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ABSTRACT

This article presents the development of a Digital Twin (DT)-based tool for optimizing scheduling in solid
bulk export port terminals. The approach integrates agent-based simulation with the Ant Colony System
(ACS) metaheuristic to efficiently plan railway unloading, stockyard storage, and maritime shipping. The
model interacts with operational data, anticipating issues and aiding decision-making. Validation was
performed using real data from a port terminal in Brazil, yielding compatible results and reducing port
stay duration. Tests were based on a Baseline Scenario, aligned with a mineral export terminal, for ACS
parameter calibration, along with three additional scenarios: direct shipment, preventive maintenance, and
a simultaneous route from stockyard to ships. This study highlights DT’s potential to modernize port
operations, offering practical support in large-scale logistics environments.

1 INTRODUCTION

The increasing digitalization of industries has driven the development of advanced technologies to optimize
complex processes. Among these, Digital Twin (DT) stands out, enabling real-time monitoring, simulation,
and optimization. The origin of the DT concept was first used in NASA’s Apollo project, where twin
spacecraft were created on the ground for training and critical scenario simulation (van der Valk et al.
2020). This concept evolved and was formally introduced by Michael Grieves in 2002 in the context of
product lifecycle management (Grieves 2016). DT creates a highly detailed virtual representation of a
physical system, integrating real-world data for analysis and informed decision-making.

DT applications span various fields, including manufacturing, healthcare, energy, and logistics. In
industrial settings, it enhances failure prediction, operational efficiency, and cost reduction. In logistics,
particularly in supply chain and transportation management, DT improves resource coordination and
workflow optimization (Tao et al. 2019).

Bulk commodity exports rely on complex logistics networks connecting production sites to ports. This
chain includes transportation, storage, and port operations, where inefficiencies and fragmented management
increase costs. Currently, there are no commercial tools that focus on optimizing bulk transport networks
in an integrated manner.

This DT-based tool is intended to support decision-making and optimize the short-and medium-term
scheduling of dispatch, unloading, storage, and loading of bulk cargo at port terminals. The approach
adopted for the development of this tool combines computational simulation and optimization algorithms.
Optimization and simulation are two of the most widely used techniques worldwide to analyze complex
systems, regardless of their existing or non-existing nature (Law 2015). The tool will use real-time data
to update the digital simulation of the system, enabling dynamic adjustments in the scheduling of logistics
operations. Additionally, scheduling strategies will be evaluated to maximize the efficient use of available
resources, minimize operational costs, and improve the predictability of port operations. Therefore, the
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research question guiding this study is: Can a DT-based tool optimize the scheduling of dispatch, transport,
storage, and loading operations for bulk cargo at port terminals?

This article is structured as follows. Section 2 reviews related works on DT applications in port
operations. Section 3 describes the case study and methodology, including simulation and optimization
techniques. Section 4 discusses expected results and DT’s impact on port logistics. Finally, Section 5
presents conclusions and future research directions.

2 RELATED WORK

This section presents studies that support the development of digital models and DT-based solutions. The
goal is to improve the simulation and optimization of processes at port terminals. These studies demonstrate
how these approaches enhance scheduling, transportation, storage, and loading operations for bulk cargo.
As a result, port operations become more efficient and reliable. Table 1 summarizes the aspects covered in
each study, indicating whether they considered Port Operation (Port Op.), Berth (B), Yard (Y), Ship (N),
and Optimization (OPT).

(Ouhaman et al. 2020) address storage space allocation in solid bulk export terminals, emphasizing
material segregation to prevent contamination and reduce delays. They propose a MILP model and a
heuristic to manage large datasets efficiently. Similarly, (Lopes et al. 2023) optimize stockyard and port
operations in iron ore chains using deterministic simulation and metaheuristics to reduce ship berthing
times. Their approach supports real-time decision-making and aligns with Industry 4.0 goals.

DT technology technologies are emerging as key tools for improving energy efficiency and reducing
emissions in ports (dos Santos et al. 2025). In manufacturing and logistics, DTs support better decisions
through simulation and process optimization (Lu et al. 2020).

Extending this concept to seaports, (Neugebauer et al. 2024) explore DTs for resource optimization
(e.g., cranes, berths, AGVs), highlighting their use in monitoring, simulation, and predictive maintenance,
while also noting the need for standardized models. At the Port of Santos, a DT project simulates the
navigation channel and infrastructure to support predictive monitoring and operational efficiency (Portos
e Navios 2025).

In line with this, (Gao et al. 2022) propose a DT-based scheduling system for stockyards, optimizing
storage, ASCs, and AGVs. Case studies show that ASC reprogramming improves responsiveness to cargo
variability, while sensitivity analyses guide system configuration.

Building on these insights, (Gao et al. 2023) focus on real-time congestion monitoring and proactive
management in terminals. Together, these studies underscore DT’s role in enhancing port efficiency,
sustainability, and alignment with smart port initiatives.

