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ABSTRACT 

Non-pharmaceutical interventions (NPIs) are the immediate public health reaction to emerging epidemics. 
While they generally help slow down infection dynamics, they can be associated with relevant 

socioeconomic costs, like lost school- or work days caused by preemptive household quarantines. However, 
research suggests that not all households contribute equally to the overall infection dynamics. In this study, 
we introduce the novel “Infection Contribution” metric that allows us to trace the involvement of particular 
household types over entire infection chains. Building upon the German Epidemic Microsimulation System, 
we quantify the impact of various household types, considering their size and composition in a COVID-19-
like scenario. Additionally, we show how targeting interventions based on household characteristics 

produces efficient strategies, outperforming non-selective strategies in almost all scenarios. Our approach 
can be transferred to other NPIs, such as school closure, testing, or contact tracing, and even inform the 
prioritization of vaccinations. 

1 INTRODUCTION & BACKGROUND 

The spread of infectious diseases remains a major global health challenge. Recent pandemics such as 
COVID-19 have highlighted the need for effective containment measures. Non-pharmaceutical 

interventions (NPIs), such as social distancing, mask mandates, or isolation rules, are essential when 
pharmaceutical solutions are unavailable. While these interventions can slow transmission and reduce the 
number of infections and deaths (Aleta et al. 2020; Geffen and Low 2020; Weigl et al. 2021; Zhang et al. 
2022), they often have significant social and economic costs, such as disruptions to education, reduced 
workforce availability, mental health impacts, and income loss (Chatterjee and Chauhan 2020; Chen et al. 
2024; Giallonardo et al. 2020; Jin et al. 2021). 

As prominently applied during the COVID-19 pandemic, universal quarantining of households with 
symptomatic individuals or potentially infectious contacts is often one of the immediate responses to an 
outbreak scenario. However, research has found that the impact of households on the force of infection 
depends heavily on their internal structure and the distribution of particular household characteristics within 
a population. The number of large households, for example, is an important factor in the overall disease 
dynamics (Dönges et al. 2024; Liu et al. 2021), given that household size significantly informs the 

likelihood of within-household infections that subsequently propagate the disease into the community 
(Møgelmose et al. 2023). The distribution of household sizes in a region can, therefore, have a significant 
influence on the spread dynamics (Liu et al. 2021). Moreover, the number of schoolkids and working adults 
in a household is an important criterion, as both groups may have an increased likelihood of bringing 
infections into the household (Endo et al. 2019; House et al. 2022; Møgelmose et al. 2023; Tseng et al. 
2023). Schoolkids often have high contact rates at schools (Grijalva et al. 2015; Guo et al. 2023; Tseng et 

al. 2023), and schools themselves can be considered contact hubs for large numbers of families. This makes 
households with many schoolchildren potential hotspots for infections. Similarly, working adults may be 
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at increased risk of becoming infected and carrying the virus into their household (Nash et al. 2022; Potter 
et al. 2015). Considering these heterogeneities, two questions arise: (1) What is the impact of certain 
household types on the disease dynamics on a macroscopic scale? And furthermore, (2) Can intervention 

strategies target high-impact households to better balance disease mitigation with social costs? 
Several related modeling studies have been published in recent years. Dönges et al. (2024) developed 

an ODE-SIR model to analyze disease transmission within and between households of different sizes. They 
show the importance of incorporating data about the household size distribution in a population for accurate 
calculations of the basic reproduction number. They do, however, not consider the individual composition 
of households. Endo et al. (2019) provide useful insights into the dynamics of influenza at the household 

level, emphasizing that understanding household-specific contact patterns helps to illustrate how prevention 
measures should be adapted. Møgelmose et al. (2023) used longitudinal microdata from Belgium to explore 
how developing demographic structures condition the spread of diseases using an agent-based model. The 
authors show how age-dependent household compositions significantly impact overall disease dynamics. 
While the authors suggest that these findings can support the development of targeted intervention 
strategies, they do not explicitly simulate intervention scenarios.  

