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ABSTRACT 

Leveraging Digital Twins, as near real-time replicas of physical systems, can help identify inefficiencies 
and optimize production in manufacturing systems. Digital Twins’ effectiveness, however, relies on 
continuous validation of the underlying models to ensure accuracy and reliability, which is particularly 
challenging for complex, multi-component systems where different components evolve at varying rates. 
Modular validation mitigates this challenge by decomposing models into smaller sub-models, allowing for 
tailored validation strategies. A key difficulty in this approach is preserving the interactions and 
dependencies among the sub-models while validating them individually; isolated validation may yield 
individually valid sub-models while failing to ensure overall model consistency. To address this, we build 
on our previously proposed modular validation framework and introduce an approach that enables sub-
model validation while maintaining interdependencies. By ensuring that the validation process reflects these 
dependencies, our method enhances the effectiveness of Digital Twins in dynamic manufacturing 
environments. 

1 INTRODUCTION 

Digital Twins (DTs), as near real-time evolving virtual replicas of physical systems (Grieves 2014), are a 
great asset in today’s complex manufacturing industry. To utilize the full potential of DTs, they need to 
continuously reflect the real-life systems accurately. However, as manufacturing systems grow increasingly 
complex, corresponding DT models become more cumbersome, making the validation process an enabler 
of DT and a significant challenge. Therefore, traditional one-time validation approaches cannot be applied 
to DT models as the evolving nature of DTs requires continuous validation. 
 Furthermore, as complex manufacturing systems consist of different components that evolve at varying 
rates, validating systems as single units may not be adequate. Therefore, in our previous research (Zare and 
Lazarova-Molnar 2024a), we introduced a modular validation approach, partitioning models into sub-
models based on activity rates and setting validation frequencies accordingly. Our approach then 
determined whether sub-models needed to be recalibrated, re-extracted, or kept intact. The key challenge 
in partitioning is defining meaningful sub-models while preserving the underlying dependencies and 
interactions among the components. Even though in our initial approach we relied on rate of occurrence of 
activities in the system and data recorded in event logs for model partitioning and capturing of 
dependencies, the need for more robust approaches to partitioning persists. Here, we extend our modular 
validation approach to enhance sub-model validation while maintaining interdependencies. 

In manufacturing systems, not all components behave or change with the same rate or in the same way, 
and their impact on the system differs. Thus, model partitioning must consider multiple criteria to accurately 
reflect these variations. It is also equally important to not treat the partitioned sub-models as complete 
independent entities as components and processes are interconnected and changes in one may impact the 
others. For example, as depicted in Figure 1, consider a sequential manufacturing line where the first robotic 
arm must finish its operation before the second one can begin its process. If these interdependent 
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manufacturing processes are partitioned in different sub-models and each sub-model is validated in 
complete isolation (indicated by red rectangles), the validation process ignores the critical interactions and 
dependencies between them. As a result, we may still deem each sub-model valid while validity of the 
complete model remains questionable. Therefore, modular validation is useful if the underlying partitioning 
approach effectively partitions the model and preserves the dependencies (indicated by a blue rectangle) 
among the resulting sub-models. 

 To address the challenges of partitioning models for validation while preserving interactions and 
dependencies among components, we propose a data-driven approach that maintains these dependencies 
among sub-models during the partitioning of the complete DT model. In our proposed approach, we adopt 
stochastic Petri nets as modeling formalism, leveraging their abilities to represent and preserve interactions 
among components. Stochastic Petri nets (SPNs) are a well-suited formalism for capturing and describing 
processes in discrete-event systems such as manufacturing systems. In SPNs, activities are modeled as 
transitions that fire to destroy and create tokens between places, creating the dynamics in Petri nets. We 
utilize the flow of tokens within Petri nets to preserve dependencies after model partitioning. Additionally, 
we formalize our SPN-based approach using the Petri Net Markup Language (PNML) (Billington et al. 
2003), enabling structured representation and interoperability.  

The rest of the paper is organized as follows. In Section 2, we review the background and related work 
on DT validation and model partitioning. Section 3 presents our methodology for partitioning models with 
dependency preservation. In Section 4, we further evaluate our approach through a manufacturing case 
study. Finally, we conclude the paper and discuss future research directions in Section 5.  

