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ABSTRACT

Non-pharmaceutical interventions (NPIs) are the immediate public health reaction to emerging epidemics.
While they generally help slow down infection dynamics, they can be associated with relevant
socioeconomic costs, like lost school- or work days caused by preemptive household quarantines. However,
research suggests that not all households contribute equally to the overall infection dynamics. In this study,
we introduce the novel “Infection Contribution” metric that allows us to trace the involvement of particular
household types over entire infection chains. Building upon the German Epidemic Microsimulation System,
we quantify the impact of various household types, considering their size and composition in a COVID-19-
like scenario. Additionally, we show how targeting interventions based on household characteristics
produces efficient strategies, outperforming non-selective strategies in almost all scenarios. Our approach
can be transferred to other NPIs, such as school closure, testing, or contact tracing, and even inform the
prioritization of vaccinations.

1 INTRODUCTION & BACKGROUND

The spread of infectious diseases remains a major global health challenge. Recent pandemics such as
COVID-19 have highlighted the need for effective containment measures. Non-pharmaceutical
interventions (NPIs), such as social distancing, mask mandates, or isolation rules, are essential when
pharmaceutical solutions are unavailable. While these interventions can slow transmission and reduce the
number of infections and deaths (Aleta et al. 2020; Geffen and Low 2020; Weigl et al. 2021; Zhang et al.
2022), they often have significant social and economic costs, such as disruptions to education, reduced
workforce availability, mental health impacts, and income loss (Chatterjee and Chauhan 2020; Chen et al.
2024; Giallonardo et al. 2020; Jin et al. 2021).

As prominently applied during the COVID-19 pandemic, universal quarantining of households with
symptomatic individuals or potentially infectious contacts is often one of the immediate responses to an
outbreak scenario. However, research has found that the impact of households on the force of infection
depends heavily on their internal structure and the distribution of particular household characteristics within
a population. The number of large households, for example, is an important factor in the overall disease
dynamics (Donges et al. 2024; Liu et al. 2021), given that household size significantly informs the
likelihood of within-household infections that subsequently propagate the disease into the community
(Megelmose et al. 2023). The distribution of household sizes in a region can, therefore, have a significant
influence on the spread dynamics (Liu et al. 2021). Moreover, the number of schoolkids and working adults
in a household is an important criterion, as both groups may have an increased likelihood of bringing
infections into the household (Endo et al. 2019; House et al. 2022; Mggelmose et al. 2023; Tseng et al.
2023). Schoolkids often have high contact rates at schools (Grijalva et al. 2015; Guo et al. 2023; Tseng et
al. 2023), and schools themselves can be considered contact hubs for large numbers of families. This makes
households with many schoolchildren potential hotspots for infections. Similarly, working adults may be
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at increased risk of becoming infected and carrying the virus into their household (Nash et al. 2022; Potter
et al. 2015). Considering these heterogeneities, two questions arise: (1) What is the impact of certain
household types on the disease dynamics on a macroscopic scale? And furthermore, (2) Can intervention
strategies target high-impact households to better balance disease mitigation with social costs?

Several related modeling studies have been published in recent years. Donges et al. (2024) developed
an ODE-SIR model to analyze disease transmission within and between households of different sizes. They
show the importance of incorporating data about the household size distribution in a population for accurate
calculations of the basic reproduction number. They do, however, not consider the individual composition
of households. Endo et al. (2019) provide useful insights into the dynamics of influenza at the household
level, emphasizing that understanding household-specific contact patterns helps to illustrate how prevention
measures should be adapted. Mogelmose et al. (2023) used longitudinal microdata from Belgium to explore
how developing demographic structures condition the spread of diseases using an agent-based model. The
authors show how age-dependent household compositions significantly impact overall disease dynamics.
While the authors suggest that these findings can support the development of targeted intervention
strategies, they do not explicitly simulate intervention scenarios.

