Proceedings of the 2025 Winter Simulation Conference
E. Azar, A. Djanatliev, A. Harper, C. Kogler, V. Ramamohan, A. Anagnostou, and S. J. E. Taylor, eds.

BRIDGING THE GAP: A PRACTICAL GUIDE TO IMPLEMENTING DEEP
REINFORCEMENT LEARNING SIMULATION IN OPERATIONS RESEARCH WITH
GYMNASIUM

Konstantinos Ziliaskopoulos!, Alexander Vinel!, and Alice E. Smith!

'Dept. of Industrial and Systems Engineering, Auburn University, Auburn, AL, USA

ABSTRACT

Deep Reinforcement Learning (DRL) has shown considerable promise in addressing complex sequential
decision-making tasks across various fields, yet its integration within Operations Research (OR) remains
limited despite clear methodological compatibility. This paper serves as a practical tutorial aimed at bridging
this gap, specifically guiding simulation practitioners and researchers through the process of developing
DRL environments using Python and the Gymnasium library. We outline the alignment between traditional
simulation model components, such as state and action spaces, objective functions, and constraints, and
their DRL counterparts. Using an inventory control scenario as an illustrative example, which is also
available online through our GitHub repository, we detail the steps involved in designing, implementing,
and integrating custom DRL environments with contemporary DRL algorithms.

1 INTRODUCTION

Deep Reinforcement Learning (DRL) has emerged as a powerful technique capable of solving complex
sequential decision-making problems across many domains, including gaming, autonomous navigation,
robotics, and increasingly, Simulation and Operations Research (OR). The structured and analytical frame-
work of these problems makes them particularly suitable for reinforcement learning. In fact, many such
models, which are characterized by explicit objective functions, constraints, and state transitions, are nat-
urally formed as Markov Decision Processes (MDPs), which easily translate to DRL. Objective functions
from traditional models correspond closely to reward functions in DRL, while constraints can be effectively
captured through carefully designed simulation dynamics.

While OR and DRL share conceptual foundations, collaboration between these two fields is still
developing. Powell (2019) describes the fragmentation of the optimization community, especially in
stochastic problems. Simulation practitioners in industry and academia typically use simulation software
to develop their discrete-event models, such as Simio (Pegden 2007) or Anylogic (Borshchev 2014).
Although these tools are proven and robust simulation packages, their integration with the fast-moving field
of deep learning and DRL agents is currently lacking. Efforts to bridge this gap exist but often encounter
significant barriers due to the rapid evolution of DRL technologies, sparse documentation, and fragmented
implementations across numerous high-level and low-level programming libraries. Practitioners aiming to
integrate DRL into simulation projects face a steep learning curve, frequently having to navigate outdated
frameworks or conflicting methodologies.

This tutorial aims explicitly to address this gap, providing accessible guidance tailored to simulation
practitioners and researchers who have basic familiarity with Python programming. We present a structured
overview of the process of designing and implementing custom RL environments, elucidating how key
components, such as state and action spaces, reward functions, and environment dynamics, align with
traditional OR models. Furthermore, we offer practical advice for integrating these environments with
state-of-the-art DRL algorithms, leveraging standard implementations or customized approaches adapted
specifically to practitioner needs.
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The remainder of this paper is organized as follows: In Section 2, we provide the context and discuss
prior applications of DRL within OR/simulation. Section 3 outlines the key steps involved in creating DRL
simulation environments. Section 4 demonstrates the implementation process with a detailed illustrative
example based on an inventory control problem. Section 5 covers integration with existing DRL algorithms,
concluding with guidance on leveraging these methods effectively in practice. Finally, in Section 6, we
present some different avenues of future research in the field that are especially relevant to OR researchers
and simulation practitioners.

2 BACKGROUND

DRL consists of two main components: MDPs, which serve as the model formulation language, and
neural networks, which approximate both problem formulations and solutions (Boute et al. 2022). MDPs
and dynamic programming (DP) are already critical components in OR methodologies often tackled in
simulation. DRL simply addresses the curse of dimensionality in RL by providing scalability and flexibility
through neural networks, rather than introducing new fundamental modeling concepts.

Traditionally, Reinforcement learning (RL) builds upon the dynamic programming framework, where
the primary goal is to identify an optimal policy for a given sequential decision-making problem (Sutton
and Barto 2018). An agent interacts with an environment over discrete time steps, receiving observations
(states, s) and rewards (r), and taking actions (a). The agent’s behavior is defined by its policy, 7, which
maps states to actions or distributions over actions, typically denoted as m(als) = P[A; = a|S; = s]. The
objective is to find an optimal policy, 7*, that maximizes the expected cumulative discounted reward, often
represented by value functions. The state-value function, Vy(s), estimates the expected return starting from
state s and following policy 7: Vi (s) = Ex[Yr_o Vrrexr1|S: = 5], where v € (0,1] is the discount factor.
Similarly, the action-value function, Qr(s,a), estimates the expected return after taking action a in state s
and subsequently following policy 7: Qz(s,a) = Ez[Yr_o ¥rr4+1|S: = 5,A; = a]. RL algorithms iteratively
apply principles related to the Bellman equations of dynamic programming (Bellman 1984) to find optimal
value functions (V*,0*) and thereby the optimal policy 7*. For instance, the optimal action-value function
Q* satisfies the Bellman optimality equation: Q*(s,a) = E[r+1 + ymaxy Q*(S;41,d')|S; = s,A, = a].