 Our paper aims to quantify the impact of various household sizes and compositions on the overall 
infection dynamics and explore whether interventions targeting specific household types can result in more 
efficient strategies concerning the slowdown of infections and incurred quarantine days. To achieve these 
goals, we introduce a novel Infection Contribution metric to quantify how different household types, based 
on household characteristics, contribute to the propagation of infections within heterogeneous populations. 
We apply this metric to a COVID-19-like disease outbreak scenario that we simulate using an agent-based 

model of the Saarland region in Germany. Subsequently, we repeat the outbreak scenario but apply targeted 
intervention strategies to households based on size and composition. We identified a selection of efficient 
quarantine strategies that balance epidemic control with societal cost with respect to lost school- and 
workdays. While we conducted this analysis for household quarantine measures, we suggest that the 
framework is adaptable to other NPIs, such as school closure, testing, or contact tracing, and could even 
inform the prioritization of vaccinations. 

Chapter 2 introduces the general population and disease model. Chapter 3 presents the novel metric and 
discusses the importance of different household types on the overall disease dynamics. We simulate the 
targeted quarantine strategies in Chapter 4 and offer a brief discussion and conclusion of our work in 
Chapter 5. 

2 POPULATION & DISEASE MODEL 

The simulations in this study are carried out using the German Epidemic Microsimulation System (GEMS), 

which was first introduced by Ponge et al. (2023). GEMS is a discrete-time agent-based infectious disease 
modeling framework with a full-scale virtual population of all German states. These population models are 
based on the Gesyland project. They are generated using census information and contain realistic 
demographic structures, both on an individual level (age, sex, employment status, etc.) and household level 
(household size, family type, etc.). We use the Saarland model for our experiments as it is the smallest 
German area-state (as opposed to city-states with vastly different demographic structures) with roughly one 

million individuals. The agents in GEMS are associated with so-called “settings”. They represent physical 
or social contexts in which person-to-person contacts are realized, potentially leading to an infection. From 
a technical perspective, they can be regarded as a simple subset of agents. All agents have a household 
setting and, depending on their age and employment status, an associated workplace or school setting, each 
with an internal hierarchical structure. Workplaces are split into departments and offices; schools have 
school years and classes. A peculiarity of the Gesyland population is that the school setting also covers 

nursery schools and universities. The household setting also covers care homes, leading to a small number 
of very large households comprising almost entirely elderly people. Moreover, all agents are associated 
with a municipality setting based on the geolocation of their household. These settings simulate semi-
random non-household-, non-school-, non-workplace-encounters in geographical proximity. Figure 1 
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illustrates the geolocations and the size distributions of households, workplaces, and schools. Moreover, 
the map shows municipality borders. 

 

Figure 1: Population model and setting size distribution. 

We assume an average daily contact rate for each setting type following the POLYMOD contact survey 
(Mossong et al. 2008). There are 3.3 daily contacts in households, 2.8 contacts in workplaces (split into 
workplace, department, and office level), 1.8 school contacts (split into school, school year, and class level), 
and 4.0 random outdoor contacts in the surrounding municipality. We parameterize a SARS-CoV-2-like 
pathogen (wild type) that follows a basic SEIR model. The average onset of symptoms is 6.55 days after 
exposure (Wu et al. 2022), although agents become infectious 2 days earlier (Byrne et al. 2020). The 

average time to recovery after symptom onset is 13.4 days (Byrne et al. 2020). Contact rates and disease 
timings are implemented as expected values of a Poisson distribution. Based on Byambasuren et al. (2020), 
we simulate 17% of agents to have an asymptomatic disease progression. Moreover, we assume that 0.2% 
of agents aged 0-39 years, 0.9% of agents aged 40-59 years, 5% of agents aged 60-79 years, and 14.8% of 
agents aged over 79 years will die from the disease (Verity et al. 2020). We use the per-contact transmission 
rate 𝛽 to fit the basic reproduction number 3.28 (Liu et al. 2020). All scenarios start with 0.1% of randomly 

infected individuals and simulate one year. Figure 2 shows the overall disease progression in the 
unmitigated baseline scenario. 