2 BACKGROUND AND RELATED WORK 

In the following, we review the current literature on validation of DTs and highlight the need and the 
existing gap in modular approaches, provide an overview of model partitioning, and formally describe 
stochastic Petri nets. 

2.1 Validation of Digital Twins 

DTs, by definition, are required to continuously reflect the current state of their real-world counterparts. To 
ensure this synchronicity, model validation must be an integral component of DTs, serving to confirm the 
accuracy of the DT’s model within its intended domain of application (Schlesinger 1979). Validation of 
simulation models is a well-established research area, with numerous validation techniques developed over 
the decades (Sargent 2013). These conventional approaches, however, are not readily applicable to DTs, as 
static, one-time model validation is insufficient for models that need to evolve over time (Zare and 
Lazarova-Molnar 2024b).  

 
Figure 1: Preservation of dependency when partitioning. 
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The challenge and necessity of ongoing validation of DT models has gained increasing attraction in 
recent years, prompting the development of new simulation model validation approaches that enable 
continuous validation of DT models. For instance, Hua et al. (2022) proposed a hybrid validation approach 
that combines human expert input with data collected via IoT devices. Utilizing time series analysis, an 
online approach was proposed by Lugaresi et al. (2023) based on data collected from IoT devices and 
focusing on operational phase of DTs. Mertens and Denil (2024) explored anomaly detection and reuse of 
existing model validation techniques through the monitoring of validation metrics for continuous assurance. 
A signal processing approach was employed by Morgan and Barton (2022), who utilized Fourier transform 
properties to detected discrepancies using the Fourier coefficient magnitudes, which was tested for 
validation of dynamic behavior of a DT.  

Other noteworthy contributions include the use of machine learning and statistical process control 
methods for continuous validation of initially validated DTs, as demonstrated by dos Santos et al. (2023). 
Separating initial validation from ongoing validation at run-time, Friederich and Lazarova-Molnar (2023a) 
proposed a two-phase validation approach for validation of data-driven discrete-event simulation models. 
An automated periodic validation and update method based on comparing key performance indicators 
(KPIs) between the physical system and its DT representation was proposed by Overbeck et al. (2023). 
Furthermore, aggregating all epochs’ data and multi-variate KPIs, He et al. (2024) evaluated validity of DT 
models. 

Recent studies highlight the importance of validation in DTs. However, existing approaches treat 
models as a whole and focus solely on final outputs. This may not be effective for complex systems, where 
localized inaccuracies may propagate and compromise overall model reliability. This limitation underscores 
the necessity for modular model validation processes and partitioning of DT models, which allow for more 
granular, component-level validation strategies, critical for managing the complexity and dynamics 
inherent in modern DT applications.       

2.2 Partitioning Simulation Models 

The transition from traditional to advanced manufacturing, enabled by the advancement in technologies 
such as cyber-physical systems and IoT (Xiang et al. 2023), has significantly increased the complexity of 
manufacturing systems. Consequently, the corresponding simulation models have also grown in 
complexity. To address the challenges of running complex simulations models, both in terms of resources 
and validation, model partitioning, which involves decomposing a large model into multiple smaller, more 
manageable sub-models, offers a promising solution. Although partitioning can aid in computational load-
balancing, distributing workload among processes, and run time reduction (Boukerche and Das 1997), our 
aim is to utilize partitioning for modular validation of DTs. 

Model partitioning as a means of optimizing computation efficiency and reducing simulation time, has 
been extensively studied. Within this context, GloMoSim library for parallel simulation was developed 
Zeng et al. (1998). It enables computational load distribution by partitioning and decomposing of simulation 
models. Furthermore, Peschlow et al. (2007) proposed a dynamic partitioning algorithm for partitioning 
simulation to optimize communication and computation workload. Costa and Gomes (2009) proposed a 
Petri net partitioning through net splitting operation for concurrent execution within embedded systems. 
Utilizing principles of dynamic decoupling, Papadopoulos and Leva (2015) proposed an approach to 
partition a model based on relevant time scales. Myers et al. (2016) proposed an online in situ partitioning 
method to reduce data transfer and storage requirements during simulation. In addition, self-clustering 
techniques were used by D’Angelo (2017) to balance computational loads and reduce communication 
overhead. Bogdanovic et al. (2022) developed a partitioning method for distributed simulations by 
analyzing time delays, ensuring simulation stability after decoupling. Based on fuzzy c-means clustering 
algorithm, He et al. (2025) proposed a simulation zone partitioning algorithm that improves computational 
efficiency for agricultural industry.       