For problems with large or continuous state and/or action spaces, representing value functions or policies
explicitly (e.g., in tables) becomes intractable. The integration of neural networks with reinforcement
learning, commonly referred to as deep reinforcement learning (DRL), addresses this by using neural
networks as powerful function approximators (Bertsekas and Tsitsiklis 1996). In DRL, the value functions
or the policy itself are parameterized by the network’s weights, 6. For example, we might approximate the
action-value function as Q(s,a; 0) ~ Q*(s,a) or the policy as 7(a|s; 0) ~ *(als). Different DRL algorithms
leverage these approximations in various ways:

*  Value-based methods (like Deep Q-Networks, DQN (Mnih et al. 2013)) train a network to ap-
proximate Q(s,a;0) and derive the policy implicitly (e.g., by choosing the action with the highest
Q-value). Training typically minimizes the difference between the current Q-value estimate and a
target value derived from the Bellman equation (Temporal Difference learning).

*  Policy-based methods (like REINFORCE (Williams 1992)) directly train a network to represent
the policy m(a|s;0) and update 6 to increase the probability of actions leading to higher returns
(Policy Gradient methods).

* Actor-Critic methods (like Soft Actor Critic, SAC (Haarnoja et al. 2018) or Proximal Policy
Optimization, PPO (Schulman et al. 2017)) combine both, using separate networks (or shared
networks with different output heads) for the policy (the actor) and a value function (the critic),
which helps evaluate the actor’s actions and guide learning. For example, in PPO, the actor is
updated using a clipped surrogate objective L“MP that prevents large, divergent policy updates,
while the critic is trained to minimize the mean squared error between the predicted and actual
returns.
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We discuss these algorithms in more detail in Section 5.

As computational resources have become more accessible and cost-effective, DRL has seen rapid
expansion across various fields. Significant achievements in DRL include DeepMind’s AlphaGo, which
successfully surpassed human champions in the game of Go (Silver et al. 2017). In the realm of autonomous
vehicles, recent developments have produced autonomous agents capable of rivaling expert drone pilots
in both speed and maneuverability (Kaufmann et al. 2023). Reinforcement learning has also contributed
significantly to breakthroughs in large language models; for example, researchers developing DeepSeek
used reinforcement learning to improve reasoning and problem-solving capabilities in their models (Guo
et al. 2025).

Parallel to advancements in other domains, reinforcement learning has garnered substantial interest within
operations management. A closely related concept, more familiar to Operations Research (OR) practitioners,
is approximate dynamic programming (ADP). Powell, in his work on ADP (Powell 2011), categorizes
several core problem classes suitable for ADP, including budgeting, asset acquisition, resource allocation,
storage management, shortest path, and dynamic assignment—problems central to OR. Beyond these
categories, DRL has successfully addressed various other OR-related challenges, including combinatorial
optimization (Mazyavkina et al. 2021), inventory management (Boute et al. 2022), and supply chain
optimization (Oroojlooyjadid et al. 2017).

Although tools have emerged to bridge the gap between OR practice and RL, such as the OR-Gym library
(Hubbs et al. 2020) or the in development RL4CO library (Berto et al. 2023), the rapidly evolving nature
of DRL often leaves these implementations obsolete, insufficiently documented, or difficult to implement.
Addressing this gap, the Farama Foundation introduced Gymnasium, a Python library intended as the
natural successor to OpenAl’s Gym (Towers et al. 2024). Despite similarities, Gymnasium differs in parts
from the original implementation, requiring DRL practitioners either to rely on deprecated tools compatible
with legacy systems or to navigate the complexities of adapting their code to the newer standard.

Although one could theoretically train a DRL agent with any simulation model, there exist significant
benefits in using the community standard in simulation environments. Software such as AnyLogic or
Simio excels at detailed industrial simulations, but their integration with DRL would require substantial
custom code to handle action execution, space representation, and reward calculation. Gymnasium, on the
other hand, is currently integrated with most major software packages in the DRL ecosystem. The tools
developed by the leading research teams, for example JAX from Google (Frostig et al. 2018) or TorchRL
from Meta Al (Bou et al. 2023), provide integrations with Gymnasium environments. Another benefit of
using Gymnasium environments over other established simulation tools for DRL training is the ability to
vectorize the simulation models. Typically, an agent will require millions of interactions with a simulation
to converge to an optimal policy. Gymnasium provides tools to run multiple simulation environments in
parallel, with which the DRL algorithm can interact simultaneously, constrained only by the modeler’s
hardware.