 

Figure 2: Ten runs of the unmitigated disease progression starting with 0.1% initial infections. 
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With an initial reproduction number of 3.28 and an average generation time of roughly 9 days, the 
unmitigated epidemic runs through the population within the first three months. Eventually, 96.3% of the 
population will be infected. On average, the infection lasts for 20 days from exposure to full recovery. 

3 CONTRIBUTION OF HOUSEHOLD TYPES TO OVERALL INFECTION DYNAMICS 

3.1 Definition of Household Types 

As mentioned in Chapter 1, the literature suggests that households of varying sizes and compositions 
contribute differently to the overall infection dynamics (Dönges et al. 2024; Endo et al. 2019; Liu et al. 
2021). Therefore, the household types we focus on in our analysis each consist of a size attribute (any, 2+, 
3+,...,6+) and a composition attribute (any, with school kids, with 2+ school kids, without schoolkids, kids 

in multiple schools, 1+ kid in a 150+ member school, with workers, with 2+ workers, without workers, with 
workers and school kids, without schoolkids but with workers, and without school kids or workers). This 
leads to a total of 72 household types (combinations). Size attributes state the minimal size, not the exact 
size, as we intend to derive actionable strategies, and quarantining two-person households only seems 
impractical. The composition attributes target the presence of school kids or working adults in the respective 
households. Most household types are not mutually exclusive. 

3.2 Infection Contribution Metric 

We aim to understand the relative importance of different household types to the infection dynamics. To 
achieve that, we introduce a new metric called Infection Contribution (IC) that provides information about 
the importance of any given infection with respect to the overall infection dynamics. We then aggregate the 
results for all infections caused by people living in a particular household type. 
 The Infection Contribution quantifies the number of direct and indirect descendant cases for each 

infection. We calculate the number of secondary infections to which any index infection contributed. This 
metric has several advantages over person- or setting-dependent R-values, as it works independently from 
the underlying network structure. Let us consider an extreme example of two disjunctive subnetworks and 
an infectious pathogen introduced to one subnetwork but not the other. Moreover, we assume a single edge 
connecting one individual from each subgraph. If that connection leads to the introduction of the pathogen 
to the fully susceptible subnetwork, this infection will have a vast IC value, even if the person’s 

reproduction rate is just 1 (assuming the infector did not infect anybody else). The IC metric can consider 
what happens “down the road” and identify high-impact traits in the model. 

 

Figure 3: Calculation of infection- and household-type contributions. 

Figure 3 shows an example of an infection tree with two seeding infections. The top-left number in black 

circles indicates the infection ID; the white circles indicate the infected person’s household type (A-E). The 
center table shows the cumulative number of subsequent cases that can be traced back to the respective 
infection. As seen in the graph, infections 3, 6, and 7 are successors of infection 1, resulting in a contribution 
of 3. 
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To understand the relative contribution of a particular household type, we calculate for each household type 
𝐻 its contribution ratio 𝐶𝐻 as the cardinality of the union of infection sets 𝑆𝑖 originating from infections 𝑖 ∈
𝐼𝐻 of people living in household type H, normalized by the total number of infections 𝑁: 

𝐶𝐻 =
|⋃ 𝑆𝑖𝑖∈𝐼𝐻 |

𝑁
, 

where 𝐼𝐻  is the set of infections of people associated with household type 𝐻 . The union operator is 
important to prevent double counts in infection chains that contain the same household type multiple times. 
In Figure 3, infections 1 and 4 are caused by individuals who live in household type A, resulting in a 
contribution value of 4 for this type. With eight secondary infections (excluding the seeds), we get a 

household contribution rate of 50% for type A. In other words, 50% percent of all infections can be traced 
back to a person living in a type A household. A variant of this metric can be set up to identify the 
contribution of infections and household types to cases that resulted in death. Both metrics identify 
households that disproportionately drive transmission or severe outcomes, providing insights for targeted 
interventions. 

