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ABSTRACT

Volatile customer demand poses a significant challenge for the logistics networks of trading companies.
To mitigate the uncertainty in future customer demand, many products are produced to stock with the goal
to be able to meet the customers’ expectations. To adequately manage their product inventory, demand
forecasting is a major concern in the companies’ sales planning. A promising approach besides using
observational data as an input for the forecasting methods is simulation-based data generation, called data
farming. In this paper, purposeful data generation and large-scale experiments are applied to generate input
data for predicting customer demand in sales planning of a trading company. An approach is presented
for using data farming in combination with established forecasting methods such as random forests. The
application is discussed on a real-world use case, highlighting benefits of the chosen approach, and providing
useful and value-adding insights to motivate further research.

1 INTRODUCTION

A central challenge in the competitive design of a company’s supply chain planning processes is forecasting
future customer demand and corresponding sales, known as sales planning (Serdarasan 2013). This applies
in particular to trading companies with a focus on consumer goods, which produce their often homogeneous
products to stock independently of specific customer orders and, therefore, require a flexible, responsive
logistics network, in particular regarding distribution (Daugherty et al. 2019). The main task is to harmonize
customer demand with the necessary production and stocks of products in order to achieve a high level
of service on the one hand and the lowest possible capital commitment costs on the other hand (Pfohl
2022). Even today, managers in trading companies often predict sales using their own intuition, experience,
and spreadsheets (Mitra et al. 2022). However, a manual sales planning and demand forecasting is
often not feasible due to the complexity of the task described above. To tackle this issue, companies
are increasingly using forecasting methods to predict future customer demand and mitigate variance in
company sales (Saldaña-Olivas and Huamán-Tuesta 2021). It is, therefore, a necessity that the results from
these forecasting methods are as sound and accurate as possible (Box et al. 2015).

With increasing computational power, numerous quantitative methods for demand forecasting have been
presented in the scientific literature. An established approximation is the distinction between quantitative
and qualitative sales forecasting methods, further differentiating into judgmental methods, experimental
methods, causal methods, common projective methods, and advanced projective methods (Rushton et al.
2014). However, a strict separation between methods is lacking in the established publications. Typical
examples of methods, which are widely used in research and practice, include time series models, such
as Auto-Regressive Integrated Moving Average (ARIMA), or machine learning methods such as a random
forest (RF) and artificial neural networks (Mitra et al. 2022).

The availability of suitable historical observational data is necessary for the use of these methods.
However, the collection and use of observational data to forecast customer demand in sales planning is
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considered a challenge in research and practice alike (Chase 2016). For example, data quality or the lack
of corresponding data can prevent a value-adding use of forecasting methods (García et al. 2015).

This paper addresses this challenge and develops a method for combining forecasting methods with
a data farming approach. Data farming describes the use of simulation models and targeted experiment
design to generate comprehensive inferential data (Sanchez 2018). The generated simulation result data
can then be used as input for forecasting methods. Von Rueden et al. (2020) motivate the combination of
machine learning and simulation in a hybrid modeling approach in industrial settings, while Taylor et al.
(2023) highlight the benefits and motivate avenues of further research in the context of digital twins.

The outline of the paper is as follows. The background on sales and distribution in supply chains,
forecasting with an emphasis on methods and data, and data farming is given in Section 2. The novel
approach to sales forecasting in combination with data farming is presented in Section 3. In this section,
the use of simulation result data as the input for forecasting methods both from times series analysis and
machine learning. In Section 4, the proposed approach is tested and validated using a real-world use case.
The paper closes in Section 5 with a conclusion and an outlook on further research.

2 RELATED WORK

This section presents the background and the related work on core topics for this paper. In Section
2.1, an overview is given on supply chains and logistics distribution networks with an emphasize on the
logistics tasks of sales planning and demand forecasting. Section 2.2 introduces fundamentals on methods
for forecasting using time series analysis and machine learning. The section closes with background
information on simulation and data farming in Section 2.3.

2.1 Logistics Networks of Trading Companies

Logistics networks of trading companies, called trading networks, are complex socio-technical systems
involving a multitude of different actors. The main goal of such a system is to fulfill customer orders
by efficiently managing the logistics processes involving procurement, movement, and storage of goods,
called stock keeping units (SKU), as cost-effective as possible (Christopher 2016). Figure 1 illustrates a
typical structure of a logistics network.

Figure 1: Common structure of a logistics network.