Our paper aims to quantify the impact of various household sizes and compositions on the overall
infection dynamics and explore whether interventions targeting specific household types can result in more
efficient strategies concerning the slowdown of infections and incurred quarantine days. To achieve these
goals, we introduce a novel Infection Contribution metric to quantify how different household types, based
on household characteristics, contribute to the propagation of infections within heterogeneous populations.
We apply this metric to a COVID-19-like disease outbreak scenario that we simulate using an agent-based
model of the Saarland region in Germany. Subsequently, we repeat the outbreak scenario but apply targeted
intervention strategies to households based on size and composition. We identified a selection of efficient
quarantine strategies that balance epidemic control with societal cost with respect to lost school- and
workdays. While we conducted this analysis for household quarantine measures, we suggest that the
framework is adaptable to other NPIs, such as school closure, testing, or contact tracing, and could even
inform the prioritization of vaccinations.

Chapter 2 introduces the general population and disease model. Chapter 3 presents the novel metric and
discusses the importance of different household types on the overall disease dynamics. We simulate the
targeted quarantine strategies in Chapter 4 and offer a brief discussion and conclusion of our work in
Chapter 5.

2 POPULATION & DISEASE MODEL

The simulations in this study are carried out using the German Epidemic Microsimulation System (GEMS),
which was first introduced by Ponge et al. (2023). GEMS is a discrete-time agent-based infectious disease
modeling framework with a full-scale virtual population of all German states. These population models are
based on the Gesyland project. They are generated using census information and contain realistic
demographic structures, both on an individual level (age, sex, employment status, etc.) and household level
(household size, family type, etc.). We use the Saarland model for our experiments as it is the smallest
German area-state (as opposed to city-states with vastly different demographic structures) with roughly one
million individuals. The agents in GEMS are associated with so-called “settings”. They represent physical
or social contexts in which person-to-person contacts are realized, potentially leading to an infection. From
a technical perspective, they can be regarded as a simple subset of agents. All agents have a household
setting and, depending on their age and employment status, an associated workplace or school setting, each
with an internal hierarchical structure. Workplaces are split into departments and offices; schools have
school years and classes. A peculiarity of the Gesyland population is that the school setting also covers
nursery schools and universities. The household setting also covers care homes, leading to a small number
of very large households comprising almost entirely elderly people. Moreover, all agents are associated
with a municipality setting based on the geolocation of their household. These settings simulate semi-
random non-household-, non-school-, non-workplace-encounters in geographical proximity. Figure 1
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illustrates the geolocations and the size distributions of households, workplaces, and schools. Moreover,
the map shows municipality borders.
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Figure 1: Population model and setting size distribution.

We assume an average daily contact rate for each setting type following the POLYMOD contact survey
(Mossong et al. 2008). There are 3.3 daily contacts in households, 2.8 contacts in workplaces (split into
workplace, department, and office level), 1.8 school contacts (split into school, school year, and class level),
and 4.0 random outdoor contacts in the surrounding municipality. We parameterize a SARS-CoV-2-like
pathogen (wild type) that follows a basic SEIR model. The average onset of symptoms is 6.55 days after
exposure (Wu et al. 2022), although agents become infectious 2 days earlier (Byrne et al. 2020). The
average time to recovery after symptom onset is 13.4 days (Byme et al. 2020). Contact rates and disease
timings are implemented as expected values of a Poisson distribution. Based on Byambasuren et al. (2020),
we simulate 17% of agents to have an asymptomatic disease progression. Moreover, we assume that 0.2%
of agents aged 0-39 years, 0.9% of agents aged 40-59 years, 5% of agents aged 60-79 years, and 14.8% of
agents aged over 79 years will die from the disease (Verity et al. 2020). We use the per-contact transmission
rate f to fit the basic reproduction number 3.28 (Liu et al. 2020). All scenarios start with 0.1% of randomly
infected individuals and simulate one year. Figure 2 shows the overall disease progression in the
unmitigated baseline scenario.
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Figure 2: Ten runs of the unmitigated disease progression starting with 0.1% initial infections.
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With an initial reproduction number of 3.28 and an average generation time of roughly 9 days, the
unmitigated epidemic runs through the population within the first three months. Eventually, 96.3% of the
population will be infected. On average, the infection lasts for 20 days from exposure to full recovery.