3.3 Calculating Infection Contributions in the Unmitigated Scenario 

For this analysis, we ran the contribution metric from Chapter 3.2 on each household type identified in 
Chapter 3.1 for the unmitigated baseline scenario for the Saarland model to understand which household 
types are the strongest drivers of the overall infection dynamics. Figure 4 illustrates the contribution ratio, 
the percentage of infections involving a particular household type at any stage in their infection chain if 
traced back to one of the initial cases (Y-axis). Moreover, as the goal is to derive efficient intervention 
strategies, the X-axis shows the fraction of the population that lives in a household of that type. The subplots 

are stratified by the minimum household size. The shapes represent different compositions (school-focused 
compositions in red, work-focused compositions in blue, and combinations in orange). Generally speaking, 
a dot in the bottom-left suggests few people are causing few infections, and many people are causing many 
infections in the top-right. To develop targeted intervention strategies, the sweet spot is the top left, where 
few people cause many infections. 

 

Figure 4: Contribution and affected individuals per household type. 
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All household types have a disproportionate contribution compared to the fraction of people living in the 
respective household type. We expect this as the chance of a household type being included in any given 
infection chain increases exponentially with the length of the chain. However, larger households in our 

model generally have a higher contribution-to-affected-people (CP) ratio, regardless of their composition. 
While households of a minimum size of two are part of 99.9% of all infection chains, only 91.5% of people 
live in such a household, resulting in a CP-ratio of 1.09. Three-or-more-person households have a 1.37, 
four-or-more-person households a 2.12, five-or-more-person households a 2.84, and six-or-more-person 
households a 3.34 CP-ratio. In fact, if we order all household types by their CP-ratio, the first 21 entries 
belong to households of size four and above. While this might hint towards the efficiency of intervention 

measures regarding induced quarantine person days, one must also consider that larger households are part 
of fewer infection chains overall (e.g., 63.8% for six-or-more-person households). This poses a hard limit, 
even for a “perfect” intervention strategy. 
 Another interesting observation is that the contribution rates of households with schoolkids (red circle) 
and households without schoolkids (red downward triangle) are very similar when all household sizes are 
considered. A similar contribution value is understandable, given that each household type covers roughly 

50% of the population. Based on the body of literature on school kids being drivers of infections (Grijalva 
et al. 2015; Guo et al. 2023; Tseng et al. 2023), however, we would have expected a more significant 
difference. With bigger minimum household sizes, the gap in contribution widens, coinciding with the fact 
that there are fewer large households without schoolkids. The CP-ratio, e.g., for three-or-more-person 
households, diverges noticeably (1.96 with and 2.97 without schoolkids). The situation is very different 
when looking at households with and without workers (blue circle and downward triangle). We see a 

significant gap for all household sizes, both in contribution and affected people. The graphs show two 
clusters where, for household sizes 1-3 and above, the two household types that explicitly exclude workers 
are far below the 50% mark concerning their contribution. For sizes 4-6 and above, the types explicitly 
excluding schoolkids move from the upper to the lower cluster. Coincidentally, larger households (4-6+) 
without schoolkids have the highest CP-ratio (above 4.2) while being among the rarest household types in 
the model. 

 Focusing only on households with two or more schoolkids and/or workers (upward triangles) makes a 
considerable difference, especially for the smaller minimum household sizes. While only half of the people 
who live in a household with schoolkids live in one with two or more children, they still have a 
comparatively high contribution (80.1% compared to 96.6%). This increases those households’ CP-ratio 
(across all sizes) from 1.89 to 2.97. The effect is even more pronounced when comparing households with 
workers and those with two or more workers, where the overall contribution is very similar (99.6% and 

97.9%), but the number of people living in such households differs by 28.4%. 
 Whether or not one schoolkid is assigned to a 150+ sized school causes a 13% increase in the CP-ratio 
over households with any schoolkids assigned. Households with kids in multiple different schools scored a 
7% increase over households with at least two schoolkids in any school. Both effects appear to be moderate. 

4 SIMULATION OF TARGETED INTERVENTION STRATEGIES 

4.1 Household Quarantine Strategy 

The previous chapter highlighted how different household types have significant variations in their 
contribution to the overall infection dynamics. This inevitably leads to the question of whether that 
knowledge can steer the development of targeted household quarantining strategies. 
 There are, of course, numerous ways to design quarantine strategies in practice. To reduce complexity 
and generate comparable results, we focused on one particular setup where a household must undergo a 14-
day quarantine once any member experiences symptoms. All individuals are perfectly compliant. 
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Figure 5: Household quarantine intervention scenario in TriSM formalization. 