A logistics network consists of logistics areas, which can roughly be distinguished into the areas of
procurement logistics, production logistics, and distribution logistics (Pfohl 2022), whereas procurement
and distribution are core areas of a trading company (leaving aside possible value-added services).

Propagating upstream across the logistics network, customer demand is what drives a logistics network
(Schulte 2016). Following Meffert et al. (2015), demand is defined as the quantity for a specific SKU
requested by an economic entity. Demand for a SKU can be dependent on a multitude of different factors.
Typical examples include seasonality and weather, marketing activities, or the results of independent
product tests and reviews. The demand is met by market sales, defined as the SKUs sold by a company to a
customer (Pfohl 2022). To tackle the problem of fluctuating customer demand, companies use an inventory
management by producing products to stock and try to obtain more information about the customers’ future
demand (Feizabadi 2022). Stocks are used as a buffer to harmonize and balance the flow of goods and the
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mismatch between supply and customer demand (Pfohl 2022). Stocks have a lot of positive characteristics,
but are, however, not always desirable. Inventories can be used to prepare for uncertainty of events, as
demand can not be predicted with full certainty. Yet, stocks lead to higher inventory costs for trading
companies. The focus is on making to stock with capacity constraints, which implies a need for accurate
sales planning performance. One of the relevant planning challenges is to gain an understanding of the future
demand and to balance production and sales of inventory. Important performance metrics influenced by
demand prediction are capacity utilization and return on investment (Pfohl 2022). To tackle this challenge,
accurate forecasts are needed. Predicting the future demand of SKUs and planning possible sales is a
complex challenge for decision makers in trading companies. Typical planning tasks include operations
planning, inventory and supply planning, and sales planning (Feigin 2011). The goal of sales planning is
to develop an unbiased, valid, and sound demand forecast. Since creating forecasts manually is unfeasible,
various methods in research and practice have been proposed.

2.2 Demand Forecasting in Sales Planning

Due to the rise in available computational power, advancements in the use of observational data from the
logistics network of a trading company for forecasting have been achieved in the last decade. Demand
forecasting in sales planning has been extensively studied in scientific publications. Mitra et al. (2022)
present a comprehensive literature review of demand forecasting models used in research and practice.

The goal in demand forecasting is to predict future outcomes based on observational data from history,
called time series data (Hyndman and Athanasopoulos 2021). Time series data are “data that have been
observed at different points in time” (Shumway and Stoffer 2017, p. 1), whereby a time series is defined
as sequentially recorded data over time, with xn describing a random variable x at discrete points in time
n, n ∈N. Time series data might be univariate (e.g., a sensor measuring temperature) or multivariate (e.g., a
sensor measuring speed, acceleration, and centrifugal force). To analyze such data, time series analysis can
be used to find a mathematical model describing the time series data appropriately. Typically, forecasting
methods for sales are differentiated into two groups: qualitative and quantitative methods. Following
Rushton et al. (2014), qualitative methods can be distinguished into judgmental and experimental, while
quantitative methods are further distinguished into causal, common projective, and advanced projective
(e.g., ARIMA, machine learning). Common projective approaches to forecasting, called naïve approaches,
are often used as a base reference for comparison of results. A typical example is exponential smoothing,
which does not consider any trends or seasonality in the data, and is the basis for many advanced forecasting
methods today (Hyndman and Athanasopoulos 2021). The idea behind simple exponential smoothing is
to use the last value in the time series data, xn, to forecast future values. Hence, the last value is the only
important one providing information for the future.

With a focus on advanced projective methods, ARIMA is a well established method and is based on
the Box–Jenkins method (Box et al. 2015). The idea is that a specific value in the time series data, xn, can
be described as a function of historical values (Shumway and Stoffer 2017). Following Buettner and Rabe
(2021), ARIMA(p,d,q) with p,d,q ∈ N can be described as a generic form of a time series model using
an autoregressive part, number of observations p, to describe the regression of the time series values, an
integrated part, d, to create a time series where the properties (e.g., the mean) of the series does not depend
on the time (stationary), and a moving average part, q, to describe the relation between an observed value
and the error of an observation.

