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ABSTRACT

This paper presents a simulation-driven development approach for a camera-based anti-collision system
designed for automated tower cranes. Stereo camera systems mounted directly on the crane’s hook generate
real-time 3D point clouds to detect people in the immediate danger zone of suspended loads. A virtual
construction site was implemented in a game engine to simulate dynamic scenarios and varying weather
conditions. The system utilizes a neural network for pedestrian detection and computes the minimum
distance between load and detected persons. A closed-loop architecture enables real-time data exchange
between simulation and processing components and allows easy transition to real-world cranes. The system
was evaluated under different visibility conditions, showing high detection accuracy in clear weather and
degraded performance in fog and rain due to the limitations of stereo vision. The results demonstrate
the feasibility of using synthetic environments and point cloud-based perception to develop safety-critical
assistance systems in construction automation.

1 INTRODUCTION

The construction industry remains one of the least automated industries, characterized by a high proportion
of manual labor and limited integration of digital technologies. In contrast to sectors such as manufacturing
or logistics, productivity in the construction industry has only increased by 1 % over the last two decades,
despite increasing pressure due to the shortage of skilled labor, rising material costs, and shorter project
deadlines (McKinsey 2020). The industry can counteract this obstacle primarily through digitalizing and
automating construction machinery. On the one hand, this includes assistance systems for construction
equipment that support workers in fulfilling their tasks, thereby increasing efficiency. On the other hand,
fully autonomous construction machinery is being used to counteract the shortage of skilled labor and to
meet ever-shorter process times. Automation in the construction industry is primarily focused on certain
types of machines that are particularly suitable as autonomous systems due to their tasks and areas of
application. As described in Schock-Schmidtke et al. (2024) and Nguyen and Ha (2023), this primarily
includes machine types for earthmoving and transport, such as excavators, bulldozers, wheel loaders, or
dump trucks. They perform repetitive tasks according to a cyclical principally pattern (first loading, then
navigating to a defined position, and then unloading), which is why automation allows for a high increase
in efficiency and rapid value creation. In civil engineering, the tower crane, in particular, significantly
influences a construction site’s productivity. It depends on the quality of crane operation by the user and the
operation planning by the work scheduling department. Low efficiency and productivity can be attributed to
the low utilization of the tower crane on the construction site, which is 50 % on average (Krause and Ulke
2016). The optimization of process time in civil engineering can therefore be achieved through a higher
degree of automation of a tower crane. The conceptual implementation of a highly automated crane is
described in Schock-Schmidtke et al. (2024). The paper presents an overall concept, including the system
architecture for a highly automated tower crane that is able to move loads autonomously - with humans
only as a fallback instance in the background. Such a system includes sensors that record the construction
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site environment and software that generates a digital 3D construction site model. Suitable movement
trajectories for load transport can be calculated based on this. However, continuous monitoring of the
environment is required during the load movement in order to recognize and prevent possible collisions
with people or other objects on the construction site at an early stage.

The development and validation of safety-critical assistance systems - such as an anti-collision system
for autonomous cranes - requires the handling of potentially dangerous scenarios that can only be tested to a
limited extent or not at all in a real environment. This is where game engines such as Unity or Unreal offer
decisive advantages (Wolter 2021). Firstly, critical scenarios (e.g., collision with a moving pedestrian) can
be easily reproduced in the simulation environment (Young et al. 2020). Secondly, the required sensor data,
such as camera images or point clouds from LiDAR or radar, are often not available as real data but can be
easily generated synthetically by game engines. Furthermore, many assistance systems rely on AI-based
models that require a comprehensive annotated data set. The recording of data sets, including labelling in
real environments, is time-consuming and cost-intensive (Endo et al. 2024). Game engines already offer
automatic labeling and segmentation for this purpose. In summary, efficiency on the construction site can
be increased through the use of automated tower cranes, among other methods. For this to be possible,
the machines must be equipped with an intelligent anti-collision system.