Since notation differs wildly between the OR and DRL fields (Powell 2019), we establish consistent
terminology to help the reader navigate the rest of the tutorial. We define the following:

* &/ = action space

* U = observation space

* ¥ = state space

* r =reward function

* 0 = Trained parameters of the DRL agent
* 7 = Policy distribution of the DRL agent

This tutorial provides a structured, step-by-step approach to implementing a discrete-event DRL
simulation environment in Python using the Gymnasium library. Designed to bridge the existing gap
between OR and DRL, the guide is designed to provide clarity and accessibility. The illustrative example
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used in this tutorial focuses on an inventory control problem; however, the principles, methods, and insights
presented can be readily generalized to a wide array of simulation situations.

3 CONSTRUCTING THE ENVIRONMENT

As many simulation practitioners are aware, the first step in developing a simulation model is to define
it conceptually. In fact, many of the lessons from Robinson (2008) still hold true here. Our simulation
environment still needs to be built in tandem with stakeholder and company objectives. We need to decide
on both the breadth of the model and the level of detail required. We need to answer questions about our
system, like: What are the assumptions and simplifications we are willing to make? What do we want
the inputs and outputs of our final model to be? Of course this is also an iterative process, as we work
on the model implementation we often revisit our conceptual model and make additions or adjustments.
Nevertheless, we assume the reader has some familiarity in simulation model construction so we do not
go in depth on this topic. Readers unfamiliar with the concept of conceptual modeling in simulation are
encouraged to read Robinson (2008) for a more in-depth discussion on the topic.

3.1 Limitations and Considerations for Translating Simulation Models from Specialized Software

Although Gymnasium provides a powerful platform for developing DRL compatible simulation environ-
ments, it is important to recognize inherent limitations when translating simulations from specialized
software. Commercial discrete-event simulation tools offer easy-to-use tools, with graphical interfaces and
domain-specific functionality that simplifies model development, particularly in applications with complex
simulation logic or entity interaction. Translating such models to Gymnasium (or Python in general)
requires manually re-implementing many underlying process logic and data structures, which can be time-
consuming and error-prone. Additionally, not all features in commercial software have a clear analog in
Gymnasium; for instance, any custom visualization capabilities have to be implemented manually. While
there is no alternative for practitioners aiming to use state-of-the-art DRL models with their simulation
environments, a consequence of the fast-paced nature of the field is rough edges in implementation. There-
fore, our methodology emphasizes practical guidelines for conceptual translation and simplification, rather
than a feature-by-feature replication. We focus on capturing critical decision-making dynamics relevant to
reinforcement learning and provide further material for simulation and modeling extensions in Section 6

3.2 Defining the Components

After defining our model conceptually, we can clarify the basic structure of our simulation environment.
Here, the terminology differs slightly from classic simulation literature. Depending on the literature, the set
of decision variables, control variables, or policy inputs are called here the action space, 7. The set of
measurements, observables, input data, or exogenous information are called the observation space, . The
set of system states or state variables are defined here as the state space, .. Finally, as DRL environments
are built as simulation models to be optimized, we need a function that quantifies the performance of our
training agent. Therefore, the objective function, cost function, or utility function of the model is called
the reward function, r(als).

The action space is the set of decision variables available to our agent and the values those variables
take at each timestep of our model. The observation space is the set of variables that accurately describe
the current state of our system to our agent. OR practitioners may be familiar with the concept of Partially
Observed Markov Decision Processes (POMDP), (Kaelbling et al. 1998). As in POMDPs, the observation
space of the agent is not necessarily equivalent to the state space of the simulation model. In order to
model real-world conditions, we might want to obscure certain state variables from our DRL agent to better
mimic actual decision making processes. We do this by providing a subset of the overall information to
our training agent. The state space that defines the dynamics of our model can be obscured from the agent
and still be extracted from the environment for model observability and validation. Finally, the reward
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function is the metric that our agent is trying to optimize. While this is often a difficult and iterative process
in other DRL domains, like robotics and autonomous vehicles, where the specific metric we are trying to
optimize is not always clear, in OR models the reward function tends to be clear. After all, if the problem
can theoretically be defined by a mathematical model, a cost/reward function already exists; we simply
need to adapt it to our implementation.

3.3 Transition Dynamics and Simulation Logic

After defining the components of our environment, we need to define the transition dynamics of our model,
or the implementation logic of our simulation. Again, while this is often a complex and uncertain process
in many DRL domains, often involving neural network function approximators to estimate unknown or
complex dynamics, in OR models the transition dynamics are often closed form and well-defined. We
demonstrate this in our example in Section 4.