Lately, a vast number of machine learning methods have been proposed to address time series sales
forecasting. A typical machine learning technique in science and practice for demand forecasting is to use
an ensemble algorithm called RF (Vairagade et al. 2019). An RF is an ensemble algorithm that inherently
performs variable selection and is capable of capturing complex, non-linear interactions between features
without the need for manual specification. This makes a RF suitable for cases where the relevance and
structure of inputs are not fully known a priori. The basic idea behind a RF is to create large ensembles
of decision trees in a first step and to merge them in a second step to create a prediction by taking the
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mean from all tree predictions. In that way, a RF is a classifier of a collection of different tree-structured
classifiers (Breiman 2001). An RF comes with hyperparameters that need to be tuned before training,
testing, and application, such as the depth of a tree in the forest and the minimum number of splits to
prevent overfitting. Many alternatives to using an RF for sales forecasting exist, with one of the most
prominent ones being XGBoost. XGBoost is also a tree-based ensemble method, but the algorithm differs
fundamentally in how the ensembles are build (parallel trees, called bagging versus sequential trees, called
boosting). For a comparative study of different algorithms in this context, the reader is kindly referred to
Mitra et al. (2022).

Most of the statistical and machine learning methods strongly depend on observational data from the
logistics network of the trading company. However, flaws of observational data include, e.g., missing
values or outliers, which lower the overall data quality (García et al. 2015). Another drawback is that
observational data limit the types of insights that can be gained from applying forecasting algorithms on
the (preprocessed) data basis (Sanchez et al. 2020). In this context, simulation-based data generation,
called data farming, can be used efficiently explore vast input spaces, reveal key characteristics of complex
simulation outcomes, and clearly identify causal relationships.

2.3 Data Farming

Simulation is an established method for the modeling and analysis of complex systems such as supply
chains, where analytical methods are not applicable (Rabe et al. 2008). It is defined as the “representation
of a system with its dynamic processes in an experimentable model to reach findings, which are transferable
to reality; in particular, the processes are developed over time” (VDI-Guideline 3633 Part 1 2014, p. 3).
Data farming can be used to address the flaws of observational data. The term data farming was coined by
Brandstein and Horne (1998) in a project by the US Marine Corps. The term data farming is a metaphor
for the iterative process of using a simulation model to generate vast amounts of inferential data (Sanchez
2021). To conduct a data farming study in a structured manner, procedure models are used. A procedural
model structures the process of data farming into several phases, including model development, design of
experiments, and a subsequent analysis of the simulation result data. Established processes are presented,
for example, Feldkamp et al. (2015), Sanchez (2020), and Hunker et al. (2022).

Since complex simulation models usually contain a multitude of input variables, called factors, that
supposedly have an influence on the response of the simulation model, well-designed experiments are
inevitable to enable large scale experimentation (Sanchez et al. 2020). The goal of the design of experiments
is to create a matrix, consisting of design points (rows) for the factors (columns). Each row represents a
specific combination of factor settings, called levels (Kleijnen 2015). To create a design in a structured and
value-adding way, different designs have been proposed. Commonly used, all-around suitable space-filling
designs for large scale experimentation include designs based on Latin hypercubes, such as the nearly
orthogonal Latin hypercubes (Cioppa and Lucas 2007). Latin hypercubes enable a rich and balanced model
output, but need considerably less simulation runs in complex simulation models than, for example, a full
factorial design. The generated data basis is used for a subsequent analysis to gain extensive insights on the
model behavior. A typical method used for the analysis of the vast amounts of inferential data is knowledge
discovery in databases. Furthermore, verification and validation (V&V) is a central part of data farming,
integrating established and model-accompanying procedure models (Rabe et al. 2008).

Research in data farming has gained momentum in the last decade, and the credibility and suitability
of data farming to tackle real world problems has been shown (Sanchez 2018). Originating in the domain
of defense and manifold successful applications, e.g., in Horne and Seichter (2014), data farming has been
applied in various other domains, such as manufacturing (Feldkamp et al. 2015), logistics (Hunker et al.
2021), and condition-based maintenance (Wuttke et al. 2023).
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3 SALES PLANNING USING DATA FARMING

According to the authors’ understanding, sales planning is the first step in supply chain planning tasks
and lays the foundation for the operations planning and inventory planning in a trading company (see
Section 2.1). Forecasting customer demand is a recurring and important challenge for managers to keep
a trading company in a competitive state. Although manual forecasting by the managers is still a major
factor in companies nowadays, forecasting methods are increasingly applied. One way to explore complex
models’ emergent behavior, where analytical methods fall short, is simulation (see Section 2.3). Therefore,
a simulation-driven approach is promising to reap the benefits of data farming in sales planning.

