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ABSTRACT

WARPED2 is a discrete event simulation kernel that contains a robust event time comparison mechanism to
support a broad range of modeling domains. The WARPED2 kernel can be configured for sequential, parallel,
or distributed execution. The parallel or distributed versions implement the Time Warp mechanism (with
its rollback and relaxed causality) such that a total order on events can be maintained. To maintain a total
order, WARPED2 has an event ordering mechanism that contains up to 10 comparison operations. While not
all comparisons require evaluation of all 10 relations, the overall cost of time comparisons in a WARPED2
simulation can still consume approximately 15-20% of the total runtime. This work examines the runtime
costs of time comparisons in a parallel configuration of the WARPED2 simulation kernel. Optimizations to
the time comparison mechanism are explored and the performance impacts of each are reported.

1 INTRODUCTION

The Time Warp mechanism is an optimistic synchronization strategy for Parallel and Distributed Discrete-
Event Simulation (PDES). The mechanism organizes a parallel or distributed simulation into a collection of
concurrently executing and fully asynchronous discrete-event simulations called Logical Processes (LPs).
These LPs operate concurrently on their local discrete event lists without an explicit synchronization
infrastructure coordinating the LPs. Events generated by one LP for another LP are communicated with a
timestamp and if they arrive in the simulation past of the receiving LP a rollback will occur in the receiving
LP to re-establish the causal order of event processing by the LP. During a rollback, it may be necessary to
cancel any prematurely sent events; this is achieved by sending anti-messages to remove the premature events
from the destination LP’s event space. Thus, the concurrency of LP event processing, rollback, and event
cancellation thorough anti-messages can generate events and anti-messages with equivalent timestamps and
the challenge to achieve a total order for LP event processing can require additional information beyond
the simple simulation time that the event is to be processed. Note, it is not necessary to have a strict total
order of event processing of different LPs; the optimistic model does not require it. However, within an
LP, many simulation models will require a strict total order on the events processed by that LP.

In a Time Warp PDES, achieving a total order on events is complicated by several factors. For example,
it is possible that a set of parallel LPs can generate events with the same timestamp destined for the same
LP; furthermore, any or all of the sending LPs can possibly rollback, terminating the prematurely sent
event (using an anti-message), and ultimately re-transmitting another event (potentially identical to the
original) with the same timestamp to the same destination LP (Fujimoto 1990). In this case, the destination
LP must ensure that all events are processed following a total order that preserves causality relationships
(Fujimoto 2000). While not all simulation models require a total order on all events, many do. Thus, a
general purpose Time Warp simulation engine must be capable of organizing a total order on events.

This paper examines the runtime performance costs of event comparison in the parallel and distributed
configuration of the WARPED2 simulation kernel that implements the Time Warp mechanism. In particular,
profiling shows that as much as 21% of the runtime costs is consumed by the timestamp comparison operator
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in an execution of the WARPED2 simulation kernel. This study will examine the performance of 4 different
configurations for the event queue, namely: (i) implemented with as a fully sorted std:multiset (from
the c++ standard library), (ii) as a Ladder Queue (Tang, Goh, and Thng 2005; Dickman, Gupta, and
Wilsey 2013) (fully sorted), (iii) as a Ladder Queue (partially sorted) (Gupta 2018), and (iv) as a Unified
Queue with a relaxed timestamp comparison mechanism. In addition to studying and optimizing the
timestamp comparison function, the various uses of the timestamp comparison in WARPED2 is examined
to determine if and when the costly total order comparison operation can be replaced with a more relaxed
(and faster) comparsion operator. Finally, this paper will discuss which data fields are absolutely necessary
and which can potentially be eliminated; various mechanisms to reduce the cost of timestamp comparison
are implemented and studied in scenarios where total ordering is not strictly necessary.

Among the configurations tested, the Unified Queue implementation demonstrates the most substantial
improvements, reducing event comparison costs by up to 76% in complex models compared to the Multiset
implementation. However, based on the model used for benchmarks, when rollback frequency increases there
is a heavy performance penalty with the Unified Queue implementation. The partially sorted Ladder Queue
shows promise as a middle ground option. This paper also explores Hash Event Set and Single-Instruction
Multiple-Data (SIMD) implementations; however the latter failed to deliver significant performance gains on
AVX2 platforms. The research concludes with recommendations for architectural refinements, hybrid queue
structures, memory optimizations, and advanced SIMD implementations to further improve performance.