This paper presents a camera-based anti-collision system that detects people in the immediate working
area during the automated movement of a load and stops or slows down the crane movement in the event
of an imminent collision. People are detected on the basis of point clouds created using stereo cameras
in a virtual construction site environment. The simulation of the construction site and the sensor data is
carried out in Unity. The rest of the paper is organized as follows: Section 2 reviews prior related work.
In chapter 3, the problem is defined, and the research gap is derived from it. A detailed description of the
simulation model and the developed anti-collision model is provided in Section 4 and 5. The paper lists
the simulation results in Section 6 followed by a concluding discussion and outlook on future work steps
in Section 7.

2 RELATED WORK

The development of safety-critical assistance systems for automated construction machinery requires an
interdisciplinary approach that combines methods from robotics, computer vision, and simulation. In
recent years, both simulation technologies and sensor-based anti-collision systems have seen significant
advancements. This chapter reviews the current state of the art in two key areas relevant to this work:
the use of simulation environments for system development, synthetic data generation, and validation; and
existing anti-collision systems for tower cranes. The aim is to highlight current research gaps that motivate
the proposed approach.

2.1 Simulation and Virtual Environments

The use of simulation to model the kinematics and dynamics of machines and vehicles is a widespread
approach in the product development process. However, additional information, such as the reconstruction
of the environment, the consideration of environmental influences, or the reception of raw sensor data, is
important for the realization of autonomously acting systems. Various simulation tools and approaches
are already being used in the automotive industry for this (Rong et al. 2020). They offer significantly
more advantages compared to real test series. Real tests are cost-intensive, cannot be repeated at will, are
difficult to control and are often associated with risks. In addition, they only represent a limited number
of possible test scenarios. Furthermore, conventionally recorded test data from multi-sensor systems does
not enable closed-loop testing, i.e., there is no feedback between sensor and system reaction. This is where
3D simulations offer major advantages: they are scaleable, generic, more cost-effective, and allow any
scenario to be run through in a targeted manner. They also automatically provide the required ground truth
information (i.e. the ‘true’ state of the environment) for AI training data or even completely automatically
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labeled data sets. In the virtual environment, a digital representation of the system to be developed is
confronted with dynamic scenes (e.g. changing weather conditions or changing work areas). The virtual
sensor system generates camera data, LiDAR points or radar data, taking into account the physical properties
of bodies, as well as their material/surface properties and the lighting conditions in the simulated world.
The aim is to make this environment as realistic as possible and, at the same time, simulate it in real time
in order to integrate it into software-in-the-loop or hardware-in-the-loop test systems, for example. The
simulation is particularly effective if it is closed-loop, i.e. the behavior of the system in turn influences the
environment. This is not the case with open-loop tests, where only individual system states can be tested
like mentioned in Wolter (2021) and Kiran et al. (2024).

The use of simulation environments to support the development of construction machinery is not as
advanced as it is in other industries. Current research results on the use of simulation in construction
robotics and automation are shown in (Xu et al. 2024). Accordingly, game engines are primarily used
to validate algorithms and models in a virtual construction site and for visualization. In their work,
Pereira Da Silva et al. (2022) demonstrate the use of a simulation in Unity to recognize potential
construction problems at an early stage and to evaluate construction processes in terms of duration and
costs. The game engine is primarily used here to realistically visualize the construction process and to test
alternative execution scenarios under controlled conditions. For process planning of the construction site
with deep reinforcement learning, Zhu et al. (2023) also use a game engine. Realistic construction site
scenarios are provided in the virtual environment in order to train and validate autonomous decision-making
processes safely and efficiently. With a greater focus on implementing long-horizon tasks, Huang et al.
(2023) use simulation models to test reinforcement learning-based construction robotic control agents and
evaluate their performance. Consequently, when using game engines for simulation purposes, the focus
is on validating algorithms and control systems. They enable efficient and low-risk validation of control
strategies in realistic test environments and aim to visualize complex processes. Initial approaches to
using simulation models to generate synthetic sensor data are showing promising results, particularly in
research on construction robotics. For example, Aluckal et al. (2025) developed a simulation environment
for autonomous construction machinery in the TERA project and Endo et al. (2024) in the open-source
OPERA project. Furthermore, the simulation projects allow detailed modeling of the interaction between
the machine and the deformable ground using physics engines and, thus, the synthetic determination of the
machine kinematics. On the other hand, simulation also enables the integration of virtual sensors (cameras,
IMUs, LiDAR) and the simultaneous simulation of several machines. This enables the efficient generation
of large, annotated data sets for the evaluation of AI-based control strategies. In summary, it can be stated
that game engines are not only used in current research for visualization but primarily as powerful tools
for generating synthetic training data for AI-based systems in construction robotics.