This section presents a methodology to use data farming to generate input for forecasting methods in
sales planning of trading companies. The procedure operates on the premise that if the simulation result
data generated by the simulation resemble the necessary input needed for a specific forecasting algorithm,
then the factors of the simulation model allow to identify cause-effect relationships accurately, providing
broad insights.

For data-farming-based demand forecasting in general, it is crucial to have a high-quality simulation
model of the companies trading network being analyzed. In this context, “high quality” means a model that
adequately reflects the systems behavior, dynamics, and interdependencies under various system conditions.
This includes capturing both normal system operation and deviations that could indicate a change in customer
demand of a SKU. Here, expert knowledge from the trading network or observational data can yield insights
on how to determine necessary assumptions for the simulation model. The model must be sufficiently
detailed to include key components, interactions, and environmental factors that influence the customer
demand. Additionally, it should be flexible and updatable to reflect changes in the systems configuration
or operating conditions over time. It must also be robust enough to handle uncertainties and variations
present in real-world operations.

This includes in particular the modeling of customer demand. When incorporating demand as an input
for a simulation model of a trading network for data farming, it should vary within a specific range of values
to facilitate the exploration of the models’ behavior through targeted design of experiments. As detailed
in Section 2.3, design of experiments guides the exploration of the simulation model by adjusting its input
factors. For instance, when considering factors that influence an SKUs demand, one factor might serve as
a multiplier to scale demand, while another could provide a time-based offset. However, the authors argue
that relying solely on these simple operations may not adequately maintain the original demand behavior.
Demand for a SKU in trading networks can be represented as a sequence of values over time, making it
insufficient to describe them with a single factor. Thus, the factors generated by the design of experiments
need to be converted into sequences of values that mimic demand. To achieve this transformation, the
authors have developed a demand generator that is user-friendly and requires a minimal effort to set up.
A fundamental discussion of this concept can be found in Wuttke et al. (2022). The objective is to create
synthetic demand that closely maintains the original demand behavior for each SKU while allowing for
effective exploration of the solution space. The demand generator preserves both the individual demand
patterns and the overall meta behavior of a specific SKU. The factors resembling demand in the experiment
matrix are varied by the chosen design of experiments in given ranges. Based on these inputs, the demand
generator generates a synthetic demand for a given SKU for a simulation run. An example is illustrated
in Figure 2.

Figure 2 shows the observational demand from the time series data of a given SKU over the course
of a year in a trading company, which is resembled by the fundamental curve. A fitted curve shows the
result of a parametrized distribution. Both extremal curves resemble minimal and maximal levels for the
parameters of the function, giving a realistic range to vary the demand in. This is the basis to generate
demand for the SKU.

The output of the simulation model is used as an input for the forecasting algorithms. The simulation
result data resembles time series data as defined in Section 2.1 to fit the input requirements of a forecasting
algorithm. Depending on the forecasting method used (see Section 2.2), training of the model using
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Figure 2: Exemplary results from the demand generator for a specific stock keeping unit.

training data is necessary. The current issue falls under the category of supervised learning methods, given
that the data available for learning is labeled. More specifically, the objective is to develop a model for
time series data. It is crucial to consider the data as sequences instead of treating them independently, as
these sequences display temporal dependencies that offer valuable insights for demand forecasting. This
method enables the model to utilize past observations and make educated predictions about future values
by leveraging the historical context inherent in the time series.

The presented approach is based in particular on established procedure models that describe an explicit
combination of data farming and, for example, knowledge discovery in databases (see Section 2.3). Three
basic application scenarios of our approach are hypothesis testing, data enrichment by inferential data,
and generating a complete inferential data basis for demand forecasting in sales planning. Our approach
is structured into several consecutive steps. Overall, recommended is to use an established procedure
model for conducting a forecasting study enhanced by data farming. The core phases of our approach are
illustrated in Figure 3.

Figure 3: Procedure model to combine data farming and demand forecasting.