The remainder of this paper is organized as follows. Section 2 contains some background and related
work. It also presents and explains the computations of the compareEvent operation that establishes a
total order of events WARPED2. Section 3 presents a new, lightweight compareEvent operation and a
new input queue (Unified Queue) that combines processed and unprocessed events for WARPED2. Section
4 uses profiling results to examine the runtime costs of timestamp comparisons in the WARPED2 simulation
kernel. Section 5 examines the memory usage characteristics captured from executions of simulations
models running on WARPED2. Section 6 examines strategies to reduce the runtime costs of the timestamp
comparison operation. Section 7 summarizes the results and lessons learned from the profiling based
analysis and performance comparison of this paper. Finally, Section 8 contains some concluding remarks.

2 BACKGROUND AND RELATED WORK

Lamport’s seminal work on distributed systems established the foundational theory for understanding event
ordering across multiple processes (Lamport 1978). By formalizing the happened-before relation, Lamport
provided a mathematical framework for capturing the partial ordering of events that naturally emerges in
distributed environments. To represent this ordering computationally, he introduced logical clocks that
assign timestamps to events with the critical property that if event a causally precedes event b, then the
timestamp C(a) must be less than C(b). Recognizing that causality alone only yields a partial ordering,
Lamport extended this to a total ordering through a simple but elegant mechanism: using process identifiers
to break ties when events have identical timestamps. This innovation proved crucial for deterministic event
processing in distributed simulations. Perhaps most importantly, Lamport demonstrated how reliance on
physical time could lead to counter-intuitive and seemingly impossible behaviors in distributed systems,
thus establishing the theoretical justification for logical time—a concept that would later become central
to parallel discrete event simulation techniques.

Jefferson’s Time Warp protocol built upon Lamport’s foundation of logical time but introduced the
optimistic synchronization approach with rollbacks and anti-messages (Jefferson 1985). He introduced
LPs that process events optimistically without waiting for any causally related events; letting violations
happen if they occurred. Violations are corrected after detection rather than prevented. This results in
higher parallelism through speculation. When causality violations occur (by a straggler event message
arriving with a timestamp in an LP’s virtual past), the Time Warp employs a rollback mechanism that
returns the process to an earlier state where the straggler event can be processed in its causal order. The
protocol’s innovation lies in its anti-message system—negative copies of previously sent messages that
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propagate through the system to cancel the effects of rolled-back computations. This elegant solution enables
simulations to maintain correctness while exploiting parallelism, effectively trading occasional rollback
overhead for increased throughput, particularly in scenarios where causality violations are infrequent.

In 2016, the WARPED2 PDES simulation kernel implementing the Time Warp Mechanism was released.
In this version of WARPED2, each hardware compute node contains a set of worker threads and a single
manager (or housekeeping) thread (in WARPED2, a cluster is a collection of compute nodes and a multi-core
processor is considered a single compute node). The worker threads serve as the computational engines
for the LPs that advance the simulation while the manager threads are responsible for Global Virtual
Time (GVT) calculation, initialization and termination of the program. Multiple worker threads operate
simultaneously, with each thread managing events for one or more LPs. The Time Warp mechanism serves
as the conductor of this distributed simulation implementation, coordinating all of the moving parts.

Events in WARPED2 follow a life-cycle: they begin as unprocessed, transition to processed, and
finally become fossilized (sometimes, oscillating between processed and unprocessed). Throughout this
progression, events move through several queue structures: the Input Queue (subdivided into processed
and unprocessed sections), the schedule queue, and the output queue. Events are ultimately removed
during fossil collection. WARPED2 implements these queues using RedBlack (RB) plus trees that require
rebalancing whenever events are added or removed. To ensure memory safety, mutex locks are applied for
all queue operations. This makes the rebalancing and sorting operations particularly critical: the faster these
operations complete, the sooner locks can be released, reducing wait times and accelerating execution.

Event comparison in distributed simulation systems such as WARPED2 requires careful exploration due
to several factors that directly impact simulation correctness and performance. The necessity stems from
both the fundamental architecture of the system and potential edge cases that must be addressed. Since locks
create potential bottlenecks, the comparison operations must be both accurate and efficient; any unnecessary
complexity in comparison logic directly translates to longer lock holding times and reduced simulation
performance. The distributed architecture of the simulation also creates several intricate challenges that
demand careful handling. When simulations run for extended periods, vector time can wrap around,
potentially creating confusion in timestamp comparisons. Additionally, different LPs may generate events
with matching timestamps, necessitating extra comparison criteria to ensure events are processed in a
consistent, predictable order. The system must also maintain the ability to differentiate between standard
events, anti-events (during rollback procedures), and any events re-transmitted after a rollback.