The strategy is visualized in Figure 5, following the Trigger-Strategy-Measure (TriSM) formalization 
(Ponge et al. 2024). Once an individual experiences symptoms, a household identification measure is 

executed, discovering the associated household setting and putting every member into quarantine for two 
weeks. This will effectively prevent all out-of-household contacts for that duration. Any further household 
member developing symptoms resets the two-week period for all members. The orange “condition”-box 
indicates that the quarantine will only apply if the household matches certain criteria, e.g., being of a 
particular type (like a three-person household with schoolkids). For each of the 72 household types 
introduced in Chapter 3.1, we ran ten simulations where the quarantining strategy only applied to 

households of the respective type.  

4.2 Simulation Results 

We ran the simulations on a server with two 12-core Intel Xeon Gold 6136 CPUs and 128GB of system 
memory. Each run, simulating one year with one million agents, took roughly 20 seconds. While we focused 
on a particular German state, runtime and memory usage in GEMS scale close to linearly with the 
population size. The full German population model can be run on the same machine in about 30 minutes. 

 Figure 6 contrasts the strategies’ benefits and costs. We measure the strategy benefit as the reduction 
in the basic reproduction number R0 compared to the unmitigated baseline scenario presented in Chapter 
2. Since we focus on isolation strategies, the costs are defined as the total person-days spent in quarantine. 
Moreover, we stratify the results by lost school days (caused by quarantined school kids) and lost work 
days (caused by quarantined workers). Colored dots indicate that the strategy is Pareto-optimal, meaning 
no other strategies have higher benefits at lower costs. The colored dots make up the efficiency frontier. 

The dot sizes represent the strategies’ household size limit (largest dots: any household size, smallest dots: 
6+ person households only). Grey dots are strategies that are not Pareto-optimal and are all equally sized. 

Due to population size and the almost 1,000 seeding infections, the results are relatively stable across 
simulation runs. Initial experiments demonstrated that ten repetitions per scenario offer an effective balance 
between result accuracy and computational efficiency. The maximum coefficient of variance (CV) in R0 
across all scenarios is 0.05, meaning that the highest standard deviation among the ten repetitions in any of 

the scenarios is 5% of their mean value for R0. The maximum CV for total infections is 0.2%, 0.9% for 
total deaths, 2.7% for total quarantine days, 3.4% for lost work days, and 0.6% for lost school days. 
 As expected, we observe a strong general correlation between the number of person-days spent in 
isolation and the reduction in R0 in the top left graph of Figure 6. However, we also notice that all scenarios 
are not equally efficient, meaning that there are strategies that yield higher benefits (R0 reduction) at lower 
costs (quarantine days). In fact, quarantining all households, regardless of their composition (black dots), 

is not an optimal solution in most cases. It is only an efficient option if it applies to all household sizes, as 
this is the most effective solution overall. Considering the household composition for targeted measures 
seems reasonable in all other situations. We also notice that the slope of the efficiency frontier increases 
the closer scenarios get to the phase transition (R0 = 1, i.e., a reduction of 2.26 given our initial 
parameterization), where the epidemic would become subcritical and die out. We ran experiments with 
lower initial R0-values where some of the quarantining scenarios were able to push R below 1, and in those 

cases, the results are clear: the strategy that ends the epidemic the soonest is both the most efficient and 
most effective. If the epidemic cannot be ended, it has to be managed. 
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An interesting observation is that eleven out of the 25 Pareto-optimal scenarios focus on households of 
various sizes that explicitly exclude school children (orange diamonds and pentagons, red downward 
triangles). Among those, the maximum possible R0 reduction is 0.74 when quarantining households of all 

sizes without school children. Above that, the best results are yielded by households (sizes 2+ and 3+) with 
one or more children in a big school (red pentagon), households (sizes 1+, 2+, and 3+) with schoolkids and 
workers (orange circle), and, especially, households (sizes 1+ and 2+) with two or more workers (blue 
upward triangle). The latter marks the most effective (R0-reduction of 1.12) option that does not require 
quarantining everybody. The other end of the spectrum shows that eight efficient solutions focus on larger 
households (4+, 5+, and 6+) of various compositions. However, the largest reduction in R0 we can achieve 

focusing on these households is 0.25 when targeting 5+ sized households with kids in multiple schools (red 
diamond). Concerning the correlation between household size and effectiveness, the blue downward 
triangle for households of any size without workers makes an exception. Targeting these households will 
only yield an R0 reduction of 0.19. 