3.4 Implementation in Gymnasium

Every Gymnasium environment has 3 mandatory sections to properly function as a DRL environment: an
initialization (__init__) function, a reset (reset () ) function and a step (step () ) function. Besides
these, the modeler is free to add as many auxiliary functions as needed to properly define the environment.

e The _ init__ function initializes the environment and sets the parameters of the simulation.
Here, the modeler should define the parameter input the model requires, decide how to handle
optional inputs, as well as setting the environment components. At minimum, the __init___
function should define the action space and the observation space as environment class attributes,
self.action_space and self.observation_space. In gymnasium, observation and
action spaces are defined as gym. spaces objects. Depending on the values and the structure of
the action and observation spaces, the modeler can choose from different types of spaces, as shown
in Table 1. It is important to note that some reinforcement learning algorithms require specific types
of action and observation spaces. For example, DQN requires discrete action spaces, while PPO
can handle continuous action spaces. In general, the modeler should strive to design observations
and actions as simply as possible, as composite spaces can also preclude certain optimizers and
algorithms. We discuss this in more detail in Section 5.

* The reset () function initializes the environment at the beginning of each episode. This function
should reset the environment to its initial state and return the initial observation. In our inventory
control example, the reset function would set the inventory levels to the starting inventory, the
pipeline inventory to 0, and the demand ratios to the expected demand. It would then return the
stacked vertices of these variables as the initial observation. As an example, we reset the internal
timestep counter to 0 and inventory levels to the starting inventory. Other state attributes, such as
the pipeline inventory vector, are set to their initial values. The function then returns the initial
observation.

* The step () function is the most important method of our environment. It is where the simulation
logic takes place, but is also how we define the agent interaction with our environment. Every time
the step () function is called, the simulation environment progresses one time period, and allows
the agent to take another action. It is important to note here that this does not mean our time steps
have to be equal in length. We could define each time step as the time until the next event occurs,
as in traditional discrete-event simulation, provided we program the environment as such. A better
way to think about the time step is the desired time between action opportunities for our agent.
For example, if we want our agent to be able to interact with our environment daily, then it makes
sense to have time steps of equal length, where each call of the step () function would simulate
the transition dynamics for one day. On the other hand, if we want our agent to interact with
the environment depending on the time spent on his previous action, for example, then we would
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simply change our simulation logic and increment the environment class attributes differently. In
OR problems the time steps tend to be equal but the modeler should keep in mind that they are not
precluded from a different implementation, if it suits their problem structure better.

The step () function takes an action matrix as input, updates the environment based on the action,
and returns five variables: the next observation, the reward, a boolean indicating whether the episode
has reached a terminal state, i.e., is terminated, a boolean indicating whether the episode is truncated,
and key-value pairs (in Python, a dictionary) of additional information. The definition of terminated and
truncated conditions is up to the modeler, but there are some common conventions. In general, a terminating
condition should reflect an agent completing or failing its task. A truncating condition, on the other hand,
ends an episode prematurely, but usually due to some external limit, like a maximum number of time
steps. In OR problems, the difference is subtle. In some cases, like the classic news vendor problem, we
can define terminated as an end of a single period or multi-period scenario, or when a predefined limit
of stock-outs has been reached. We could truncate an episode based on random parameters, signifying
external disruptions, or if the profit margins fall below viability thresholds and the episode is not worth
continuing. In other problem categories, such as in a Traveling Salesman Problem, it is clear when to
assign a rerminated condition but not a truncated condition.

It is possible to design a simulation environment without a truncated condition, but it can help avoid
degenerate cases where the agent learns to exploit the environment and help the agent extrapolate in unseen
scenarios. In general, once an episode truncates, the agent can no longer accrue rewards. Therefore, it will
learn to avoid truncating behavior, if possible, allowing the modeler to better shape its behavior, at the risk
of introducing bias. For example, in our inventory control environment, we terminate an episode when
the number of timesteps reaches the maximum. Meanwhile, during training, there is a small percentage
chance each step that the episode will truncate. This is to avoid the agent learning to exploit the maximum
number of timesteps of the environment, which could lead to reckless behavior later in the simulation.

Besides the two boolean variables, our example computes the new inventory levels, pipeline inventory,
and demand ratios based on the action matrix and defined transition dynamics. We return the next step’s
observation matrix, as well as any additional information we want to extract from the model for observability,
validation, and monitoring purposes: accrued cost, cuamulative stock-outs, and orders placed. Finally, we
also compute and return the reward for the step.