2.1 Causal Order in PDES

Developing a precise definition of order in an optimistically synchronized PDES simulation kernel is more
challenging than simply order objects based on the simulation timestamp. As a simple example, assume
that two concurrently executing LPs (LPi and LPj) are generating events (ei and e j) with timestamp t to a
receive LP (LPk). Without additional discriminating rules, it is impossible to define a total order on the
two events ei and e j. This section will explore the problem of establishing causal order in a Time Warp
synchronized PDES kernel. This discussion will treat the problem of ordering events in a Time Warp system
without addressing optimizing and simplifying concepts such as direct cancellation (Fujimoto 1990) or
reverse computation (Carothers, Perumalla, and Fujimoto 1999); instead this discussion will focus on the
generic concept of a Time Warp system: copy state saving, and aggressive cancellation (Fujimoto 1990).

In addition to the problem of events generated with a common timestamp, the optimistic processing
of events also requires anti-message events to kill a prematurely generated event. In general these are sent
with information to match the original premature message including its timestamp. Furthermore, with the
optimistic processing and rollback nature of Time Warp, it is possible that an LP will generate and cancel
an event at timestamp t multiple times. Any solution to generate a total order on events and anti-message
events must account for (i) the possible premature generation, (ii) the possible rollback, and (iii) the possible
re-generation of events (at the same timestamp t). The remainder of this paper will examine the solution
to this problem as it has been addressed in the WARPED2 simulation kernel (Weber 2016).
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Listing 1: Strict comparison functor for events.
s t r u c t compareEven t s {
p u b l i c :
bool operator ( ) ( c o n s t s t d : : s h a r e d _ p t r <Event >& f i r s t ,
c o n s t s t d : : s h a r e d _ p t r <Event >& second ) c o n s t {

re turn ( f i r s t −> t imes t amp ( ) < second −> t imes t amp ( ) ) ? t rue :
( ( f i r s t −> t imes t amp ( ) != second −> t imes t amp ( ) ) ? f a l s e :
( ( f i r s t −> s e n d _ t i m e _ < second −> s e n d _ t i m e _ ) ? t rue :
( ( f i r s t −> s e n d _ t i m e _ != second −> s e n d _ t i m e _ ) ? f a l s e :
( ( f i r s t −> sender_name_ < second −> sender_name_ ) ? t rue :
( ( f i r s t −> sender_name_ != second −> sender_name_ ) ? f a l s e :
( ( f i r s t −> g e n e r a t i o n _ < second −> g e n e r a t i o n _ ) ? t rue :
( ( f i r s t −> g e n e r a t i o n _ != second −> g e n e r a t i o n _ ) ? f a l s e :
( ( f i r s t −> e v e n t _ t y p e _ < second −> e v e n t _ t y p e _ ) ? t rue :
( ( f i r s t −> e v e n t _ t y p e _ != second −> e v e n t _ t y p e _ ) ? f a l s e : f a l s e ) ) ) ) ) ) ) ) ) ;

} } ;

The WARPED2 simulation kernel is written in C++ and defines a compareEvents operator to establish
a total order of events (Listing 1). The fields in the Event class are carefully designed to support the optimistic
execution model with a total order on events. Each field serves a specific purpose, from routing events to the
correct LPs to handling rollbacks and ensuring the correct order of event processing. Together, these fields
enable the simulation to handle complex scenarios involving straggler events, anti-messages, and event
regeneration, ensuring the consistency and accuracy of the simulation. In WARPED2, the compareEvents
tests are short circuited to return a result as quickly as possible. The hierarchy of tests to order events is:

1. The timestamp() method returns when an event should be processed, serving as the primary
ordering criterion and enabling the detection of out-of-order events that trigger rollbacks. Events
with earlier timestamps are processed first, maintaining chronological progression.

2. The send_time field captures when an event was created, functioning as a secondary discriminator
when events share identical timestamps. This additional precision helps preserve processing sequence
even when multiple events occur simultaneously.

3. Each event’s sender_name identifies its originating Logical Process, providing a third-level
distinction particularly valuable in distributed environments. This field ensures consistent event
ordering across multiple sources even when timestamps and send times match.