From the related literature, partitioning is primarily employed as a technique for load balancing and 
optimizing resource consumption. However, since our goal is to validate simulation models by partitioning 
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and through intermediate, sub-system validation (Netter et al. 2013), we identify a gap in existing research. 
This highlights the need for further investigation into partitioning strategies specifically designed to support 
model validation.  

2.3 Stochastic Petri Nets 

As noted in the introduction, we adopt stochastic Petri nets (SPNs) as our modeling formalism. Petri nets 
(Petri 1962) are a modeling formalism best used in describing discrete-event systems. Since its introduction 
in 1962, there have been many extensions to the Petri nets. Stochastic Petri nets are an extension of Petri 
nets that allows for transitions in Petri nets, activities in systems, to be assigned probability distribution 
functions determining their firing delays. We adopt SPNs as the timed transitions can mimic processes in 
manufacturing systems. SPNs are formally described as the following (Lazarova-Molnar 2005):  

 
𝑆𝑆𝑆𝑆𝑆𝑆 = (𝑃𝑃,𝑇𝑇,𝐴𝐴,𝐺𝐺,𝑚𝑚0) 

 
Where: 
 
• P is the set of places in the Petri net, drawn as circles. 
• T is the set of transitions, both timed and immediate, drawn as bars. Immediate transitions have a 

constant value assigned to them while timed transitions have corresponding distribution functions 
that compute the firing probability. 

• A is the set of arcs, input, output, or inhibitor arcs, connecting places and transitions. Depending on 
connecting a place to a transition or a transition to a place, arcs are identified as input arc or output 
arc respectively. Inhibitor arcs, connecting places to transitions, block the transitions if the number 
of tokens in a place is greater than or equal to the multiplicity of the arc.  

• G is the set of guard functions and their associated transitions. 
• m0 is the initial state of the Petri net, referred to as initial marking of the Petri net. 

 
Furthermore, in our approach, we take advantage of the Petri net markup language (PNML), a universal 

XML-based format to describe Petri nets. PNML’s flexibility and compatibility ensures any kind of Petri 
net and its additional information can be converted to PNML, and for new Petri nets to be interpreted by 
any tools without previous knowledge of their type (Billington et al. 2003). By incorporating PNML in our 
approach, we ensure the partitioning, and the overall modular validation, is not limited to a certain type of 
Petri net. In Figure 2, we show a graphical example of a stochastic Petri net model of a simple 
manufacturing process and a snippet of its corresponding PNML file.  

3 DEPENDENCY PRESERVATION IN VALIDATION 

In this section, we present our approach to preserving interactions and dependencies in partitioned models 
by introducing interface places and token generators. We first provide an overview of our previously 
proposed modular validation framework (Zare and Lazarova-Molnar 2024a) and then highlight our new 
approach for partitioning and preserving dependencies. As noted earlier, we adopt stochastic Petri nets as 
modeling formalism and, as such, we tackle the challenge of maintaining dependencies by utilizing 
interface places and recording the token flow within models. This ensures that interactions between sub-
models are preserved, even after partitioning. 

3.1 Modular Validation 

To ensure a robust validation process, we previously proposed a framework for modular validation of 
Digital Twins’ models that enables targeted validation of underlying sub-models (Zare and Lazarova-
Molnar 2024a). As shown in Figure 3, the framework consists of two phases. The first phase focuses on 
validating the initial model, described using Petri Net Markup Language, which is done through standard 
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Figure 3: Modular validation framework (Zare and Lazarova-Molnar 2024a). 

 

 
Figure 2: Stochastic Petri net model of a simple process with a snippet of its corresponding PNML file. 