2.2 Anti-Collision Systems for Tower Cranes

From a technical perspective, anti-collision systems for tower cranes are used today, particularly where
several cranes operate in overlapping work areas or where structural obstacles and restricted visibility
increase the risk of collisions. Regardless of the manufacturer like (CAD.42 2024), (AMCS technologies
2024) or (SMIE 2025), these systems follow a common basic principle, which largely coincides in the
central functions. The safety systems comprise a combination of position and motion detection, real-time
monitoring, and automated intervention logic. The typical system architecture comprises sensors at the
machine’s degrees of freedom (e.g., rotary encoders or inclination sensors), a central computing unit for
motion analysis, and a human-machine interface (HMI) for visualization and input. The sensors continuously
record the crane’s current kinematics and derive the crane hook’s position from this. From this, the position
of the crane in a 3D space can be determined, which is visualized for the crane operator using the HMI.
The user interface can also be used to statically implement exclusion zones and safety distances to defined
objects. The anti-collision system first warns the operator in the event of an impending collision between
cranes or when entering a restricted zone and, in an emergency, actively intervenes in the crane control
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system and stops the load movement. Apart from anti-collision systems to protect against collisions between
cranes, the use of safety systems that warn of and protect against collisions between loads on the crane
and people or objects in the vicinity is not yet known.

Nevertheless, there are already some scientific approaches that deal with the topic of human protec-
tion/collision warning during load transport with cranes. As Ali et al. (2024) summarize, the detection of
the construction site environment during load transport is carried out either via point clouds using LiDAR
and radar or by means of camera images, including object detection. Both Yong et al. (2023) and Ku et al.
(2024) present approaches for collision avoidance during crane operation that are based on sensor-based
detection of the environment (point clouds) and subsequent processing of this data. The point clouds enable
the exact localization of objects in relation to the load on the crane hook. Yong et al. combine a camera with
a deep learning algorithm (Faster R-CNN) and ultrasonic sensors to recognize people and objects in the
crane environment. Ku et al., on the other hand, use a crane system with LiDAR and radar sensors to detect
obstacles. Both systems share the basic idea that multi-modal sensor data and AI-based environmental
perception form an essential basis for safe, automated lifting processes. However, the sensors always look
vertically at the load and only cover the near-field area directly around the load. Camera-based solutions
are shown by Yang et al. (2019) and Pazari et al. (2023). The work by Yang et al. (2019) shows how
the use of Mask R-CNN can be used to develop a camera-based system for the automated detection of
people and danger zones under a tower crane. The distance between the crane hook, loads and workers
is calculated from the pixel coordinates and the technical specifications of the camera sensor, which is
located on the crane’s trolley. This means that no further sensors are required on the crane to detect the
surroundings. However, the quality of the measurements suffers if camera visibility is poor (e.g. due to bad
weather conditions) or if the position of the camera changes due to vibrations of the crane boom. Pazari
et al. present a system for automated detection of the danger zone under suspended loads of tower cranes.
The work aims to identify construction workers in real time and categorize them in relation to this fall zone
to avoid collisions and accidents. The developed anti-collision system is based on a generic visual analysis
using deep learning and stereo-image processing. First, the depth is measured with a stereo camera, then a
pre-trained network is used to detect people in the danger zone from the RGB images and then transferred
to a 3D model. However, this approach has weaknesses, as the stereo camera is mounted on the trolley,
meaning that the system can only provide an accurate resolution for a limited range. Furthermore, as tower
cranes often have to lift the load to be transported over buildings, there is a risk that the camera system
will not be able to capture the load and its surroundings.