The method starts with observational data from a trading company. The previous steps for obtaining
data from a trading network are deliberately excluded at this point. Step 1 is concerned with building a
simulation model and design of experiments. The simulation model should be able to output time series data
for given points in time (univariate or multivariate, see Section 2.2). To vary the factors, using a suitable
design of experiments is recommended. From the authors’ experience, nearly orthogonal and balanced
Latin hypercubes serve as a valid all-purpose design, as recommended by the established literature (see
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Section 2.3). Step 1 results in an experimentable model. In Step 2, the experiments are run, resulting in
simulation result data, which usually get stored in a database. In Step 3, it is necessary to select a forecasting
algorithm for a given method. This is important, as forecasting methods may have different requirements
for their set-up or the input data. For example, recurrent neural networks have requirements to select, e.g.,
the type and the number of layers, respectively. For Step 4, it is essential to prepare a training dataset for a
given machine learning algorithm. This dataset should contain a substantial amount of observational data
collected from the trading network, encompassing various operational scenarios and conditions. Such a
dataset enables the machine learning models to generalize effectively and learn patterns. Step 5 includes the
training of the model selected in Step 3 using the time series data prepared for training in Step 4. In Step
6, the trained model is applied to the result of the data farming phase to generate forecasts. The final Step
7 is concerned with a joint analysis of the forecasts and the simulation result data. This is accompanied
by exploration of the input space, response surface techniques, and cause-effect-analysis.

A rigorous V&V of these steps is recommended. Typically, established procedure models contain a
dedicated phase or multiple phases for conducting a structured V&V and recommend various techniques
(see Section 2.3). However, the proposed procedure in Figure 3 does not depict specific steps for V&V
and a reiteration of steps, e.g., if the V&V of the simulation model fail or if the training performance of
the machine learning is unsatisfactory. The following section illustrates the newly introduced approach
through an industrial use case.

4 USE CASE

The concept presented in Section 3 is demonstrated using a real-world use case and the gained results are
then critically discussed. The observational data originates from a leading trading company in Germany that
is active worldwide and sells a large number of different SKUs. The considered part of the trading network
consists of three suppliers, five sites, and more than a hundred customers in the region Germany, Austria,
and the Netherlands. Observational data were collected from the trading companies’ enterprise resource
planning system, such as site location, stocks of SKUs, customer orders, and deliveries to customers. In
the use case considered here, the focus is on one of the company’s main products, which is distributed to
multiple customers in Europe (see Section 2.1). The time horizon for the data extraction was one year.
Some hypotheses have been defined as a starting point. For example, an increase in sales activities in
autumn should lead to an increase of at least 5% in the predicted customer demand. If that is the case,
what impact will this have on the trading network and how much spread is expected in future demand?

The simulation model was developed using AnyLogic, which also supported the data farming exper-
iments. Python, with Pandas and Scikit-learn, was used for analyzing simulation responses and applying
demand forecasting. The experimental design employed nearly orthogonal and balanced Latin hypercubes,
based on spreadsheets from the SEED Center for Data Farming (Sanchez 2011). An initial exploratory
analysis was followed by preprocessing of trading company data, including harmonizing and aggregating
customer order documents. Figure 4 shows sales data for a selected SKU, which exhibits a seasonal demand
pattern typical for construction materials: higher demand during the warmer months from spring to autumn
and a lower demand during the cold months in winter.

The next step is to select a forecasting method. In this use case, established methods such as ARIMA
and RF have been applied (see Section 2.2). The observational data are split into training data and test
data in the ratio of four to one while the forecasting error is averaged, which is a common approach in
model training and validation. The RF has then been trained and validated based on the observational
data. It is assumed that product-level sales do not conform to a neat parametric distribution and seasonal
demand (as illustrated in the example from Figure 2), often exhibiting random-seeming, erratic movements
in practice. Consequently, a bootstrapping approach is integrated to generate daily demand from historical
data: each day’s aggregated sales quantity is sampled (with replacement) from a set of real historical
values. This preserves the empirical range and irregular fluctuations of the original data without imposing
a traditional theoretical distribution. Next, we distribute the total bootstrapped distributed for each day
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Figure 4: Sales data for a stock keeping unit.

among five hubs to ensure an accurate representation of the throughput variability observed in real-world
scenarios. The allocation to each hub is based on predetermined percentage weights (for instance, 30%,
25%, and so forth). The model employs two distinct design strategies: the first utilizes fixed weights,
realizing that two sites encounter higher traffic levels compared to the others. The second strategy adopts
the largest remainder method for further refinement. In this approach, the integer portions are allocated
initially, while the remaining units are assigned to the hubs with the largest fractional components. This
method guarantees that the overall allocation across the hubs aligns with the daily aggregated total. Figure
5 illustrates exemplary demands for the selected SKU in this use case.

Figure 5: Examples of generated demand for a specific stock keeping unit.