 

2840



Zare and Lazarova-Molnar 
 

 

validation techniques. The second phase is the continuous modular validation process in which the model 
is partitioned into sub-models, and each sub-model is validated based on the sub-model’s validation policy. 
Finally, if any sub-model is deemed invalid, it undergoes recalibration or, if necessary, complete re-
extraction. 
 In this paper, we focus exclusively on the model partitioning module, with particular emphasis on 
preserving interactions and dependencies among sub-models after partitioning. Identifying partitioning 
points is a non-trivial task that requires careful consideration. While in our earlier work (Zare and Lazarova-
Molnar 2024a) we partitioned SPN models based on transitions and their firing rates, human expert 
knowledge, and structural analysis (Aybar and Iftar 2002) are other promising approaches in identifying 
logical partitioning points. Furthermore, in our previous work, we relied on event logs for detecting the 
underlying interactions and dependencies among the sub-models. This approach was effective as the SPN 
models were completely extracted from recorded event logs. This bottom-up approach, however, is not 
feasible when the event logs are not comprehensive for capturing dependencies or when the model is not 
extracted from event logs, such as manually developed or adapted models. Therefore, we explore the idea 
of using places as interfaces connecting one sub-model to another and record and recreate the token 
creation/destruction pattern in the sub-models to ensure dependencies are reflected regardless of how the 
initial model is developed. Preserving such dependencies during model partitioning is critical for modular 
validation as it not only ensures fidelity of a model as the model is broken up to multiple sub-models, but 
it also enables intermediate validation. Intermediate validation points aid in identifying underlying 
discrepancies even if variations do not affect the final system output. 

3.2 Places as Interfaces 

To maintain dependencies among sub-models, we introduce interface places to connect the sub-models. In 
SPNs, every transition must connect to a place; we utilize this characteristic to partition the model and 
identify the interface places. Specifically, when partitioning, we focus on places that connect transitions 
across different sub-models and are critical to the overall behavior of the system to use as interfaces. For 
instance, consider a simple example from manufacturing, as shown in Figure 4. When partitioning the 
model into two sub-models, the place between the two processes is identified as an interface place as it 
connects the transition from the first sub-model to the transition from the second one. This interface place, 
shown in Figure 4 as a blue circle, is duplicated in both sub-models to preserve the dependencies between 
the sub-models are maintained.  

 
Figure 4: An example of using places as interfaces. 

 Furthermore, the interface places are duplicated based on the behavior of the system. In the given 
example, since the processes are in sequential order, the duplication is done from the first sub-model to the 
second one. This means the interface place gets updated if there is a change in the first sub-model and not 
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the other way around. Having places as interfaces allows for partitioning models while maintaining 
interactions and dependencies among the resulting sub-models. 

3.3 Token Flow Recording 

To ensure independent modular validation process while preserving dependencies, we need a mechanism 
to replicate the dynamics of the system during independent validation of sub-models. As noted earlier, firing 
of transitions corresponds to occurrence of events in a discrete-event system. The creation/destruction of 
tokens, resulting from transitions firing, creates the dynamics in SPNs. When a model is partitioned, the 
dynamics are interrupted as creation/destruction of tokens may not match the original model. Therefore, we 
introduce a mechanism that records and recreates token flow at interface places across sub-models to 
preserve the dynamics of the complete model through creation of a special transition, called token 
generator, visualized as a dotted green rectangle in Figure 4. 

First, during the initial validation of the complete model, we capture time-series data of token 
creation/destruction at each interface place. Second, we analyze the captured data to estimate the underlying 
probability distribution that best fits the token creation/destruction pattern. Third, we create a token 
generator for each sub-model that receives tokens from preceding sub-models in the complete system. For 
example, in Figure 4, the token generator is created for the interface place in the second sub-model, retaining 
dependencies to the first sub-model. Finally, the identified probability distribution functions are assigned 
to the corresponding token generators to recreate the complete model’s dynamics. In case of changes to the 
real system, we implement a periodic update mechanism to reflect the current dynamics and dependencies 
of the real system in the sub-models. We capture new data of token creation/destruction, at defined intervals 
or manually, from the preceding sub-models or, if necessary, the complete model. The newly captured data 
is then analyzed to find probability distribution functions for interface places and if needed, the token 
generators are updated with the new probability distribution functions to reflect current system behavior. 
The periodic updates keep the token flow and the dynamic of our partitioned model consistent with the 
behavior of the complete system. The token generator ensures proper synchronization among sub-models 
and allows for modular and independent validation of sub-models while maintaining dependencies and 
behavior of the original model leading to complete model validation. Algorithm 1 presents our partitioning 
approach within our modular framework for continuous validation of Digital Twins along with the 
modifications needed at PNML level. The algorithm receives stochastic Petri net model, parsed from PNML 
code, as input and outputs PNML code excerpts of the sub-models with relevant properties for preservation 
of dependencies, namely interface places and token generators.  