4. For managing complex rollback scenarios, the generation_field distinguishes between other-
wise identical events regenerated after system rollbacks. When straggler events force the simulation
to revert, previously canceled events will be regenerated with incremented generation values.

5. The event_type field completes the ordering system by differentiating between regular events
and anti-messages. When rollbacks occur, these negative events cancel the effects of previously
processed messages, allowing the simulation to maintain consistency while proceeding optimistically.

Collectively, these tests create a deterministic total ordering. The system reliably processes events in
the correct sequence while supporting the optimistic execution model that makes Time Warp simulations
both efficient and accurate; even across distributed environments with complex causal relationships.

3 UNIFIED QUEUE & RELAXED COMPARE EVENTS: UNIFIED QUEUE

All of the current implementations of the input queue in WARPED2 separate the input queue into two queues:
one for unprocessed events and one for processed events. Both queues are sorted and events move from the
unprocessed to the processed queue (and back) for forward event processing (and on rollback). This paper
presents a “Unified Queue” input queue that works to reduce the number of calls (and thus its cost) to the
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compareEvent operator. In addition, this work will also define and use a relaxedCompareEvent
operator (Listing 2) that sorts events using only the timestamp() method (Shinde 2024). The use of
relaxedCompareEvent in the WARPED2 queue structures is explained more fully below.

Listing 2: Relaxed Comparison functor for events.
s t r u c t r e l a x e d C o m p a r e E v e n t s {
p u b l i c :
bool operator ( ) ( c o n s t s t d : : s h a r e d _ p t r <Event >& f i r s t ,
c o n s t s t d : : s h a r e d _ p t r <Event >& second ) c o n s t {

re turn ( f i r s t −> t imes t amp ( ) < second −> t imes t amp ( ) ) ;
} } ;

processed unprocessedfossils

ei+2 ei+3 ei+4 ei+5 ei+6 ei+7ie ei+1 ei+8 ei+9

Figure 1: Unified queue as the LP input queue.
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Figure 2: Comparisons/Ordering in WARPED2 v2.x.

The Unified Queue combines the processed and unprocessed events into a single circular queue (Figure
1). Used for the input queue, the Unified Queue is composed of 3 zones, namely: (i) unprocessed events
(the yellow shading), (ii) processed events yet to be fossilized (light blue shading), and (iii) fossilized events
(light green). This organization and a careful construction of GVT records permits concurrent access in
event processing and fossil collection such that locking between the event processing threads and the fossil
collection threads is not required (Shinde 2024).

As previously indicated each compute node in a WARPED2 PDES configuration is organized as a
collection of worker threads and housekeeping threads. The housekeeping threads address fossil collection,
GVT management, and remote message communications (in a distributed configuration). While some
queue access is performed by the housekeeping threads, the majority of the queue accesses are made by
the worker threads. In general, the best performance of a WARPED2 PDES model is to define one worker
thread for each hardware thread with a static partition of LPs to each worker thread (Figure 2). To optimize
input queue processing, the WARPED2 system defines a schedule queue in front of the input queues of the
LPs assigned to each worker threads. The schedule queue is populated by the lowest timestamped event
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from the input queue of each LP. After an event is removed from the schedule queue and processed by the
worker thread the next timestamped event from the corresponding LP is added to the schedule queue.

Prior to this work, the WARPED2 schedule queue has always been sorted by the strict compareEvents
operator from Listing 1. This paper will, however, consider using the relaxedCompareEvent operator
to sort events in the schedule queue. The remainder of this paper will examine profiling and performance
results from various implementations of the input queue with the strict and relaxed comparison operators.

4 PROFILING THE COST OF EVENT COMPARISONS

The results are presented using 3 different simulation models that possess a broad range of event processing
granularities and coupling of events among the LPs. The 3 models are: (i) an epidemic disease propagation
model (Epidemic) based on (Perumalla and Seal 2012), (ii) a Portable Cellular Service (PCS) network
simulation, and (iii) an urban traffic model (Traffic) adapted from ROSS (Carothers, Bauer, and Pearce 2000).
The epidemic model employs Probabilistic Timed Transition System (PTTS) (Barrett, Bisset, Eubank, Feng,
and Marathe 2008) for disease progression and implements both Watts-Strogatz (Watts and Strogatz 1998)
and Barabási-Albert (Barabási and Albert 1999) networks for modeling disease spread between locations.
The PCS model simulates cellular network operations including call handling and device migration. The
traffic model simulates vehicle movement through a city grid, with each intersection as a logical process
(LP). The experimental evaluation examines these models across four configurations, varying the number
of LPs (10k-100k) and worker threads (3-6), with consistent sample sizes and GVT periods.

