high 
overall rewards while systematically neglecting later ones, resulting in extreme delays for a few orders. 
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These examples highlight the importance of aligning reward components with overarching performance 
objectives. 

4 CONCLUSION AND RESEARCH AGENDA 

This review sets out to examine how existing RL studies model the foundational components, the state 
space, action space, and reward function of learning agents within the context of PPC. While the initial 
focus lay on RL-based approaches to order release, the limited availability of relevant studies led to a scope 
broadening to include RL applications in production scheduling. Considered papers included order pools 
or job queues with a dispatching mechanism, as they exhibit structural and functional similarities to order 
release systems. 

Across literature, modeling approaches vary widely. Regarding the state space, machine-related and 
order-specific features are almost always included, yet the level of detail and aggregation varies 
significantly, often made heuristically without theoretical justification or systematic comparison. 
Similarly, action spaces range from job selection and dispatching rule switching to lead time prediction and 
WIP limit adjustment, reflecting different production logics. These design choices must align with the 
underlying system: time-scheduled vs. WLC-based environments. 

Reward modeling, though flexible, remains a critical challenge. The use of sparse, dense, or difference-
based rewards, along with global or local signals, requires careful alignment with system objectives. 
Improper reward shaping may result in undesired behaviors. Moreover, multi-objective reward functions 
represent a notable strength of RL and appear to offer considerable potential for more widespread and 
effective use in future applications. 

RL is broadly recognized as a promising extension or alternative to traditional PPC mechanisms, 

particularly in complex and volatile environments. Yet, order release remains noticeably underrepresented 
compared to scheduling problems. Despite their increasing industrial relevance, MSPS have similarly rarely 
been considered, particularly in conjunction with order release mechanisms. Moreover, key modeling 
decisions, regarding state, action, and reward representation are often based on heuristics, rather than 
systematic frameworks. In addition, many studies rely on overly simplified simulations, which limit 
transferability and practical relevance of the findings. This suggests that there is further untapped potential 

for RL-based order release strategies to enhance performance indicators such as lead time reduction and 
adherence to delivery dates. 

Building upon the identified research gaps, future research should focus on RL-based order release in 
MSPS, embedded within realistic simulation models or digital twins. Such environments should capture 
some degree of disruption, dynamic conditions, and resource constraints, ensuring a more accurate 
assessment of control strategies. While much of the existing literature emphasizes algorithmic comparisons, 

future research should prioritize the design of the agent’s interaction model, specifically the structure of 
state and action spaces. Special attention should be given to reward modeling, which reflects operational 
trade-offs and has a critical impact on policy behavior. Multi-agent environments may further provide 
valuable opportunities to examine decentralized decision-making and the interplay between local and global 
objectives, especially in the case of the so far underrepresented MSPS. 
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