3 CONTRIBUTION OF HOUSEHOLD TYPES TO OVERALL INFECTION DYNAMICS

3.1 Definition of Household Types

As mentioned in Chapter 1, the literature suggests that households of varying sizes and compositions
contribute differently to the overall infection dynamics (Ddnges et al. 2024; Endo et al. 2019; Liu et al.
2021). Therefore, the household types we focus on in our analysis each consist of a size attribute (any, 2+,
3+,...,61) and a composition attribute (any, with school kids, with 2+ school kids, without schoolkids, kids
in multiple schools, 1+ kid in a 150+ member school, with workers, with 2+ workers, without workers, with
workers and school kids, without schoolkids but with workers, and without school kids or workers). This
leads to a total of 72 household types (combinations). Size attributes state the minimal size, not the exact
size, as we intend to derive actionable strategies, and quarantining two-person households only seems
impractical. The composition attributes target the presence of school kids or working adults in the respective
households. Most household types are not mutually exclusive.

3.2 Infection Contribution Metric

We aim to understand the relative importance of different household types to the infection dynamics. To
achieve that, we introduce a new metric called Infection Contribution (IC) that provides information about
the importance of any given infection with respect to the overall infection dynamics. We then aggregate the
results for all infections caused by people living in a particular household type.

The Infection Contribution quantifies the number of direct and indirect descendant cases for each
infection. We calculate the number of secondary infections to which any index infection contributed. This
metric has several advantages over person- or setting-dependent R-values, as it works independently from
the underlying network structure. Let us consider an extreme example of two disjunctive subnetworks and
an infectious pathogen introduced to one subnetwork but not the other. Moreover, we assume a single edge
connecting one individual from each subgraph. If that connection leads to the introduction of the pathogen
to the fully susceptible subnetwork, this infection will have a vast IC value, even if the person’s
reproduction rate is just 1 (assuming the infector did not infect anybody else). The IC metric can consider
what happens “down the road” and identify high-impact traits in the model.
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Figure 3: Calculation of infection- and household-type contributions.

Figure 3 shows an example of an infection tree with two seeding infections. The top-left number in black
circles indicates the infection ID; the white circles indicate the infected person’s household type (A-E). The
center table shows the cumulative number of subsequent cases that can be traced back to the respective
infection. As seen in the graph, infections 3, 6, and 7 are successors of infection 1, resulting in a contribution
of 3.
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To understand the relative contribution of a particular household type, we calculate for each household type
H its contribution ratio Cy as the cardinality of the union of infection sets S; originating from infections i €
Iy of people living in household type H, normalized by the total number of infections N:
¢, = |Uier, Sil'

where I is the set of infections of people associated with household type H. The union operator is
important to prevent double counts in infection chains that contain the same household type multiple times.
In Figure 3, infections 1 and 4 are caused by individuals who live in household type A, resulting in a
contribution value of 4 for this type. With eight secondary infections (excluding the seeds), we get a
household contribution rate of 50% for type A. In other words, 50% percent of all infections can be traced
back to a person living in a type A household. A variant of this metric can be set up to identify the
contribution of infections and household types to cases that resulted in death. Both metrics identify
households that disproportionately drive transmission or severe outcomes, providing insights for targeted
interventions.