Table 1: VTune top 5 hotspots for WARPED2 configurations Traffic-20k.

Function Multiset Fully Sorted Partially Sorted Unified Queue
Ladder Queue Ladder Queue

Seconds
compareEvents::operator() 23.39 15.75 14.771 12.4 (relaxed+strict)
operator new 7.5 8.089 8.62 –
chrono::_V2::steady_clock::now 7.41 5.64 6.60 –
___pthread_mutex_lock 5.6 5.23 5.01 7.910
map<string, uint>::operator[] 5.3 – – –
__GI___libc_mallinfo2 – 5.62 5.7 11.171

Table 2: VTune top 5 hotspots for WARPED2 configurations PCS-5k.

Function Multiset Fully Sorted Partially Sorted Unified Queue
Ladder Queue Ladder Queue

Seconds
compareEvents::operator() 137.228 115.59 72.184 43.101 (relax + strict)
operator new 27.197 30.159 25.071 –
chrono::_V2::steady_clock::now 34.742 32.703 24.947 57.287
___pthread_mutex_lock 27.97 24.027 21.707 45.974
map<string, uint>::operator[] 5.3 – – –
__GI___libc_mallinfo2 32.730 39.660 28.110 –
UnifiedQueue::binarySearch() – – – 35.358
shared_ptr<Event> operator = – – – 101.756

Tables 1, and 2 present performance profiling data from a VTune™ analysis across 4 different queue
implementations in WARPED2: (i) Multiset, (ii) Ladder Queue (fully sorted), (iii) Ladder Queue (partially
sorted), and (iv) Unified Queue (Gupta 2018; Shinde 2024). The analysis was performed using 2 simulation
models, namely: Traffic-20k and PCS-5k.

Event comparison (compareEvents::operator()) consistently emerges as the primary compu-
tational bottleneck across all implementations. In the Traffic-20k model, the Unified Queue demonstrates
superior performance, reducing comparison time to 12.4 seconds: a 47% improvement over the Multiset
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implementation (23.39 seconds). Both Ladder Queue variants show intermediate improvements, with the
partially sorted variant (14.77 seconds) outperforming the Fully Sorted variant (15.75 seconds). This pattern
becomes more pronounced in the computationally intensive PCS-5k model, where the Unified Queue re-
duces comparison time to 43.10 seconds, compared to 137.23 seconds with the Multiset implementation—a
dramatic 68.6% reduction. The partially sorted Ladder Queue (72.18 seconds) delivers significantly better
performance than the fully sorted variant (115.59 seconds), suggesting that partial sorting offers a meaningful
efficiency advantage in more complex simulations.

Memory allocation costs (operator new) remain relatively consistent across implementations in both
models, ranging from 7.5 to 8.62 seconds in Traffic-20k and 25.07 to 30.16 seconds in PCS-5k. The
Unified Queue implementation eliminates this specific overhead from its top hotspots, but introduces new
memory-related costs with significant overhead from shared pointer operations (101.76 seconds) in the
PCS-5k model. Memory tracking operations (__GI___libc_mallinfo2) show variation between
implementations, with higher costs in the Unified Queue for Traffic-20k (11.17 seconds) compared to the
Ladder Queue variants (approximately 5.7 seconds). This overhead does not appear among top hotspots
for the Unified Queue in the PCS-5k model.

Mutex operations (___pthread_mutex_lock) consume between 5.01 and 7.91 seconds in Traffic-
20k, with the Unified Queue showing the highest synchronization cost. This pattern is amplified in PCS-5k,
where mutex operations in the Unified Queue (45.97 seconds) are approximately twice as expensive as in the
Ladder Queue implementations (21.71 to 24.03 seconds). Timing operations (chrono::_V2::steady_-
clock::now) demonstrate similar variation, with the Unified Queue showing lower overhead in Traffic-20k
but substantially higher costs in PCS-5k (57.29 seconds compared to 24.95-34.74 seconds).

The Unified Queue introduces unique operational costs, including binary search operations (35.36
seconds in PCS-5k) and shared pointer assignment operations (101.76 seconds in PCS-5k), which do not
appear as significant hotspots in other implementations. The Multiset implementation shows additional
overhead from map operations (map<string, uint>::operator[]), consuming 5.3 seconds in both
models, a cost not present in the other implementations’ top hotspots.