3.4.1 Reward Function

As mentioned earlier, the reward function is intrinsically linked with the respective problem’s objective
function. In essence, it is the objective function for the reinforcement learning agent. Through it, it will
learn to better estimate value functions and select more effective policies. The modeler also has the option,
however, to add shaping rewards to the reward function. Shaping rewards are typically used in complex
simulation environments with delayed or sparse reward signals to encourage the agent towards a desired
behavior. Shaping rewards tend to reduce convergence time by eliminating trial-and-error from the training
process, but it has the downside of introducing bias to the agent. For example, in robotics, we might want
a cobot to learn to approach a specific workstation. We might reward the agent only on achieving its goal,
or we may give it partial rewards for approaching it. This might help the cobot learn faster. On the other
hand, it might also lead to reward hacking, where the agent learns to exploit the easy intermediate rewards
instead of searching for the intended goal, or cause the agent to overfit on intermediate steps. It requires
additional foresight and care by the modeler to properly design the shaping rewards and gradually phase
them out as the agent better learns the environment.

3.4.2 Auxiliary Functions

Besides the core three methods that are necessary to implement in every simulation environment, we can
also add auxiliary functions to help implement our simulation logic and data collection. Some common
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auxiliary functions to consider are functions to collate the action and observation spaces, as that logic tends
to be reused often. Besides those, our example includes functions to generate daily orders and demand for
each location from the user inputted demand parameters, a function to clip the action matrix to ensure that
the agent does not order more than the available inventory, and finally a function to compute the expected
demand each day to provide to the agent through the observation space.

3.5 Verifying and Monitoring the Environment

Of course, practitioners should be familiar with the concepts of verification and validation in simulation.
Verification is the process of ensuring that the simulation model is implemented correctly and that it
accurately represents the intended design, our conceptual model. Validation, on the other hand, is the
process of ensuring that the simulation model accurately fulfills the intended purpose and that it is a good
representation of the real-world system. Validation is usually done through comparison with real-world
data, other models, or by consulting experts and stakeholders. While extremely important, validation is
outside the scope of this tutorial.

Verification in gymnasium environments can be done a variety of ways. Researchers familiar with
Python programming and best practices will be familiar with testing and debugging processes. While
constructing the simulation logic, the modeler can write tests beforehand that initially will fail, and will
only succeed with a proper implementation of the model. This paradigm is called test-driven development
(TDD) and is a common practice in software engineering (Beck 2022). Besides tests, the model can also
be verified through monitoring key output metrics during different phases of the simulation. For example,
one can monitor the average reward per episode, the sensitivity of the state to different input actions, and
if the environment is behaving as expected. Gymnasium action and state spaces provide a sample ()
method that can be used to generate random samples from the space to quickly iterate through a simulation
and check environment behavior.

Since the environment is built as a tool for the DRL agent to learn from, we can also monitor the
agent’s performance during training. Irregular training patterns or episodic rewards can indicate that the
environment is not behaving as expected. Please note that this does not necessarily mean that the environment
is incorrect. DRL agents are notoriously difficult to train properly and can be sensitive to hyperparameters
and training data. While poor performance may indicate an issue with the environment, it may also indicate
that the observation space is insufficient for proper decision making, or that the chosen hyperparameters
are not appropriate for the problem. The modeler is encouraged to rely on multiple streams of monitoring
data, from both the environment and the agent, to verify the process. A good practice in training is to
periodically evaluate the agent through a single episode, without exploration, and compare the results with
both other agent behavior and the intended simulation outputs. Tools such as TensorBoard (Abadi et al.
2016), can be used to visualize the training process in real time and help modelers identify issues with the
simulation. Further discussion on potential pitfalls with training DRL agents in Section 5.

4 PRACTICAL EXAMPLE: INVENTORY CONTROL - OPTIMIZING FILL RATE

In our example, which we also provide publicly on our GitHub repository (Ziliaskopoulos 2025), we are
interested in simulating the inventory control process in a network of locations. While the overall system
has many inherent complexities (i.e. truck capacity, storage layouts, etc.), we focus on the metrics that are
important to our bottom line: inventory levels, lead times, stock-outs, and costs. We decide on modeling
a network of critical infrastructure, and we are trying to identify the optimal order frequency, direction,
and amount in a network of locations with a single, critical SKU, whose main objective is minimizing
stock-outs and maximizing order fulfillment. This could be for a network of health facilities during an
epidemic, military locations during conflict, or first responders during a crisis, for instance, where stock-outs
can be devastating and cost is secondary. We will design the environment with a lost sales model, and a
fully connected network with deterministic lead times. The action space, therefore, is defined as the set
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Table 1: Gymnasium spaces types and their OR examples.

Name Type Description OR Example

Box Fundamental, An n-dimensional box of bounded or  Order quantities shipped from »
Continuous/  unbounded float or int values. Can be = warehouses to m retailers in a
Discrete continuous or discrete depending on supply chain.

dtype.