In the field of anti-collision systems for tower cranes, it is clear that the current focus is primarily on
avoiding collisions between cranes. Systems for detecting and avoiding hazards caused by the suspended
load in combination with people in the work area are rarely used in industry. In science, concepts have
already been presented that have potential, but do not represent a sufficient solution due to a field of vision
that is too small or a lack of reliability.

3 PROBLEM DESCRIPTION

As can be seen from Section 2, the current focus of existing anti-collision systems is primarily on preventing
collisions between several cranes or between cranes and static obstacles. However, the area under and
around the load - the so-called drop zone - has hardly been taken into account to date, although this is
precisely where uncontrolled movements of the load pose a high potential risk to people. Furthermore, such
a system is essential for automated load transport with cranes, as the machine requires information about the
working environment and the required safety distances. However, existing camera-based or sensor-fusion
research approaches aim at recognizing people and objects near the suspended load are often limited by
the viewing angle or sensor range. The research approaches presented rely on camera-based systems with
object detection, e.g. based on YOLO architectures. These usually work with top-down perspectives, in
which a camera on the trolley or boom looks downwards. However, this method has several limitations.
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At great working heights, people only appear very small in the image. Often, only the helmet is visible as
a colored circle, which means that reliable recognition is no longer possible.

To overcome these limitations, an alternative solution is proposed in this paper. Multiple stereo camera
systems are mounted directly on the crane’s hook. The camera systems are arranged offset to each other
and have overlapping fields of view. This allows a large three-dimensional detection area around the load
to be monitored, which is visualized in the form of point clouds. These point clouds then serve as the
basis for recognizing people using deep learning. In contrast to purely 2D-based methods, point clouds
provide a geometric representation of the objects in the room - so the shape of a person can be explicitly
recognized and localized. The advantage of this approach is that the working range around the load can
be better determined because the sensor is mounted on the hook. On the other hand, people can be better
identified using envelope shapes (point clouds) than with object detection using 2D images. The described
anti-collision system is developed with the help of a game engine, which depicts different construction site
events and provides images from the stereo cameras.

4 MODEL SETUP

The development and validation of safety-critical assistance systems - such as an anti-collision system for
autonomous cranes - requires handling potentially dangerous scenarios that can only be tested to a limited
extent or not at all in a real environment. This is where the use of game engines to simulate scenarios and
generate synthetic data offers decisive advantages. The following Figure 1 shows the system architecture
of the simulation-based approach. This is a closed-loop simulation consisting of the Unity simulation

Figure 1: High-level architecture of the anti-collision system and the usage of closed-loop simulation with
game engines.

environment, which represents a virtual construction site with cranes, and an external computing unit,
which calculates and implements the anti-collision function. Data is exchanged between the simulation
and the anti-collision system processing unit via a data bridge (ROS or TCP/UDP protocol). The system
architecture was intentionally designed to allow an easy transition from a simulated to a real-world setup.
By separating the simulation environment (Unity) from the processing unit and connecting both via ROS, the
simulation can later be replaced by real hardware without changing the core communication or processing
logic. This modular setup enables seamless deployment of the anti-collision system on an actual tower
crane, using real sensor inputs in place of the simulated ones. As a result, the development environment
supports rapid prototyping and hardware-in-the-loop testing with minimal adaptation effort.
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4.1 Virtual Representation of the Construction Site

The simulation model represents a high-rise building with dynamic construction site activity. The High
Definition Render Pipeline (HDRP) in Unity is used to realize the environment. It enables high-resolution,
physically based modeling and representation of materials, light and environmental influences, allowing
realistic simulation results and photo-realistic images to be created. The functionality of the simulation
environment essentially comprises the two core areas, environments and machines (ref. Figure 1). The
environment simulation includes the representation of a construction site (ref. Figure 2), which is based
on the classic structure or layout according to (Schach and Otto 2011). In addition to the objects to be

Figure 2: Rendering example of the construction site scene in unity.