Performance characteristics vary significantly between the Traffic-20k and PCS-5k models. While
relative performance trends remain consistent, the PCS-5k model amplifies computational costs across all
operations. This suggests that implementation efficiency becomes increasingly critical as model complexity
increases, with the most efficient implementations showing the greatest relative improvement in more
demanding scenarios. Overall, these results indicate that optimizing event comparison operations provides
the most substantial performance improvements in discrete event simulations, with the Unified Queue and
partially sorted Ladder Queue offering the most efficient alternatives to traditional Multiset implementations.

5 MEMORY ANALYSIS

Table 3, lists the metrics generated by Intel VTune™ Memory Benchmark. WARPED2 spends 30% of the
CPU’s execution time waiting for memory operations to complete. This is a significant bottleneck, as the
CPU is frequently stalled due to slow memory access. In this case, the primary contributors to Memory
Bound are L1 Bound (15.0%) and DRAM Bound (23.8%), which together account for most of the 29.5%
Memory Bottleneck. Other factors such as L2, L3, Store do not contribute much to this metric. The
Loads metric shows 50,322,246,627 load operations, but the LLC Miss Count (Last Level Cache misses)
is 148,914,276. This means that approximately 0.3% of load operations result in LLC misses. LLC Miss
Counts means that the value could not be resolved by L1, L2, and L3 caches and the value was fetched
from DRAM. The application performs a large number of load and store operations, indicating that it
is memory-intensive. The high number of loads relative to stores suggests that the WARPED2 is reading
data more frequently than it is writing. Reducing the number of memory accesses, particularly loads, can
improve performance. This could be achieved by reusing data in registers or cache, optimizing algorithms
to minimize memory traffic, or using more efficient data structures.
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Table 3: VTune™ memory usage met-
rics Epidemic.

Metric Value

Elapsed Time 19.102 s
CPU Time 58.709 s
Memory Bound 29.5%
L1 Bound 15.0%
L2 Bound 1.8%
L3 Bound 4.0%
DRAM Bound 23.8%
Store Bound 0.1%
Loads 50,322,246,627
Stores 25,499,413,254
LLC Miss Count 148,914,276
Total Thread Count 10
Paused Time 0 s

Table 4: VTune top 5 hotspots for WARPED2 configurations
Traffic-20k.

Function RB WARPED2 xxHash Event
Seconds

Elapsed Time 34.951 33.750
CPU Time 116.480 116.870
Paused Time 0 0
compareEvents::operator() 23.397 18.416
operator new 7.490 –
chrono::_V2::steady_clock::now 7.411 7.640
___pthread_mutex_lock 5.679 5.649
map<string, uint>::operator[] 5.3 –
__GI___libc_mallinfo2 5.530 5.320
std::unordered_map<>[] – 5.058

6 STRATEGIES TO REDUCE COMPARISON COSTS

6.1 Hash Event Set

The original compareEvent function performs comparisons on sender_name which is a string in
WARPED2. Of course, string comparisons are more expensive than numeric comparisons. As a result, a
hashing mechanism that shields model designers from kernel-level implementation details while reducing
comparison operator costs was implemented. The xxHash library is used to generate the hash of each LP.

VTune™ profiling data for the Traffic-20k simulation model using (i) the original comparison code and (ii)
thexxHash-based approach are shown in Table 4. Both configurations demonstrate similar overall execution
metrics with elapsed times of approximately 34.95 seconds and 33.75 seconds respectively. The CPU time
is nearly identical (116.48 vs 116.87 seconds), suggesting effective parallel execution across multiple
threads. The CPU time being more than three times the elapsed time confirms substantial multi-threading
benefits in both configurations. The event comparison operation (compareEvents::operator())
emerges as the primary performance bottleneck, consuming approximately 20% of the CPU time in
the original code and 16% in the xxHash version. This 5% reduction suggests that the xxHash’s
event comparison approach provides a modest performance advantage. Memory management operations
appear as significant hotspots in both configurations. The original code spends notable time in memory
allocation (operator new at 7.49 seconds), while both implementations spend similar amounts of time
in chrono::_V2::steady_clock::now (7.41 and 7.64 seconds respectively) and mutex locking
operations (approximately 5.65 seconds). These findings indicate that, while the xxHash implementation
provides a modest overall performance improvement (3.5% faster elapsed time), the primary performance
constraints remain consistent across both implementations: (i) event comparison operations, (ii) memory
management, and (iii) synchronization overhead. Future optimization efforts should focus on these common
bottlenecks, particularly exploring ways to reduce comparison costs and mutex contention in the discrete
event simulation engine.