 

Figure 6: Efficiency frontier of targeted household quarantine strategies regarding their reduction in the 
basic reproduction number R0 (compared to the unmitigated scenario in Chapter 2) and induced total 

quarantine days (top left), lost school days (bottom left), and lost work days (bottom right). Colored dots 
represent Pareto-optimal strategies. 
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Only four scenarios are Pareto-optimal when solely considering lost school days as costs (Figure 6, bottom 
left). Self-evidently, any scenario that explicitly excludes schoolkids has zero costs. Among those, the 
scenario focusing on households of any size without children (red downwards triangle) has the highest 

benefit (R0 reduction of 0.74). Surprisingly, this is also an efficient scenario concerning lost work days 
(Figure 6, bottom right). In fact, it is the only scenario (other than the all-sizes-all-compositions scenario) 
that is Pareto-optimal in all three analyses. The two remaining options are scenarios that focus on 1+ and  
2+ sized households with two or more workers (blue downward triangles on top of each other). 
 The overall graph looks much different when only considering lost work days (Figure 6, bottom right). 
There are also a few zero-cost options, with the scenario focusing on households without workers of any 

size (blue downward triangle) being the most effective. However, the achievable reduction in R0 is narrow, 
given that the number of households without workers in the baseline population is small. Most efficient 
scenarios (17 out of 24) target households containing schoolkids in various compositions (red dots in 
diverse shapes). Optimizing for lost work days seems to “push” the costs of quarantining towards children. 
There are two noteworthy exceptions, as strategies targeting households of sizes 1+ or 2+ without 
schoolkids are also efficient options with respect to lost work days. 

4.3 Comparing Quarantine-Day Utilization and CP-Ratio 

In Chapter 3.3, we evaluated which household types have a disproportionately large contribution to the 
overall infection dynamics compared to the number of people living in a household of that type (CP-ratio). 
We now contrast these values with the number of person-quarantine days that were incurred to reduce the 
basic reproduction number by 0.1 per scenario, which we derived from the simulations in Chapter 4.2. We 
initially assumed that higher CP-ratios must yield a lower quarantine-day-per-R0-reduction value, as we 

would target “the right” individuals. The results, however, are counterintuitive. 

 

Figure 7: Quarantine-day efficiency and contribution by affected people ratio. Dot sizes represent the 
minimum size of the respective household size (1+ to 6+). 

Figure 7 shows a slightly positive correlation between the CP-ratio and the number of quarantine days, 

which means that the higher the CP-ratio, the less efficient each quarantine day will be. We offer two 
potential explanations. First, household types with the highest CP-ratios have the lowest absolute 
contribution. Even without these households, the overall force of infection is still high. Removing a certain 
household type from the infection chains only prevents individuals from being infected by someone living 
in that household type. Still, it does not prevent them from getting infected at all, given that the underlying 
population model is generally well-connected. The second reason is rooted in the intervention strategy 
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design. It mandates symptomatic individuals to stay home, preventing out-of-household infections but not 
within-household infections. As higher CP-ratios correlate with larger households (see dot sizes in Figure 
7), we suggest quarantine days become less effective since they do not prevent in-household infections. 

Our observations coincide with the suggestion of Dönges et al. (2024) that household quarantine measures 
are more effective in populations with smaller average household sizes. Future research should analyze 
whether the results would look similar if individuals were quarantined in a dedicated facility. 