Table 1: Summary of Bibliographic References by Author.

Port Op. | Approach

Author | Research objective

™

S | DT| OPT

x| =

(Wang et al. 2018) | Column Generation-based heuristic with different solution strategies and apply | X X
dual stabilization techniques to accelerate the algorithm to solve integrated

optimization problem

(Ouhaman et al. 2020) | Formulated the storage allocation problem at an export bulk terminal as a X X
MILP and solve large scale data sets with a heuristic method

(VanDerHorn and | Provide a consolidated definition of a DT, and presented a case study to explore X
Mahadevan 2021) | the process of DT, the key design decisions and implementation strategies

(Yao et al. 2021) | Focus on the needs of port digitalization and integrated management, includ- X
ing infrastructure development, data integration, information modeling, and
platform expansion.

(Xu 2021) | Establish an agent-based intelligent port ship dispatch model to solve planning X
and dispatching ship operations.

3047



Neyra, Silva, Netto, and Medina

Author

Research objective

Port Op.

Approach

DT| OPT

(Gao et al. 2022)

Optimization of key resources—storage area, ASCs, and AGVs—demonstrates
how DT implementation can bridge the gap between optimization results and
actual terminal operations.

| =

X

(Gao et al. 2023)

Minimizes the total energy consumption of completing all tasks, and the Q-
learning algorithm is adapted to optimize a solution based on the operating
data from the ACT DT system.

(Bouzekri et al. 2023)

Proposed Integer Programming Model for the integrated tactical Laycan Allo-
cation Problem and the dynamic hybrid case of the operational Berth Allocation
Problem

(Lopes et al. 2023)

Use deterministic simulation and a meta-heuristic algorithm to address the
stockyard—port planning problem, with the aim of reducing the time that ships
spend in berths. The stockyard-port terminal is represented by a graph and
VND meta-heuristic is used to improve the initial solution

(Lv 2023)

Provide a systematic overview of DT for the intelligent development of indus-
trial manufacting, automated real-time process, speeding up error detection
and correction. Improvement and cost reductions to industrial manufacturing.

(Neugebauer et al. 2023)

The paper examines digital twin adoption in seaports, highlighting use cases,
challenges, and insights from global examples, including the EUROGATE
terminal in Hamburg.

(Neugebauer et al. 2024)

Use DT in seaports, focusing on optimizing resource allocation, including
cranes, berths, and AGVs. Additionally, it identifies gaps in research, high-
lighting the need to develop more accurate models and establish common
standards for their efficient implementation.

(Jiang et al. 2024)

Built a multi-objective optimization model for the global scheduling of water-
ways, berths, and restricted yards in bulk cargo ports in low-carbon environ-
ments, and the feasibility of combining this model with onshore scheduling
is studied.

(Zhen et al. 2024)

Propose to optimize the berth planning problem by considering berth allocation,
quay crane assignment, fairway traffic control and berthing safety requirements.

(Lin et al. 2024)

Uses container visualization technology to create a hierarchical model through
the search, matching, and integration of container images, along with a math-
ematical optimization model for resource management and scheduling.

(Li et al. 2024)

Introduces a DT-driven proactive-reactive scheduling system to address un-
certainties (e.g., operating time fluctuations, equipment failures, IGV route
conflicts) and provide transparent operational information visualization.

(Li et al. 2025)

Integrates graph structure for yard mapping with MIP and reinforcement
learning, using Dueling and Double Deep Q-Networks to optimize performance
and accelerate learning, improving solution efficiency.

(Cao et al. 2025)

Introduce a DT based Automated Container Terminals data management system
that consists of 4 components: data storage, data interaction, data visualization
and data security.

(Li et al. 2025)

MILP model solving integrated load reduction, berth shifting, and allocation
problems, using an innovative hybrid meta-heuristic algorithm (AGA-ASA)
solver.

(Wang et al. 2025)

Propose a stockyard allocation model to minimize total costs, including delay
penalties and electricity and water costs for spraying operations.

This paper

Propose to optimize the scheduling of dispatch, transport, storage and loading
operation for bulk cargo in port terminals.

3 USE CASE: PORT

This section introduces the real-world use case of a solid bulk port terminal and presents the proposed
approach to address its scheduling challenges. We describe the terminal’s operational context, formalize
the scheduling problem, and propose a hybrid solution that combines a constructive heuristic, an ACS
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algorithm, and a simulation model. Finally, we explain how these components are integrated into a DT for
decision support.

3.1 Data Sources

The simulated port terminal operates by receiving cargo via railway and exporting it by sea. The flow of
materials and its interface with external systems follow a well-defined structure, encompassing three main
operational flows. The railway unloading flow involves receiving and stacking ore. The maritime loading
flow consists of recovering and loading ore onto ships. Direct loading flow allows cargo to be unloaded
from railcars and sent directly to the ship loader, which may or may not occur simultaneously with the
recovery of cargo from stockyards.