33 Calculating Infection Contributions in the Unmitigated Scenario

For this analysis, we ran the contribution metric from Chapter 3.2 on each household type identified in
Chapter 3.1 for the unmitigated baseline scenario for the Saarland model to understand which household
types are the strongest drivers of the overall infection dynamics. Figure 4 illustrates the contribution ratio,
the percentage of infections involving a particular household type at any stage in their infection chain if
traced back to one of the initial cases (Y-axis). Moreover, as the goal is to derive efficient intervention
strategies, the X-axis shows the fraction of the population that lives in a household of that type. The subplots
are stratified by the minimum household size. The shapes represent different compositions (school-focused
compositions in red, work-focused compositions in blue, and combinations in orange). Generally speaking,
a dot in the bottom-left suggests few people are causing few infections, and many people are causing many
infections in the top-right. To develop targeted intervention strategies, the sweet spot is the top left, where
few people cause many infections.
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Figure 4: Contribution and affected individuals per household type.
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All household types have a disproportionate contribution compared to the fraction of people living in the
respective household type. We expect this as the chance of a household type being included in any given
infection chain increases exponentially with the length of the chain. However, larger households in our
model generally have a higher contribution-to-affected-people (CP) ratio, regardless of their composition.
While households of a minimum size of two are part of 99.9% of all infection chains, only 91.5% of people
live in such a household, resulting in a CP-ratio of 1.09. Three-or-more-person households have a 1.37,
four-or-more-person households a 2.12, five-or-more-person households a 2.84, and six-or-more-person
households a 3.34 CP-ratio. In fact, if we order all household types by their CP-ratio, the first 21 entries
belong to households of size four and above. While this might hint towards the efficiency of intervention
measures regarding induced quarantine person days, one must also consider that larger households are part
of fewer infection chains overall (e.g., 63.8% for six-or-more-person households). This poses a hard limit,
even for a “perfect” intervention strategy.

Another interesting observation is that the contribution rates of households with schoolkids (red circle)
and households without schoolkids (red downward triangle) are very similar when all household sizes are
considered. A similar contribution value is understandable, given that each household type covers roughly
50% of the population. Based on the body of literature on school kids being drivers of infections (Grijalva
et al. 2015; Guo et al. 2023; Tseng et al. 2023), however, we would have expected a more significant
difference. With bigger minimum household sizes, the gap in contribution widens, coinciding with the fact
that there are fewer large households without schoolkids. The CP-ratio, e.g., for three-or-more-person
households, diverges noticeably (1.96 with and 2.97 without schoolkids). The situation is very different
when looking at households with and without workers (blue circle and downward triangle). We see a
significant gap for all household sizes, both in contribution and affected people. The graphs show two
clusters where, for household sizes 1-3 and above, the two household types that explicitly exclude workers
are far below the 50% mark concerning their contribution. For sizes 4-6 and above, the types explicitly
excluding schoolkids move from the upper to the lower cluster. Coincidentally, larger households (4-6+)
without schoolkids have the highest CP-ratio (above 4.2) while being among the rarest household types in
the model.

Focusing only on households with two or more schoolkids and/or workers (upward triangles) makes a
considerable difference, especially for the smaller minimum household sizes. While only half of the people
who live in a household with schoolkids live in one with two or more children, they still have a
comparatively high contribution (80.1% compared to 96.6%). This increases those households’ CP-ratio
(across all sizes) from 1.89 to 2.97. The effect is even more pronounced when comparing households with
workers and those with two or more workers, where the overall contribution is very similar (99.6% and
97.9%), but the number of people living in such households differs by 28.4%.

Whether or not one schoolkid is assigned to a 150+ sized school causes a 13% increase in the CP-ratio
over households with any schoolkids assigned. Households with kids in multiple different schools scored a
7% increase over households with at least two schoolkids in any school. Both effects appear to be moderate.

4 SIMULATION OF TARGETED INTERVENTION STRATEGIES

4.1 Household Quarantine Strategy

The previous chapter highlighted how different household types have significant variations in their
contribution to the overall infection dynamics. This inevitably leads to the question of whether that
knowledge can steer the development of targeted household quarantining strategies.

There are, of course, numerous ways to design quarantine strategies in practice. To reduce complexity
and generate comparable results, we focused on one particular setup where a household must undergo a 14-
day quarantine once any member experiences symptoms. All individuals are perfectly compliant.
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Figure 5: Household quarantine intervention scenario in TriSM formalization.