6.2 SIMD

The possibility of exploiting SIMD operations was also evaluated in the optimization of thecompareEvent
operator. To perform this study, the sender_name string and the WARPED2 compareEvent operator is
converted to the form shown in Listing 3. The data presented in Figures 3 and 4, compares the performance
of two different computational approaches, SIMD (Single Instruction, Multiple Data) and RB, across three
distinct models: “epidemic 10k”, “PCS 1k”, and “traffic 20k”. The comparison is made on two key metrics:
(i) total simulation runtime and (ii) the runtime per event. In general the results show that while the SIMD
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approach may be more efficient for larger models such as “epidemic 10k”, the advantage shrinks for models
with smaller execution (per event) costs. These tests were performed on machines supporting the AVX2
SIMD extensions; results with AVX-512 SIMD extensions may show improved results.

Listing 3: SIMD implementation for event comparison.
c l a s s Event {
p u b l i c :
/ / . . . o t h e r members as b e f o r e . . .

void g e n e r a t e H a s h ( ) {
s e n d e r H a s h I d _ = XXH64( sender_name_ . d a t a ( ) , sender_name_ . s i z e ( ) , 0 ) ; / / Seed = 0
/ / A s s i g n da ta i n t o a r r a y f o r SIMD compar i son
d a t a _ [ 0 ] = t imes t amp ( ) ;
d a t a _ [ 1 ] = s e n d _ t i m e _ ;
d a t a _ [ 2 ] = s e n d e r H a s h I d _ ;
d a t a _ [ 3 ] = g e n e r a t i o n _ ; }

/ / SIMD−based compar i son o p e r a t o r s
bool operator == ( c o n s t Event &o t h e r ) c o n s t { }
bool operator < ( c o n s t Event &o t h e r ) c o n s t { }

s t a t i c c o n s t e x p r s i z e _ t EVENT_DATA_SIZE = 4 ;
a l i g n a s ( 3 2 ) s t d : : a r r a y < u i n t 6 4 _ t , EVENT_DATA_SIZE> d a t a _ ; / / 32− b y t e a l i g n e d f o r AVX2
} ;

Figure 3: Comparison of SIMD and RB runtimes.

1e
-6
)

Figure 4: SIMD and RB time per event.

7 DISCUSSION

The performance analysis conducted throughout this study reveals several critical insights into the optimiza-
tion of parallel discrete event simulations. Event comparison emerges as the predominant computational
bottleneck across all WARPED2 implementations, consuming a significant portion of CPU time—ranging
from 12.4 seconds in the optimized Unified Queue to 23.39 seconds in the traditional Multiset implemen-
tation for the Traffic-20k model (Table 1), and from 33.10 to 137.23 seconds respectively for the more
complex PCS-5k model (Table 2). These findings underscore the central importance of efficient event
comparison mechanisms in PDES systems.
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Table 5: Latency Comparison: Event Class vs Hashed Event Class.

Event Class 99% 90% 50%

Old Event Class 408ns 218ns 94ns
Hashed Event Class 370ns 216ns 88ns
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Figure 5: Memory bandwidth utilization traffic.
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Figure 6: Memory bandwidth utilization epidemic.

Among the approaches evaluated, the Unified Queue implementation demonstrates the most substantial
improvements in event comparison costs, achieving up to a 76% reduction in the PCS-5k model compared
to the Multiset implementation. This dramatic improvement can be attributed to the queue’s architectural
advantages that enable the use of relaxed comparison operators for the schedule queue. However, the
Unified Queue introduces new computational costs, particularly in shared pointer operations and mutex
synchronization, which become increasingly significant in more complex models.

The partially sorted Ladder Queue offers a promising middle ground, with event comparison costs
reduced by 47% in PCS-5k compared to the Multiset, without incurring the same level of synchronization
overhead as the Unified Queue. This suggests that implementing partial sorting strategies may provide
substantial benefits without requiring the architectural overhaul necessitated by the Unified Queue approach.