Finally, this entire process is implemented in AnyLogic, with daily events tracking the bootstrapped
demand and hub assignments. The resulting synthetic time series with integer hub distributions are logged
to a CSV file format, forming a robust data basis for subsequent demand forecasting tests and model
training. By refraining from a single parametric model, random-like variability realistically reflects the
unpredictability inherent in real-world demand for SKUs. To investigate how hub-weight assumptions affect
the final daily allocations, two distinct designs have been tested. Design A employs fixed proportions of
30%, 25%, 15%, 15%, and 15%, offering a balanced split with two moderately larger hubs and three smaller
ones. Design B, on the other hand, reflects real measured utilization, with weightings of approximately
45.2%, 26.2%, 11.2%, 10.7%, and 6.7%. In each scenario, the simulation has been run for 365 days
using the same bootstrapped daily demand, logging an integer-based breakdown per hub. Comparing the
two output files allows for isolating the impact of more idealized compared to empirically derived hub
distributions on overall demand patterns. The data farming model is used to generate time series data that
can be used for an RF model. This leads to the creation of a comprehensive synthetical data basis that
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allows different data sets to be compared with each other. In particular, a distinction is made between
the observed data, the enriched database, and the complete synthetical data basis. The simulation model
illustrated in Figure 6 consists of four core elements working in tandem to generate a realistic daily demand
distribution. First, historicalSales serves as the reservoir of original data, holding an ArrayList of empirical
sales figures that are sampled (with replacement) each day in a nonparametric bootstrapping fashion. This
ensures that the synthetic time series reflects the actual variability observed in the real-world dataset.
Second, the global variables, such as the day counter and the CSV writer, offer persistent references and
logging capabilities throughout each day’s process. Third, the dailyEvent triggers once per simulated day,
getting a new demand value from the historical data and allocating the total across five hubs. During this
allocation, either a straightforward percentage-based method or the Largest Remainder technique is applied
to ensure that each hub’s share remains an integer while preserving the exact sum of the total daily demand.
Finally, HubSales (hubSales1 to hubSales5) captures the final allocation for each day, reflecting throughput
differences between the hubs.

Figure 6: Core elements of the simulation model.

Extensive preprocessing is required when processing the observational data. This includes steps such
as checking for missing values, renaming columns, and removing irrelevant columns. These measures are
crucial to ensure the quality of the data and to ensure that the subsequent analyses are based on reliable
information. In contrast, the evaluation based on the simulation results does not require preprocessing,
since the response of the simulation model was configured to directly generate time series data. This
increases the efficiency of data processing and minimizes the complexity of data preparation. Ultimately,
the forecasting algorithms are applied to the simulation results. These algorithms take into account the
specific characteristics of the time series data to produce accurate and meaningful forecasts. Figure 7
shows exemplary results of an RF for a specific replication and design point, compared to the real data
for the predicted year. To check if the time series is stationary, an Augmented Dickey-Fuller test has been
implemented. For hyperparameter tuning, the function GridSearchCV has been applied and the identified
best parameters are then used to train the model based on the mean square error to approximate the model
quality. The integration of these procedures into the data farming model ensures that the results are robust
and provide significant added value for the analysis of sales planning in trading companies.

In this use case, the combination of data farming and forecasting methods has proven to be value-adding
in the sales planning process of a trading company. For forecasting, we relied on commonly used techniques
for forecasting, such as RF. More-complex architectures such as recurrent neural networks, large language
models, agents, and retrieval-augmented generation have not been touched upon in this paper. The machine
learning model has been trained and validated using observational data the materials trading company and
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Figure 7: Predicted sales using a random forest based on simulation result data.

a situation, were observational data might not be available, has not been explored. However, the flexibility
of this approach would technically allow to use simulation result data for training and validating a machine
learning algorithm by adapting the method. The overall performance of our approach in comparison to a
forecasting model trained on the observational data has not been investigated. An initial analysis based on
the mean squared error showed a significant improvement in the forecast using our approach. Nevertheless,
a sound investigation requires a more comprehensive research setting. Concluding, the use case showed that
this combined method demonstrates a more broader and flexible approach to sales forecasting, leveraging
advantages of both data farming and forecasting.