The strategy is visualized in Figure 5, following the Trigger-Strategy-Measure (TriSM) formalization
(Ponge et al. 2024). Once an individual experiences symptoms, a household identification measure is
executed, discovering the associated household setting and putting every member into quarantine for two
weeks. This will effectively prevent all out-of-household contacts for that duration. Any further household
member developing symptoms resets the two-week period for all members. The orange “condition”-box
indicates that the quarantine will only apply if the household matches certain criteria, e.g., being of a
particular type (like a three-person household with schoolkids). For each of the 72 household types
introduced in Chapter 3.1, we ran ten simulations where the quarantining strategy only applied to
households of the respective type.

4.2 Simulation Results

We ran the simulations on a server with two 12-core Intel Xeon Gold 6136 CPUs and 128GB of system
memory. Each run, simulating one year with one million agents, took roughly 20 seconds. While we focused
on a particular German state, runtime and memory usage in GEMS scale close to linearly with the
population size. The full German population model can be run on the same machine in about 30 minutes.

Figure 6 contrasts the strategies’ benefits and costs. We measure the strategy benefit as the reduction
in the basic reproduction number RO compared to the unmitigated baseline scenario presented in Chapter
2. Since we focus on isolation strategies, the costs are defined as the total person-days spent in quarantine.
Moreover, we stratify the results by lost school days (caused by quarantined school kids) and lost work
days (caused by quarantined workers). Colored dots indicate that the strategy is Pareto-optimal, meaning
no other strategies have higher benefits at lower costs. The colored dots make up the efficiency frontier.
The dot sizes represent the strategies’ household size limit (largest dots: any household size, smallest dots:
6+ person households only). Grey dots are strategies that are not Pareto-optimal and are all equally sized.

Due to population size and the almost 1,000 seeding infections, the results are relatively stable across
simulation runs. Initial experiments demonstrated that ten repetitions per scenario offer an effective balance
between result accuracy and computational efficiency. The maximum coefficient of variance (CV) in RO
across all scenarios is 0.05, meaning that the highest standard deviation among the ten repetitions in any of
the scenarios is 5% of their mean value for RO. The maximum CV for total infections is 0.2%, 0.9% for
total deaths, 2.7% for total quarantine days, 3.4% for lost work days, and 0.6% for lost school days.

As expected, we observe a strong general correlation between the number of person-days spent in
isolation and the reduction in RO in the top left graph of Figure 6. However, we also notice that all scenarios
are not equally efficient, meaning that there are strategies that yield higher benefits (RO reduction) at lower
costs (quarantine days). In fact, quarantining all households, regardless of their composition (black dots),
is not an optimal solution in most cases. It is only an efficient option if it applies to all household sizes, as
this is the most effective solution overall. Considering the household composition for targeted measures
seems reasonable in all other situations. We also notice that the slope of the efficiency frontier increases
the closer scenarios get to the phase transition (RO = 1, i.e., a reduction of 2.26 given our initial
parameterization), where the epidemic would become subcritical and die out. We ran experiments with
lower initial RO-values where some of the quarantining scenarios were able to push R below 1, and in those
cases, the results are clear: the strategy that ends the epidemic the soonest is both the most efficient and
most effective. If the epidemic cannot be ended, it has to be managed.
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An interesting observation is that eleven out of the 25 Pareto-optimal scenarios focus on households of
various sizes that explicitly exclude school children (orange diamonds and pentagons, red downward
triangles). Among those, the maximum possible RO reduction is 0.74 when quarantining households of all
sizes without school children. Above that, the best results are yielded by households (sizes 2+ and 3+) with
one or more children in a big school (red pentagon), households (sizes 1+, 2+, and 3+) with schoolkids and
workers (orange circle), and, especially, households (sizes 1+ and 2+) with two or more workers (blue
upward triangle). The latter marks the most effective (RO-reduction of 1.12) option that does not require
quarantining everybody. The other end of the spectrum shows that eight efficient solutions focus on larger
households (4+, 5+, and 6+) of various compositions. However, the largest reduction in RO we can achieve
focusing on these households is 0.25 when targeting 5+ sized households with kids in multiple schools (red
diamond). Concerning the correlation between household size and effectiveness, the blue downward
triangle for households of any size without workers makes an exception. Targeting these households will
only yield an RO reduction of 0.19.
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Figure 6: Efficiency frontier of targeted household quarantine strategies regarding their reduction in the
basic reproduction number RO (compared to the unmitigated scenario in Chapter 2) and induced total
quarantine days (top left), lost school days (bottom left), and lost work days (bottom right). Colored dots
represent Pareto-optimal strategies.
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Only four scenarios are Pareto-optimal when solely considering lost school days as costs (Figure 6, bottom
left). Self-evidently, any scenario that explicitly excludes schoolkids has zero costs. Among those, the
scenario focusing on households of any size without children (red downwards triangle) has the highest
benefit (RO reduction of 0.74). Surprisingly, this is also an efficient scenario concerning lost work days
(Figure 6, bottom right). In fact, it is the only scenario (other than the all-sizes-all-compositions scenario)
that is Pareto-optimal in all three analyses. The two remaining options are scenarios that focus on 1+ and
2+ sized households with two or more workers (blue downward triangles on top of each other).