Discrete Fundamental, A single integer space from ‘start’ to  Choice of a machine to assign a
Discrete ‘start + n - 1°. job in job-shop scheduling.

MultiBinary  Fundamental, An n-shape binary space where each ~ Whether to activate a set of
Binary element is either O or 1. production facilities or not.

MultiDiscrete Fundamental, A Cartesian product of multiple Allocation of shifts to workers
Multi- discrete spaces. where each shift has multiple
discrete options.

Text Fundamental, A space of strings with characters Encoding routing codes for
Text from a charset and bounded length. delivery paths.

Dict Composite, A dict of spaces, enabling structured ~ Combining vehicle location
Structured observations or actions. (Box) and demand status

(Discrete) in vehicle routing.

Tuple Composite, A fixed-length tuple of other spaces. A (mode, quantity) action pair

Cartesian Useful for ordered heterogeneous in inventory control.
inputs.

Sequence Composite, A variable-length sequence of A sequence of customer arrivals
Variable- elements from a space. or delivery stops.
Length

Graph Composite, A graph structure with node and Modeling a transportation or
Graph optional edge features. power network.

OneOf Composite, A space representing a choice Choosing between transport
Exclusive- between different types of actions. modes (drive, rail, ship), each
Choice with unique parameters.

of possible order amounts per time step, A € R"*", where n is the number of locations in our network,
A is our action matrix, a; ; is the quantity ordered from location i by location j, and a; ; = 0Vi = j. The
observation space is defined as the set of inventory levels at each location, s € R", the pipeline inventory
for each location of the next incoming order, p € R", and the ratio of expected demand to inventory levels
at each location, d € R". The reward function, as shown in Figure 1, is defined as the overall systemic
difference between filled orders and stockouts per time step,

)

where:

* R, is the reward at time step ¢,
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i)

DRL Agent

Figure 1: Conceptual diagram of the inventory control environment during a single timestep transition.

* 0, is the number of orders filled at location i at time step ¢, and
e &, is the number of stockouts at location i at time step .

In the code, we use a composite observation space of Dict, containing 3 Box subspaces. While in
this case using a composite space is not necessary as our observation space is homogeneous, we wanted
to showcase the composite spaces and their implementation. Our action space is also a Box space, here
with n X n dimensions and a lower bound of 0.

As for our transition dynamics, we define the simulation logic in the step () function. The simulation
is run in discrete time steps, where each step represents a day. We first generate incoming orders and demand
for each location based on the user-defined parameters. The incoming orders are translated to demands
per unit and per location, and the overall distribution of demand is defined by user input in the init ()
method and a custom auxiliary function _generate_demand (). We decide to use a composite demand
function, where the demand is defined as a sum of uniform and binomial distributions, where the parameters
are themselves also random variables. During each timestep, we first decrement the time until a pipeline
order arrives. If the counter reaches 0, we increase the inventory level by the order amount and remove it
from the pipeline. Then, we update the inventory levels at each location based on incoming demand. If
the demand exceeds the inventory level, we record a stock-out and decrease the reward function according
to Equation (1). Finally, we place orders in the network based on the action matrix. We update pipeline
inventory and inventory levels based on outgoing orders and increment the reward function accordingly
based on Equation (1). We repeat this process for each timestep until a predefined stopping condition is
met.

Finally, as shown in Figure 2, we can simultaneously collect metrics and monitor both the simulation
environment and the DRL agent to debug and identify the next steps. As an illustrative example, we configure
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the inventory control environment with four locations, randomly assigning one location a significantly higher
inventory level. We then train a PPO DRL agent to minimize shortages throughout the network.

On the right side of Figure 2, we see the monitoring outputs of the DRL agent’s training process.
The reward function converges to the maximum achievable level under the current episodic parameters,
resulting in no shortages and a 100% fill rate. Additionally, the neural network used for value estimation
converges to an almost zero total loss, indicating that the agent effectively understands the value of each
state in relation to its reward function. The Kullback-Leibler Divergence (KL Divergence), named after
Kullback and Leibler (1951), is a widely used component of loss functions in deep learning, measuring the
difference between two probability distributions. In this context, it indicates the extent of change in the
agent’s policy distribution: a lower value signifies less change, meaning the agent is converging toward an
optimal policy.

On the right side of the figure, we see the simulation outputs through the inventory levels of the
four locations at 3 different snapshots of the PPO agent: after training for 50,000, 200,000, and 500,000
time-steps. Initially, the agent struggles to manage shortages, placing sparse, low-quantity orders once the
initial stock is depleted. After 200,000 iterations, the agent begins to recognize the relationship between
maintaining inventory levels and fulfilling orders, though performance remains inconsistent. However,
after 500,000 time-steps, the agent consistently places orders at every time-step, prioritizing high inventory
levels. This progression indicates that we can now incorporate penalties for large inventories and frequent
ordering into the reward function, gradually integrating cost considerations without compromising the fill
rate.