5 CONCLUSION AND OUTLOOK

In this paper, a novel approach has been showcased on how data farming can be used to add value to
the sales planning process of a trading company. After introducing the related work and the theoretical
background, the concept for combining those two approaches was introduced. The fundamental idea behind
this approach is to use simulation based data generation to enhance the analysis of the models results. The
presented concept is validated using a real-world use case from a trading company in Germany. Based on
the company’s observational data, the use of typical and well established approaches has been demonstrated
by using ARIMA and an RF for demand forecasting. The results have been proven value-adding in the
sales planning process and show that by combining data farming and demand forecasting a much better
basis for decision-making can be provided.

Besides tuning and refining the method for more precise results, a promising research stream is called
Robust Forecasting. This describes the idea to add this approach into a logistics assistance system and use
demand forecasting for decision support. This could be done using an optimization setting to optimize from
different data farming scenarios and find a possible decision for a predicted setting of the trading network
which offers a competitive performance for a vast majority of possible scenarios. Here, concepts from
retrieval augmented generation and agents could be a promising addition to the concept, in particular with
regard to interaction with decision makers from a trading company. Furthermore, automatically integrating
market trends and search patterns from customers (e.g., from Google Trends and market research) or
weather forecasts could further enrich the demand forecasting and seem promising for future research.

1372



Hunker, Wuttke, Rabe, van der Valk, and di Benedetto

REFERENCES
Box, G. E. P., G. M. Jenkins, G. C. Reinsel, and G. M. Ljung. 2015. Time Series Analysis: Forecasting and Control. 5th ed.

ed. Wiley Series in Probability and Statistics. Hoboken: Wiley.
Brandstein, A. G., and G. E. Horne. 1998. Data Farming: A Meta-technique for Research in the 21st Century. Quantico,

Virginia: Marine Corps Combat Development Command Publication.
Breiman, L. 2001. “Random Forests”. Machine Learning 45(1):5–32.
Buettner, D., and M. Rabe. 2021. “Sales Forecasting in the Electrical Industry - An Illustrative Comparison of Time Series and

Machine Learning Approaches”. In Proceedings of the 9th International Conference on Traffic and Logistic Engineering
(ICTLE), 69–78. Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers, Inc.

Chase, C. W. 2016. Next Generation Demand Management. Hoboken, NJ, USA: Wiley.
Christopher, M. 2016. Logistics & Supply Chain Management. 5th ed. Harlow, England: Pearson Education.
Cioppa, T. M., and T. W. Lucas. 2007. “Efficient Nearly Orthogonal and Space-Filling Latin Hypercubes”. Technometrics 49(1):45–

55.
Daugherty, P. J., Y. Bolumole, and S. J. Grawe. 2019. “The New Age of Customer Impatience”. International Journal of

Physical Distribution & Logistics Management 49(1):4–32.
Feigin, G. 2011. Supply Chain Planning and Analytics: The Right Product in the Right Place at the Right Time. New York,

NY: BusinessExpert Press.
Feizabadi, J. 2022. “Machine Learning Demand Forecasting and Supply Chain Performance”. International Journal of Logistics

Research and Applications 25(2):119–142.
Feldkamp, N., S. Bergmann, and S. Straßburger. 2015. “Visual Analytics of Manufacturing Simulation Data”. In 2015 Winter

Simulation Conference (WSC), 779–790 https://doi.org/10.1109/WSC.2015.7408215.
García, S., J. Luengo, and F. Herrera. 2015. Data Preprocessing in Data Mining. Cham: Springer International Publishing https:

//doi.org/10.1007/978-3-319-10247-4.
Horne, G., and S. Seichter. 2014. “Data Farming in Support of NATO Operations – Methodology and Proof-of-Concept”. In

2014 Winter Simulation Conference (WSC), 2355–2363 https://doi.org/10.1109/WSC.2014.7020079.
Hunker, J., A. A. Scheidler, M. Rabe, and H. van der Valk. 2022. “A New Data Farming Procedure Model for a Farming

for Mining Method in Logistics Networks”. In 2022 Winter Simulation Conference (WSC), 1461–1472 https://doi.org/10.
1109/WSC57314.2022.10015249.

Hunker, J., A. Wuttke, A. A. Scheidler, and M. Rabe. 2021. “A Farming-for-Mining-Framework to Gain Knowledge in Supply
Chains”. In 2021 Winter Simulation Conference (WSC) https://doi.org/10.1109/WSC52266.2021.9715372.

Hyndman, R. J., and G. Athanasopoulos. 2021. Forecasting: Principles and Practice. 3rd ed. Melbourne, Australia: Otexts
Online Open-Access Textbooks.