 
Algorithm 1: Algorithm for SPN partitioning as part of the modular validation framework. 
Input: PNML file of a stochastic Petri net model, captured token data from initial validation. 
Output: Partitioned sub-models with interface places and token generators as PNML code excerpts. 

Step 1 Partition the SPN model based on expert knowledge or other relevant approaches. PNML 
                   elements associated with each sub-model are identified. 

 
Step 2 Identify places that connect transitions across sub-models as interface places. Interface places 

                  are determined by comparing the partitioned models to the original model.  
 
Step 3 Create duplicates of the interface places in the relevant sub-models. PNML elements (place  

                  and arc elements) for interface places and their associated arcs are created.  
 
Step 4 For each interface place, estimate a best-fit probability distribution function based on the 

                   captured token data. 
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Step 5 Create token generators as output transitions with arcs leading to the interface places, and 
                   assign the corresponding probability distribution functions to these transitions. The   
                   transitions along with their associated distributions and arcs, are created as PNML elements.                    

 
Step 6 Return sub-models with preserved dependencies, namely token generators and interface 

                  places as PNML code excerpts for further model validation. 
 
Step 7 Based on preset time intervals or manual input, capture new data of token creation/destruction 

                  and repeat Steps 4-6 to reflect the current system dynamics. 

4 ILLUSTRATIVE CASE STUDY 

To demonstrate our approach for preserving dependencies while partitioning SPN models, we conducted 
an experiment using a manufacturing production line as case study. The line consists of five sequential 
stages: two assembly operations, a quality control station, a packaging operation, and a shipping operation. 
This configuration is ideal for testing our proposed approach as the sequential stages ensure clear 
dependencies among processes. We utilized the PySPN library (Friederich and Lazarova-Molnar 2023b) 
for simulation and validation. To facilitate processing of PNML files, we extended the library with a custom 
parser capable of translating PNML files into executable SPN models. 

 In our previous work, we applied a data-driven approach (Friederich and Lazarova-Molnar 2022) to 
extract the model and the dependencies from event data. Here, however, to examine our proposed approach 
we opted for a manual model development approach. Through manual development of the model, we ensure 
dependencies are preserved through introduction of interface places and token generator transitions, 
enabling a more focused evaluation of our proposed approach.  

First, we manually developed the complete model as a Stochastic Petri net model formalized in PNML. 
We then simulated the complete model to capture token data and validated the model by comparing its 
production throughput to that of the system. Next, based on expert knowledge, we partitioned the model 
into two sub-models, an assembly stage and a post-assembly stage. In addition, we identified the quality 
control place to utilize as the interface place between the two sub-models as it connects transitions across 
the sub-models.  

To preserve the dynamics of the system, based on the previously captured token creation/destruction 
data of the complete model, we determined a probability distribution function that best fitted the token 
arrival patterns of the interface place and created a token generator (timed transition), to replicate the 
behavior of the system in the post-assembly stage sub-model.  

Finally, we generated separate PNML code excerpts for each sub-model for independent simulation 
and validation, including the relevant place, transition, and arc elements needed for the interface place and 
the token generator. Figure 5 shows the graphical representation of the resulting SPNs, derived by parsing 
the generated PNML code excerpts in PySPN. The interface place is highlighted in blue.  

To evaluate the effectiveness of our model validation approach in preserving interdependencies 
between the two sub-models, replicating the dynamics of the original model, and ensuring accurate model 
validation, we conducted a comparative analysis across three simulation scenarios. We conducted 100 
terminating simulation replications for each scenario: simulating the complete model (manually developed 
initial model), simulating the partitioned model with interface places and token generators to preserve 
dependencies (dependent sub-models), and simulating partitioned model without dependency preservation 
(independent sub-models). These scenarios were designed to evaluate the effectiveness of our dependency-
preserving modular validation approach by comparing different KPIs from each scenario against the system 
(ground-truth). Comparing the throughputs of the three scenarios to the actual throughput of the system, as 
shown in Figure 6, we found that in the scenario where sub-models are independently validated, the 
dependencies were lost and the sub-models were validated as stand-alone models, resulting in an 
inconsistent outcome compared to the system and the initial model. However, our dependency-preserving 
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validation approach replicated the dependencies and dynamics of the complete model and maintained 
fidelity to both the system and the complete model. 