S INTEGRATING WITH DEEP REINFORCEMENT LEARNING ALGORITHMS

While this tutorial focuses on the implementation of the DRL environment, the integration with DRL
algorithms is inextricably linked to the environment design (see Figure 3). The choice of DRL algorithm
can significantly impact the performance and efficiency of the training process. Conversely, some design
choices in the environment can preclude the use of certain algorithms. For example, some algorithms,
like DQN, require discrete action spaces, while others, like PPO, can handle continuous action spaces.
There are many different DRL algorithms available, and many different implementation packages available.
For someone newer to DRL implementations, we recommend using the stable_baselines3 Python
package (Raffin et al. 2021). While not as easy to modify as other packages, stable_baselines3 is
a well-documented and widely used package that provides easy access to many of the most popular DRL
algorithms. It also integrates very well with gymnasium environments. In Section 6, we provide some
alternatives to stable_baselines3 and some additional resources for customizing and modifying the
stock algorithms.

5.1 Hyperparameters in DRL

As mentioned in Section 3, DRL agents are very fickle during training. They are sensitive to hyperparameters,
the training data, and the environment. For this reason, the majority of well-known DRL algorithms tend
to implement some form of clipping or bounding method to prevent the agent from diverging too far from
the training data. While the modeler can control the extent of this clipping through hyperparameters, each
algorithm has its own set of hyperparameters and there are rarely one-size-fits-all solutions. Nevertheless,
we recommend starting with default hyperparameter configurations and gradually tuning them based on
performance. Some hyperparameters are counterintuitive. For example, batch size might be a familiar
concept to the reader, and in traditional deep learning it is often a hyperparameter where larger values lead
to higher stability. However, recent research (Obando Ceron et al. 2023) has identified that in many cases
smaller batch sizes lead to both faster training times and better stability and performance.

Another counterintuitive yet very important hyperparameter is the function approximator neural network
architecture. Again, in typical deep learning, large, deep networks tend to perform best, with commercial
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Figure 2: Showcase of monitoring and observability during simulation runs. On the left, 3 DRL agent
metrics: Average episodic reward achieved, Approximate KL divergence and average value loss. On the
right, inventory levels during 3 evaluation periods: after training for 50,000 time-steps, 200,000 time-steps,
and 500,000 time-steps.

large language models (LLMs) having billions of parameters and vision models trained with near a hundred
layers. However, in DRL, the opposite is often true. In typical deep learning models the model is trained
supervised, with millions of labeled examples to learn from. In DRL, the model generates its own data,
which can often be correlated, with sparse reward signals. A large network can easily overfit on the training
noise, while a smaller network tends to generalize better. Another reason is the training stability of the
agent, as larger networks introduce higher variance and divergence in the process. Smaller networks with
less parameters are simply easier to stabilize than their larger counterparts. Finally, a crucial reason is
the computational cost of training and speed of the interaction. As mentioned in Section 2, DRL agents
require millions of interactions with the environment to properly learn and optimize the system dynamics.
A larger network would impede both training and inference times, especially when many different training
iterations are often necessary to fine tune the hyperparameters of the agent.

As for the other hyperparameters, there are ways to methodically tune them, from simpler methods,
like a grid search, to more complex methods, such as Bayesian optimization or adaptive optimization
algorithms. The reader is encouraged to look into Eimer et al. (2023) and Bakshy et al. (2018) for further
information on the topic. However, simply running the agent with default settings and slowly iterating in
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Figure 3: High-level overview of the DRL environment and its interaction with the agent and the user.

small implementations can often suffice, provided there is adequate monitoring of the environment and the
training process.

6 FURTHER READING

For those interested in getting a foundational understanding of RL from both a theoretical and algorithmic
perspective, we highly recommend the textbook by Sutton and Barto (2018). It is widely considered a
seminal text in the field and provides a comprehensive overview of the inner workings of the RL and DRL
algorithms used today. For a more practical introduction to DRL, we recommend the hands-on tutorials
by the OpenAl team, (Achiam 2018), and the HuggingFace team, (Simonini T., and S. Omar 2023).
Both tutorials give a brief theoretical overview but focus on practical implementations of DRL algorithms,
environments, and examples.

A great resource for researchers looking to graduate from the stock implementations in stable-base
lines3, or for practitioners looking to better understand the inner workings of a specific algorithm is
the CleanRL GitHub repository and accompanying paper, (Huang et al. 2022). There the authors provide
clean and well-documented, single file implementations of many popular DRL algorithms. We already
mentioned PPO (Schulman et al. 2017), DQN (Mnih et al. 2013), and SAC (Haarnoja et al. 2018),
which are provided, but the repository also contains implementations of other state-of-the-art algorithms,
such as Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al. 2015), Delayed Deep Deterministic
Policy Gradient (TD3) (Fujimoto et al. 2018), and more. Researchers are encouraged to look into both
the repository and accompanying papers for a deeper understanding of individual algorithms and their
implementations.