Kleijnen, J. P. 2015. Design and Analysis of Simulation Experiments. Cham: Springer International Publishing.
Meffert, H., C. Burmann, and M. Kirchgeorg. 2015. Marketing. Wiesbaden: Springer Fachmedien.
Mitra, A., A. Jain, A. Kishore, and P. Kumar. 2022. “A Comparative Study of Demand Forecasting Models for a Multi-Channel

Retail Company: A Novel Hybrid Machine Learning Approach”. Operations Research Forum 3(4).
Pfohl, H.-C. 2022. Logistics Systems: Business Fundamentals. Wiesbaden, Germany: Springer Gabler.
Rabe, M., S. Spieckermann, and S. Wenzel. 2008. “A New Procedure Model for Verification and Validation in Production and

Logistics Simulation”. In 2008 Winter Simulation Conference (WSC), 1717–1726 https://doi.org/10.1109/WSC.2008.4736258.
Rushton, A., P. Croucher, and P. Baker. 2014. The Handbook of Logistics and Distribution Management: Understanding the

Supply Chain. 5th ed. London, Great Britain: Kogan Page.
Saldaña-Olivas, E., and J. R. Huamán-Tuesta. 2021. “Extreme Learning Machine for Business Sales Forecasts: A Systematic

Review”. In Proceedings of the 5th Brazilian Technology Symposium, edited by Y. Iano, R. Arthur, O. Saotome, G. Kemper,
and R. Padilha França, Volume 201, 87–96. Cham: Springer International Publishing.

Sanchez, Susan M. 2011. “NOLHdesigns spreadsheet”. http://harvest.nps.edu/, accessed: 29.03.2024.
Sanchez, S. M. 2018. “Data Farming: Better Data, Not Just Big Data”. In 2018 Winter Simulation Conference (WSC),

425–439 https://doi.org/10.1109/WSC.2018.8632383.
Sanchez, S. M. 2020. “Data Farming: Methodes for the Present, Opportunities for the Future”. ACM Transactions on Modeling

and Computer Simulation 30(4):1–30.
Sanchez, S. M. 2021. “Data Farming: The Meanings and Methods Behind the Metaphor”. In Proceedings of the Operational

Research Society Simulation Workshop 2021, edited by M. Fakhimi, T. Boness, and D. Robertson, 10–17: Operational
Research Society.

Sanchez, S. M., P. J. Sanchez, and H. Wan. 2020. “Work Smarter, not Harder: A Tutorial on Designing and Conducting Simulation
Experiments”. In 2020 Winter Simulation Conference (WSC), 1128–1142 https://doi.org/10.1109/WSC48552.2020.9384057.

Schulte, C. 2016. Logistik: Wege zur Optimierung der Supply Chain. 7th ed. Munich: Franz Vahlen.
Serdarasan, S. 2013. “A Review of Supply Chain Complexity Drivers”. Computers & Industrial Engineering 66(3):533–540.

1373

https://doi.org/10.1109/WSC.2015.7408215
https://doi.org/10.1007/978-3-319-10247-4
https://doi.org/10.1007/978-3-319-10247-4
https://doi.org/10.1109/WSC.2014.7020079
https://doi.org/10.1109/WSC57314.2022.10015249
https://doi.org/10.1109/WSC57314.2022.10015249
https://doi.org/10.1109/WSC52266.2021.9715372
https://doi.org/10.1109/WSC.2008.4736258
http://harvest.nps.edu/
https://doi.org/10.1109/WSC.2018.8632383
https://doi.org/10.1109/WSC48552.2020.9384057


Hunker, Wuttke, Rabe, van der Valk, and di Benedetto

Shumway, R. H., and D. S. Stoffer. 2017. Time Series Analysis and its Applications. Cham: Springer International Publishing.
Taylor, S. J. E., C. M. Macal, A. Matta, M. Rabe, S. M. Sanchez, and G. Shao. 2023. “Enhancing Digital Twins with Advances

in Simulation and Artificial Intelligence: Opportunities and Challenges”. In 2023 Winter Simulation Conference (WSC),
3296–3310 https://doi.org/10.1109/WSC60868.2023.10408011.

Vairagade, N., D. Logofatu, F. Leon, and F. Muharemi. 2019. “Demand Forecasting Using Random Forest and Artificial Neural
Network for Supply Chain Management”. In Computational Collective Intelligence, edited by N. T. Nguyen, R. Chbeir,
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