 
Figure 5: Resulting sub-models of our partitioning approach. 

 
In addition, we experimented with an intermediate KPI to further ensure our approach preserves the 

dynamics of the original model and can be utilized for intermediate validation. The selected metric was 
time to reach quality control. This metric serves as a critical point in the case study as it is the interface 
connecting the two partitioned sub-models and can also be utilized for validation of the assembly stage.  

To perform the comparison, we conducted 100 independent simulation replications on the complete 
model and on the partitioned assembly-stage sub-model (graphically represented on the left side of Figure 
5) with inclusion of the interface place. The comparison of the intermediate metric (time to reach quality 
control), illustrated in Figure 7, showed our partitioning closely matches the behavior of the underlying 
processes and can be utilized for intermediate validation. 

The KPI comparisons of the three scenarios in our case study demonstrated that our approach for 
partitioning DT models while preserving dependencies achieved its intended purpose. Through the 
introduction of interface places and token generators, we were able to successfully partition the model, 
preserve dependencies, and maintain dynamics of the system, enabling both modular validation as well as 
intermediate validation. 
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Figure 6: Comparison of simulation results (error bars representing 95% confidence interval for 100 
independent replications). 

 
Figure 7: Comparison of result of intermediate validation points (error bars representing 95% confidence 
interval for 100 independent replications). 

As the focus of this paper is on enabling modular validation of DT models through the preservation of 
dependencies during model partitioning, we designed the experiments to showcase the importance of 
preservation of dependencies and to demonstrate the effectiveness our approach. The dependency 
preservation approach builds upon our previously developed framework for modular validation of DT 
models, which incorporates elements such as validation frequency and model recalibration/re-extraction 
(Zare and Lazarova-Molnar 2024a).  

5 CONCLUSION 

Utilization of Digital Twins is a growing topic in manufacturing, enabled by the advancement in 
technologies. However, ensuring continuously valid Digital Twin models remains a challenge. The complex 
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and dynamic manufacturing systems require robust model validation processes capable of detecting and 
rectifying discrepancies. To this end, as part of our earlier work, we proposed a modular validation 
framework, aiming to mitigate the challenges of validating underlying model of a Digital Twin by 
partitioning the model and validating the partitioned sub-models based on their individual characteristics. 

 The challenge arising from partitioning a complex model and independently validating the partitioned 
sub-models is to ensure that the intricate interactions and dependencies are preserved in the sub-models and 
ultimately reflected in the validation process. As these dependencies can influence the dynamics of a model, 
validating sub-models independently does not necessarily guarantee the complete model remains valid. To 
address this, we build upon our modular validation framework by proposing an approach that ensures 
preservation of dependencies during both the partitioning and validation processes of the complete model.  

In our approach, we use stochastic Petri nets to describe underlying models, formalized through the 
Petri Net Markup Language, and utilized their structural characteristics, namely the place/transition 
structure and token creation/destruction, to preserve dependencies within partitioned models. In a stochastic 
Petri net, dynamics of a model is represented through the creation and destruction of tokens in places, 
triggered by firings of transitions. Therefore, we introduced interface places and token generators to capture 
and reflect the dynamics in sub-models. After partitioning of the complete model, we identified places that 
connect to transitions in different sub-models and designated them as interface places, duplicating them in 
the sub-models. To recreate the behavior of the system, we estimated best-fit probability distribution 
functions to drive token generation at the interface places within the sub-models, ensuring synchronization 
among the sub-models. Through a case study, we evaluated our approach and further demonstrated that 
utilizing interface places and token generators effectively preserves dependencies among sub-models and 
supports intermediate validation.  

  While this work addresses the preservation of dependencies in partitioning Digital Twin models for 
enabling modular validation, several challenges and limitations remain. Notably, the partitioning points in 
this study are determined through expert knowledge. As part of our future work, we aim to develop 
algorithms for automatic identification of optimal partitioning points and to further evaluate the proposed 
approach on more complex systems. 
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