Of course the field is currently evolving rapidly, and new packages and tools are being developed all
the time. Researchers familiar with the field of Deep Learning might have heard of the pyt orch package,
which is an open-source library maintained by the PyTorch team at Meta Al and is currently one of the
state-of-the-art toolboxes for deep learning implementations (Paszke 2019). The same team is currently
also developing a package called t orchr1, which is a low-level toolkit for designing DRL algorithms and
handling data pipelines between agents and environments. It provides PyTorch-native abstractions and data
types that are optimized computationally for DRL workloads, while also easily integrating into gymnasium
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environments. While we do not recommend using torchrl for beginners, for researchers and practitioners
looking for non-trivial DRL implementations (perhaps with large-scale experiments, custom architectures,
multi-agent systems etc.) we encourage you to look into it further (Bou et al. 2023).

There are also many researchers working between the fields of OR and DL, either in theoretical
or practical applications. Mazyavkina et al. (2021) provide a comprehensive literature review of the
applications of DRL to combinatorial optimization (CO) problems, such as bin packing, minimum vertex
cover, maximum independent set, and more. The authors also introduce the concept of combining DRL
with graph neural networks (GNNs) to better model combinatorial problems. With the widespread use
of networks in OR problems and the emerging field of GNNs, we encourage researchers to look into
this intersection further. Readers interested in applications of GNNs in CO problems are also encouraged
to look into Peng et al. (2021), or Ward et al. (2022) for a more introductory look into GNNs. Many
researchers have also looked into the challenges of DRL implementations and how the models translate
to real-world applications. Dulac-Arnold et al. (2021) formally define the challenges of real-world DRL
applications, implement simulation environments for each challenge and benchmark state-of-the-art DRL
agents on them, showcasing the fragility of learned policies to perturbations.

As a way to mitigate model uncertainty, Wachi et al. (2024) provide a comprehensive literature review
of the field of safe reinforcement learning, or the use of DRL in constrained environments. Many OR
problems are inherently constrained, and the authors provide a formal taxonomy on constraint formulation
in reinforcement learning. In a similar vein, Moos et al. (2022) provide a literature review of the current
state of the field of robust reinforcement learning, or how to cope with uncertainty in system dynamics.
They provide an extensive view of the field for both single and multi-agent paradigms, and discuss the
concept of Nash equilibriums in adversarial multi-agent systems to force agents to adapt to uncertain
environments. Pinto et al. (2017) discuss this concept further in depth. Specifically in the field of inventory
management, Boute et al. (2022) provide a recent comprehensive literature review of the field, research
gaps and emerging topics.

Finally, for those interested in current applications and examples of DRL in OR and CO, we provide
a short list of interesting recent papers. We mentioned Hubbs et al. (2020) in Section 1. Here the authors
implement a set of environments for classic OR problems, such as knapsack, traveling salesman, and
inventory management. In their paper, the authors provide the mathematical models, the pseudo-code
algorithms, and the output metrics from each implementation. Similarly for CO, Berto et al. (2023) give
example simulation environments, benchmarks and implementations for CO problems. Dai and Gluzman
(2022) utilize PPO in queueing networks, and show that the agent would often converge to the optimal
policy. In the field of supply chains, Oroojlooyjadid et al. (2017) implement multi-agent reinforcement
learning to simulate a decentralized beer game and showcase transfer learning to mitigate the computational
cost of training multiple agents by training one and transferring the knowledge to the others. Kaynov et al.
(2024) benchmark DRL in inventory management, specifically in lost sales, dual source, and multi-echelon
systems. Finally, Li et al. (2022) tackle the pickup and delivery problem, a variant of the vehicle routing
problem, with DRL. They integrate the transformer attention mechanism in the agents and use that to
develop an agent that both follows constraints and learns to optimize the routing while achieving good
results.

7 CONCLUSIONS

This tutorial highlights the potential and practical approaches for incorporating DRL in OR by clearly
mapping conventional simulation and OR components to DRL environment constructs. By demonstrating a
structured process using Gymnasium, we addressed existing integration barriers caused by fragmented and
evolving DRL frameworks. The inventory control example underscores DRL’s suitability for real-world OR
problems characterized by explicit objectives, measurable outcomes, and structured transition dynamics.
Future work should focus on further simplifying DRL integration, with targeted one-to-one translations
from commercial software, improving compatibility across libraries in the DRL ecosystem, and exploring
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topics such as safe and robust reinforcement learning to enhance applicability in dynamic and uncertain
operational environments.
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