5 DISCUSSION & CONCLUSION 

The analyses show that calculating the Infection Contribution of individuals or households with particular 
characteristics can be a valuable approach to targeting interventions. While the calculation of R-values is 

useful for estimating the pace of infection dynamics, outbreak size, and herd immunity thresholds, the IC 
metric can identify drivers of infection dynamics. It is not intended to replace R calculations but to provide 
an addition to the epidemiological toolset. As it requires complete knowledge about the infection tree, the 
IC metric is mainly a theoretical construct, suitable for (individual-based) simulations. In our experiments, 
we focused on a baseline scenario with a large population, a considerable number of initial infections 
(0.1%), and a moderately infectious pathogen. Under these conditions, the IC metric provides stable results 

across all runs. Nonetheless, like all agent-based models, the IC metric is susceptible to path dependency 
and therefore fluctuating outcomes for scenarios with very few seeding infections, small populations, or R0 
values close to 1. However, in practice, these conditions are not representative of a scenario that requires 
large-scale targeted intervention planning in any substantial way. The IC metric also works for scenarios 
with much more infectious pathogens, although the relevance of targeted intervention strategies under those 
conditions is debatable, as it likely necessitates the most effective, rather than the most efficient strategy. 

 Our simulations of the federal state of Saarland confirm the conclusions of previous modeling studies 
(Dönges et al. 2024; Endo et al. 2019; Møgelmose et al. 2023) that households contribute differently to the 
overall infection dynamics. The largest households in our study consistently show the highest contribution-
to-affected-people ratio, meaning that those households are disproportionately often involved in infection 
chains. Moreover, the results indicate that the composition of households, especially with respect to the 
presence of schoolkids and working adults, plays a significant role. We can, however, not conclude that 

targeting household types with high CP-ratios will always yield the most efficient quarantining strategies 
due to various factors, such as their absolute importance for the infection dynamics and the fact that 
quarantining does not prevent in-household transmissions. That said, we suspect that these conclusions do 
not generally apply to all types of interventions. The approaches presented in this work could have an even 
larger impact when developing targeted vaccination-, testing-, or contact-tracing strategies, especially when 
considering limited resources (vaccine doses, testing kits, public health personnel) as the cost function 

instead of quarantine days. With regard to the household quarantine strategies presented here, we notice 
that strategies targeted towards particular household compositions are generally superior to one-fits-all 
interventions in almost all scenarios. 
 Of course, our observations must be taken with a grain of salt, as we used a population model of a 
particular German federal state. We repeated the complete analysis for the eastern German state of Saxony-
Anhalt, which has a similar demographic structure and is also primarily rural. The results were comparable 

to the Saarland analysis. When we re-run the analysis for the city-state of Berlin, the general trends about 
the contribution of differently sized households were similar. However, the efficiency frontier of household 
composition-based quarantining strategies deviated significantly. In subsequent studies, we plan to apply 
our methodology to the full German population model that is built into GEMS. Moreover, we plan to 
analyze how the introduction of sub-perfect mandate adherence affects the efficiency frontier. As 
mentioned before, we also saw substantial differences when we changed fundamental assumptions about 

the pathogen, such as the basic reproduction number. We thus argue that the evaluation of targeted 
intervention strategies must be conducted on a per-population and per-pathogen basis. 
 Whether quarantining households based on specific criteria is applicable in public health practice is 
debatable and particularly dependent on the regulatory body of the respective region. Moreover, household 
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quarantining would be only one aspect of a strategy mix (potentially including school closure, travel 
suspension, contact tracing, and others) applied simultaneously in a real-world situation, depending on how 
sharply the infection dynamics have to be reduced to not overburden the healthcare system. Future research 

should also consider strategy combinations. The approach in this study produces a spectrum of efficient 
options for one NPI class. It enables decision-makers to understand the implications of both the infection 
dynamics and associated socio-economic costs. Our analysis is primarily an exemplary case study on 
systematically deriving efficient, targeted intervention strategies. The approach is transferable to a variety 
of interventions and can not only be used to target high-impact demographics but also to prioritize 
individuals when working with limited available resources (e.g., vaccine doses or testing kits). Given that 

producing these simulation results takes around half a day on the hardware we had available, we argue that 
this approach can support short-term decision-making during emerging epidemics. 
 The code to replicate this study is available on GitHub. 
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