The Hash Event Set strategy shows moderate performance improvements in comparison latency, with
reductions of up to 9.3% for the 99th percentile case (Table 5). While not as dramatic as the queue
restructuring approaches, this strategy requires minimal architectural changes and could be implemented
as a complementary optimization alongside other techniques.

Contrary to expectations, the SIMD implementation failed to deliver significant performance improve-
ments across the tested models, as shown in Figures 3 and 4. In fact, the RB approach consistently
outperformed SIMD in terms of total runtime, particularly for smaller models. This counter-intuitive result
suggests that the current SIMD implementation on AVX2 platforms may not be optimally aligned with
WARPED2’s computational patterns, or that the overhead of setting up SIMD operations outweighs their
benefits for the specific comparison operations in WARPED2.

The memory analysis illuminates critical challenges facing WARPED2’s performance. With approxi-
mately 30% of CPU execution time spent waiting for memory operations, and significant L1 (15.0%) and
DRAM (23.8%) bound metrics (Table 3), it is evident that memory access patterns play a crucial role in
overall simulation efficiency. The high load operations count (50,322,246,627) compared to store opera-
tions (25,499,413,254) indicates a read-heavy computational pattern, which could benefit from strategies
that improve data locality and reduce cache misses 3.

Bandwidth utilization analysis reveals that memory allocation functions (int_mallinfo,_int_malloc)
and tree operations (std::_Rb_tree_increment) are significant contributors to LLC misses. The
memory bandwidth utilization patterns in Figures 5 and 6 further illustrate these memory access challenges
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across different simulation models. This suggests that strategies focusing on reducing heap allocations in
favor of stack usage, and implementing more cache-efficient data structures for event queues, could yield
substantial performance improvements.

8 CONCLUSIONS

This work demonstrates the critical importance of comprehensive profiling methodologies in identifying and
addressing performance bottlenecks in complex parallel discrete event simulation systems. Our systematic
approach to performance analysis, utilizing multiple profiling tools and metrics, provided insights that
would not have been achievable through traditional timing-based performance measurements alone.

The multi-layered profiling approach employed in this study—combining execution time analysis,
memory hierarchy profiling, and bandwidth utilization measurements—proved highly effective in uncovering
the root causes of performance limitations. The discovery that event timestamp comparison operations
consume up to 21% of total runtime was only possible through detailed CPU profiling that went beyond
simple wall-clock measurements. This level of granularity enabled us to target specific computational
hotspots rather than pursuing broad, potentially ineffective optimizations.

The memory hierarchy analysis was particularly valuable, revealing that 30% of CPU execution time was
spent waiting for memory operations. Without detailed cache miss analysis and memory bandwidth profiling,
we might have focused exclusively on algorithmic improvements while overlooking the substantial impact
of memory access patterns. The identification of specific functions (int_mallinfo, _int_malloc,
std::_Rb_tree_increment) as major contributors to LLC misses provided actionable optimization
targets.

Understanding the behavior at different levels of the memory hierarchy proved essential for effective
optimization strategy development. The L1 cache bound metrics (15.0%) and DRAM bound metrics
(23.8%) provided a clear picture of where the memory bottlenecks occurred, guiding our optimization
efforts toward data locality improvements rather than strictly on algorithmic changes. Furthermore, the
high load operations count (50,322,246,627) compared to store operations (25,499,413,254) indicates a
read-heavy computational pattern that could benefit from strategies to improve data locality and reduce
cache misses.

The detailed profiling results enabled a targeted optimization approach that addressed specific bot-
tlenecks rather than attempting broad system-wide changes. The success of the Hash Event Set imple-
mentation—achieving 9.3% latency improvement with minimal architectural changes—exemplifies how
profiling-guided optimization can deliver meaningful results with focused effort.

Conversely, the profiling methodology also prevented wasted effort on ineffective optimizations. The
SIMD implementation results, which showed no significant improvement despite theoretical advantages,
were clearly interpretable through our detailed analysis. The profiling data suggested that setup overhead
and instruction pipeline characteristics, rather than raw computational throughput, were the limiting factors
for SIMD effectiveness in this context.

This study demonstrates that effective performance optimization in complex systems requires profiling
methodologies that capture multiple performance dimensions simultaneously. Traditional approaches fo-
cusing solely on execution time would have missed the critical memory access patterns that ultimately limit
system performance. The combination of temporal profiling (execution time), spatial profiling (memory
access patterns), and architectural profiling (cache behavior) provided a comprehensive view necessary for
informed optimization decisions.
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