built (concrete buildings), the construction site layout also includes storage areas for construction aids
(e.g., formwork panels, scaffolding, etc.), a zone for storing construction materials such as sand and gravel,
and an area for containers and recreation rooms. There is also a delivery zone and unloading areas for
trucks. The construction site is separated from the surrounding urban environment by fences. The surface
texture was created using the Unity Terrain Tool so that the simulated construction site has realistic ground
characteristics such as ruts, uneven ground and material properties. The construction site model also
includes a large number of construction machines, construction workers and components of a construction
site infrastructure. As the simulation is a dynamic representation, machines and vehicles such as trucks or
excavators can be defined as moving objects that move along a trajectory or carry out a work task (e.g.
digging a trench). The construction site workers also move around the construction site, but not according
to a fixed pattern, but rather according to a random principle so that no patterns are recognizable in the
subsequent generation of synthetic data. For a realistic representation of the environment, the model takes
into account both the lighting depending on the time of day and the current weather conditions (i. e.
sunshine, cloudy skies, fog and rain) and consequently also all physical effects such as gravity. As the
assistance system to be developed is designed for cranes, the tower crane in particular was implemented as
an interactively controllable system. This means that each degree of freedom of the machine (rotation of
the boom by means of the slewing gear, movement of the trolley along the boom, lifting and lowering of
the load) can be individually controlled and regulated so that the kinematic behavior corresponds to that
of a real machine.

4.2 Sensor Setup

The anti-collision system developed is based on a combination of several stereo-optical sensor systems that
are mounted directly on the hook block of the tower crane. The aim of this configuration is to precisely
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detect the danger zone around the suspended load and to enable robust object detection - especially of
people. Figure 3 shows a schematic arrangement of the cameras and the corresponding coverage area.

Figure 3: Schematic field of view of the stereo cameras on the crane hook.

Accordingly, a central stereo camera looking vertically downward captures the immediate danger zone
directly around the load. Two further stereo camera systems are attached to the left and right of the hook
and mounted at an angle of 45 degrees to the vertical to ensure an extended detection area around the load.
This configuration creates a cylindrical field of view that can capture both the immediate close-up area and
lateral sources of danger - such as approaching persons or vehicles. The technical characteristics of the
cameras are shown in Table 1. The sensors have a resolution of 3840 x 2160 pixels (8.3 megapixels) and a
vertical field of view (FOV) of 60 ◦. This results in a horizontal FOV of approx. 91 ◦, based on the aspect
ratio of 16:9. For the assistance system, a high-depth resolution in the vicinity of the load is particularly
relevant. A depth resolution of 50 mm at a distance of 10 m is defined as the target for the system. The
diagram in Figure 4 shows the depth resolutions as a function of different baselines in the distance range
up to 20 m. A baseline of 1 m best meets this requirement. According to (Hartley and Zisserman 2003),
the minimum measurable depth at a baseline of 1 m and a maximum disparity dmax of 1920 pixels (half
the image width) is 1.73 m. In addition to mechanical integration and optical alignment, the cameras are

Table 1: Technical specification of the stereo camera system.

resolution 3840 px x 2160 px (8.3 MP)
field of view 60 ◦

baseline 1 m
disparity accuracy 1 px
minimal depth 1.73 m
depth resolution at 10 m 53.5 mm

integrated into the system by software. Each stereo camera is provided with its own IP address and can
send its raw data to central processing units for further processing via the TCP protocol. To illustrate the
functioning under different environmental conditions, Figure 5 shows exemplary raw images of a camera
in different weather scenarios. The examples include sunny conditions, fog and rain – typical situations
that may occur during subsequent construction site operation and affect the performance of stereo depth
detection.
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Figure 4: Comparison of the depth resolution for different baselines.

(a) Sunny weather (b) Foggy environment (c) Cloudy weather (d) Rainy weather

Figure 5: Examples of raw images from the stereo camera in various weather conditions.