The overall graph looks much different when only considering lost work days (Figure 6, bottom right).
There are also a few zero-cost options, with the scenario focusing on households without workers of any
size (blue downward triangle) being the most effective. However, the achievable reduction in RO is narrow,
given that the number of households without workers in the baseline population is small. Most efficient
scenarios (17 out of 24) target households containing schoolkids in various compositions (red dots in
diverse shapes). Optimizing for lost work days seems to “push” the costs of quarantining towards children.
There are two noteworthy exceptions, as strategies targeting households of sizes 1+ or 2+ without
schoolkids are also efficient options with respect to lost work days.

4.3 Comparing Quarantine-Day Utilization and CP-Ratio

In Chapter 3.3, we evaluated which household types have a disproportionately large contribution to the
overall infection dynamics compared to the number of people living in a household of that type (CP-ratio).
We now contrast these values with the number of person-quarantine days that were incurred to reduce the
basic reproduction number by 0.1 per scenario, which we derived from the simulations in Chapter 4.2. We
initially assumed that higher CP-ratios must yield a lower quarantine-day-per-R0O-reduction value, as we
would target “the right” individuals. The results, however, are counterintuitive.
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Figure 7: Quarantine-day efficiency and contribution by affected people ratio. Dot sizes represent the
minimum size of the respective household size (1+ to 6+).

Figure 7 shows a slightly positive correlation between the CP-ratio and the number of quarantine days,
which means that the higher the CP-ratio, the less efficient each quarantine day will be. We offer two
potential explanations. First, household types with the highest CP-ratios have the lowest absolute
contribution. Even without these households, the overall force of infection is still high. Removing a certain
household type from the infection chains only prevents individuals from being infected by someone living
in that household type. Still, it does not prevent them from getting infected at all, given that the underlying
population model is generally well-connected. The second reason is rooted in the intervention strategy
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design. It mandates symptomatic individuals to stay home, preventing out-of-household infections but not
within-household infections. As higher CP-ratios correlate with larger households (see dot sizes in Figure
7), we suggest quarantine days become less effective since they do not prevent in-household infections.
Our observations coincide with the suggestion of Donges et al. (2024) that household quarantine measures
are more effective in populations with smaller average household sizes. Future research should analyze
whether the results would look similar if individuals were quarantined in a dedicated facility.