5 POINT-CLOUD BASED ANTI-COLLISION SYSTEM

The anti-collision system developed is based on the analysis and interpretation of three-dimensional point
clouds that are generated in real-time by several stereo cameras. The aim is to reliably detect people and
objects in the danger zone around the suspended load and to initiate automated measures in the event
of an impending collision. Before the camera data can be used, the stereo cameras must be calibrated
to determine the exact geometric relationship between the two lenses. Chessboard patterns with 28 x 19
squares are used for this purpose, which allows the intrinsic and extrinsic parameters such as the translation
vector, the rotation vector and the distortion coefficients of the sensors to be calculated. The reprojection
error measures the difference between an observed point in the image (e.g., a corner of a chessboard
pattern) and the point calculated by the camera model after reprojecting the 3D world point back into the
2D image. The goal is to achieve a reprojection error < 0.5 pixel because the smaller this value, the higher
the accuracy of the subsequent point cloud. In summary, it can be said that the quality of the calibration
has a significant influence on the subsequent measurement accuracy, which is why a large diversity of
calibration images (the checkerboard is placed with a different orientation and at a different distance
from both cameras to create a higher variety of conditions) is desirable. Image rectification is carried
out after calibration. Two different perspective images from a stereo camera system are geometrically
transformed so that corresponding image points lie on the same line (epipolar line). This process reduces
the computational effort for the subsequent calculation of the depth map of each stereo image pair since
the corresponding points can now be found more easily. The synchronized stereo image pairs are then
used to generate disparity maps, from which depth maps are calculated using the camera parameters. This
depth information is converted into a three-dimensional point cloud format using the camera parameters
and the stereo semi-global block matching (SGBM) algorithm. Outliers are then determined using KD trees
and the nearest neighbor method. This helps to suppress measurement errors and noise effects, making

2653



Schock-Schmidtke, Bernabé Caparrós, and Fottner

the point cloud smaller and improving its quality. Finally, the individual point clouds of the three stereo
camera systems are integrated into a global coordinate system by a coordinate transformation. Due to the
overlap of the FOV of the individual stereo cameras, the density of the global point cloud increases so
that a high-resolution reconstruction of the environment is possible. The result of an example recording
consisting of an RGB image for each of the three cameras and the point cloud calculated from it is shown
in Figure 6.

(a) Left camera (b) Center camera

(c) Right camera (d) Point cloud

Figure 6: Example of point cloud based on a stereo camera.

The PointPillars network was used to detect people in the point clouds generated by stereo cameras.
PointPillars is an efficient 3D detector that was originally developed for LiDAR-based point clouds but
can also be applied to other types of 3D data. The approach is characterized by particularly fast inference
speed combined with high detection accuracy and was, among other things, specifically trained to detect
pedestrians (Lang et al. 2019). The fused point cloud from the three stereo camera systems is used to
determine the minimum distance between a detected person and the suspended load. After successful
registration of the point clouds in a common coordinate system, the load is first identified within the
point cloud. Since the camera systems are mounted on the hook block and primarily work in a top-down
perspective, the load is usually located in the center of the captured field of view. A segment-based analysis
– based on point density, height distribution and compactness – can be used to reliably delimit the point
cloud of the load. At the same time, the PointPillars network detects people. The global coordinate system
enters the detected people as 3D bounding boxes. The minimum Euclidean distance between the point
clouds or their circumscribing bounding volumes is then calculated to determine the distance between
the load and the person. For this purpose, a KD-tree-based nearest neighbor search is used to efficiently
determine the smallest distance between the relevant point groups. The system remains passive if the
calculated distance exceeds a defined safety limit – e.g., 2.0 m. However, if the distance falls below this
threshold, the movement of the load is slowed down or stopped completely. The critical distance can
be configured for each specific project and depends on factors such as the weight of the load, the speed
of movement and the visibility. By transmitting the distance values to the simulation and the integrated
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crane control, the simulation cycle is closed again (closed-loop simulation) and an overall evaluation of
the system is made possible.

6 EXPERIMENTAL RESULTS

To validate the developed anti-collision system, the focus is particularly on the reliability of human
detection under realistic environmental conditions. The distance between the load and the detected person
is determined based on the 3D point cloud and, from a technical point of view, represents a geometrically
trivial calculation. The real challenge lies in the reliable detection of persons, especially in adverse weather
conditions, which directly impact the quality of the point cloud. To examine the quality of the 3D point
clouds and the detection of people, 25 exemplary scenarios were carried out in the simulation environment
with three different weather scenarios (sunny weather with good visibility, fog with reduced visibility and
diffuse light conditions, and rain with poor visibility). In the construction site scenarios, a concrete floor
slab is transported by a crane to different work areas. There are always several people in the work area
and near the load.

(a) Sunny RGB image (b) Foggy RGB image (c) Rainy RGB image

(d) Disparity image in sunny
weather

(e) Disparity image in foggy
weather

(f) Disparity image in rainy
weather

Figure 7: Visualization of RGB and disparity images under different weather conditions (top: RGB, bottom:
disparity).

Exemplary shown in Figure 7 are the camera recordings of a stereo camera looking straight down and
the corresponding disparity image for a construction site scenario. It can be seen that a clean, homogeneous
disparity is present when recording under sunny conditions. In addition, the edges are hardly frayed and
the object contours are clearly and sharply visible. In comparison, the image taken in fog is of significantly
poorer quality, resulting in the edges in the disparity image being more frayed and the image showing many
small artifacts. When it rains, isolated artifacts caused by light reflections appear. The central structure
remains largely intact, but the object edges are softer and less defined. For the three different weather
scenarios, the respective point clouds are generated from the disparities and then the person detection is
carried out using PointPillars. The results are listed in Table 2. The confidence score is used to evaluate
the person’s identification and is averaged over the test series. These results make it clear that the quality
of the depth images – and thus of the point clouds – depends to a large extent on external influences.
Weather conditions have a strong impact on the visual sensors and lead to measurable deviations in the
detection performance of the system.
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Table 2: Effects of weather conditions on the detection of people.

weather condition mean confidence score qualitative evaluation
sunny 0.88 very high quality, clean point clouds, complete per-

son shape
fog 0.53 partially fragmented point clouds, missing body

parts, especially in the lower area (e.g., legs), lower
point density

rain 0.71 drops create artifacts, point clouds are noisy, but the
shape of people is usually still recognizable

7 DISCUSSION AND CONCLUSIONS

The simulation results confirm that the developed anti-collision system is capable of detecting people within
the danger zone of a suspended load, particularly under favorable visibility conditions. In sunny weather,
the generated 3D point clouds were complete and accurate, yielding a high average confidence score of
0.88. However, in challenging conditions such as fog or rain, detection performance decreased due to
physical limitations inherent to stereo vision, such as reduced contrast and optical noise. These limitations
led to fragmented point clouds, blurred object contours, and reduced confidence in the detection algorithm.
Despite this, the camera positioning directly on the hook block, combined with overlapping fields of view,
significantly improved the robustness of the detection range compared to traditional top-down or static
camera systems. Furthermore, the system reliably calculated minimum distances in 3D space across all test
conditions, highlighting the potential for safe real-time intervention in crane operations. A key strength
of the simulation approach is its modular simulation architecture, which allows seamless replacement of
the virtual environment with real hardware—enabling hardware-in-the-loop testing and easy deployment
on actual cranes.

However, several limitations remain. Most notably, the system’s sensitivity to environmental conditions
must be addressed. While the current implementation demonstrates feasibility, it is not yet robust enough
for reliable use in all weather scenarios. Furthermore, the evaluation so far has focused on simulated
scenes; real-world experiments are needed to validate system performance under uncontrolled, dynamic
site conditions. Future research should focus on developing a custom neural network architecture specifically
tailored to stereo-based point cloud data, capable of handling noisy, sparse, and partial inputs. Additionally,
extending the system to detect other hazard sources (e.g., moving machinery, structural obstacles) could
further increase safety. A comparison with traditional overhead systems could further validate the benefits
of the hook-mounted setup. The simulation-based workflow using Unity proved effective for safe, rapid
prototyping and shows strong potential for developing AI-based safety systems in construction.
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