5 DISCUSSION & CONCLUSION

The analyses show that calculating the Infection Contribution of individuals or households with particular
characteristics can be a valuable approach to targeting interventions. While the calculation of R-values is
useful for estimating the pace of infection dynamics, outbreak size, and herd immunity thresholds, the IC
metric can identify drivers of infection dynamics. It is not intended to replace R calculations but to provide
an addition to the epidemiological toolset. As it requires complete knowledge about the infection tree, the
IC metric is mainly a theoretical construct, suitable for (individual-based) simulations. In our experiments,
we focused on a baseline scenario with a large population, a considerable number of initial infections
(0.1%), and a moderately infectious pathogen. Under these conditions, the IC metric provides stable results
across all runs. Nonetheless, like all agent-based models, the IC metric is susceptible to path dependency
and therefore fluctuating outcomes for scenarios with very few seeding infections, small populations, or RO
values close to 1. However, in practice, these conditions are not representative of a scenario that requires
large-scale targeted intervention planning in any substantial way. The IC metric also works for scenarios
with much more infectious pathogens, although the relevance of targeted intervention strategies under those
conditions is debatable, as it likely necessitates the most effective, rather than the most efficient strategy.

Our simulations of the federal state of Saarland confirm the conclusions of previous modeling studies
(Donges et al. 2024; Endo et al. 2019; Megelmose et al. 2023) that households contribute differently to the
overall infection dynamics. The largest households in our study consistently show the highest contribution-
to-affected-people ratio, meaning that those households are disproportionately often involved in infection
chains. Moreover, the results indicate that the composition of households, especially with respect to the
presence of schoolkids and working adults, plays a significant role. We can, however, not conclude that
targeting household types with high CP-ratios will always yield the most efficient quarantining strategies
due to various factors, such as their absolute importance for the infection dynamics and the fact that
quarantining does not prevent in-household transmissions. That said, we suspect that these conclusions do
not generally apply to all types of interventions. The approaches presented in this work could have an even
larger impact when developing targeted vaccination-, testing-, or contact-tracing strategies, especially when
considering limited resources (vaccine doses, testing kits, public health personnel) as the cost function
instead of quarantine days. With regard to the household quarantine strategies presented here, we notice
that strategies targeted towards particular household compositions are generally superior to one-fits-all
interventions in almost all scenarios.

Of course, our observations must be taken with a grain of salt, as we used a population model of a
particular German federal state. We repeated the complete analysis for the eastern German state of Saxony-
Anbhalt, which has a similar demographic structure and is also primarily rural. The results were comparable
to the Saarland analysis. When we re-run the analysis for the city-state of Berlin, the general trends about
the contribution of differently sized households were similar. However, the efficiency frontier of household
composition-based quarantining strategies deviated significantly. In subsequent studies, we plan to apply
our methodology to the full German population model that is built into GEMS. Moreover, we plan to
analyze how the introduction of sub-perfect mandate adherence affects the efficiency frontier. As
mentioned before, we also saw substantial differences when we changed fundamental assumptions about
the pathogen, such as the basic reproduction number. We thus argue that the evaluation of targeted
intervention strategies must be conducted on a per-population and per-pathogen basis.

Whether quarantining households based on specific criteria is applicable in public health practice is
debatable and particularly dependent on the regulatory body of the respective region. Moreover, household
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quarantining would be only one aspect of a strategy mix (potentially including school closure, travel
suspension, contact tracing, and others) applied simultaneously in a real-world situation, depending on how
sharply the infection dynamics have to be reduced to not overburden the healthcare system. Future research
should also consider strategy combinations. The approach in this study produces a spectrum of efficient
options for one NPI class. It enables decision-makers to understand the implications of both the infection
dynamics and associated socio-economic costs. Our analysis is primarily an exemplary case study on
systematically deriving efficient, targeted intervention strategies. The approach is transferable to a variety
of interventions and can not only be used to target high-impact demographics but also to prioritize
individuals when working with limited available resources (e.g., vaccine doses or testing kits). Given that
producing these simulation results takes around half a day on the hardware we had available, we argue that
this approach can support short-term decision-making during emerging epidemics.
The code to replicate this study is available on GitHub.
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