To enable these operations, the terminal has an infrastructure composed of three stockyards designated
for ore (stockyards 1, 2, and 3), which are divided into stacks. Additionally, it has two stacker-reclaimers
(SR-1 and SR-2), two stackers (S-1 and S-2), and one reclaimer (R-4). Railway unloading is carried out
by three car dumpers (CD-1, CD-2, and CD-3). Maritime loading is performed by a ship loader (SL-1).
The structure is completed with a berth for loading the ships. Figure 1 represents this port terminal.

f OVERVIEW of the YARDS \
|<—— total yardarea ——> |

AT,
l"’ rﬁ" “' slle I

7
z -~
w540 ‘; R 1
2 o~ e Stockyard 1 4 1 EEyard division unit: yard mark p
(][] = L r_ISR-2 1 I R ]
CHLH LR —1 (|
! -
Stockyard2 " : g - O
o) iy - 1
(=] R-411 ?

i
ki
Stockyard 3 s-2

STOCKYARD
Bl TRANSFERSTATION s uEes oo
\a  RAILINBOUND
—

MARITIME
r'_-l OUTBOUND

e
L~ STACKER RECLAIMER

EE= sHip LOADER

Figure 1: Representation of the Simulated Port Terminal.

The input data was constructed with values and characteristics compatible with this port terminal. The
operational routes for executing these flows will be input parameters for the model and can be configured
through the tool’s interface, along with information such as export demand and the capacity/productivity
of machines, considering effective operational rates, as well as preventive, corrective, and operational
downtime.

3.2 Conceptual Model

The port terminal performs the processes of railway unloading, maritime loading, and direct loading. This
terminal is based on two real Brazilian ore export terminals, where the cargo arrives by train, is unloaded
at the stockyard, and, when the time comes, is loaded onto ships.

The railway unloading is the first process in which trains arrive at the terminal and are unloaded at the
tipplers. The unloaded ore is then transported to the stockyard, where it can be either piled or sent directly
to the ships. The train arrival schedule takes into account the arrival time in the port, the time required for
unloading operations, the allocation of stacks in the stockyard, and the routes used to transfer the cargo.
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During stacking, the stacks are formed on the basis of the ore’s characteristics, such as granulometry and
moisture content. The movement of cargo within the stockyard is managed to serve both the ships and
direct loading.

The storage scheduling of the cargo, which involves forming the stacks and their use over time, includes:
the start and end markers of each stack, the material stored, the capacity of each stack, the identification
of the rail lot that originated the cargo (including the stacking date) and the determination of the maritime
lot to which the cargo is destined (including the scheduled recovery date). The allocation of stacks must
also consider that the more different types of products there are, the more space is required between the
stacks, due to the spacing required for product compatibility.

The maritime loading process begins with the arrival of the ships at the terminal and docking at the
berths. Ships are generated according to the arriving trains, that is, the type of product being transported.
The available ore stacks in the stockyard are selected based on proximity, priority order, and availability
of transport routes. The cargo is then transferred to the ship until the loading process is complete and the
ship begins the undocking process. The ship loading queue is organized efficiently, reserving cargo in the
stockyard to ensure that each ship has the material needed for its operation.

The maritime loading schedule defines the allocation of stockyard stacks for each vessel and includes
several key decision variables, such as the start and end times of loading activities, the total volume of cargo
to be handled, the specific stacks assigned to serve each ship, and the routes selected for cargo transfer,
that is, the sequence of equipment to be used, including conveyors and reclaimers. These variables will
be determined by the optimization process and depend on the dynamic interaction between ship demand,
resource availability, and operational constraints. The objective function guiding this model is to minimize
the total vessel stay time in the port, measured from the moment of berthing to the time of departure upon
the completion of loading operations. In addition, the operating rates of the equipment, such as wagon
tipplers and conveyor belts, can be dynamically adjusted based on current operating conditions and the
characteristics of the material being handled.

As a particular case, direct loading refers to the process in which the ore is transferred directly from
the train to the ship, bypassing intermediate storage at the stockyard. When direct loading is allowed,
the model prioritizes the unloading of trains carrying the appropriate product and coordinates this activity
concurrently with the stockyard loading process.

3.3 Optimization

Given the inherent complexity of the port planning problem, which involves the integrated coordination
of train unloading, stockyard allocation, and ship loading operations, we propose a hybrid optimization
approach based on a constructive heuristic followed by refinement using the Ant Colony System (ACS)
metaheuristic. The core objective is to minimize the total stay time of ships at the terminal, which includes
waiting and loading times. This metric directly impacts demurrage costs and the overall efficiency of port
operations. The scheduling must consider: a set of ships, each with a required cargo demand and time
window; a set of trains, each carrying a specific product type, arriving over time; a stockyard, partitioned
into stacks where products are temporarily stored; a limited number of wagon tipplers (used for unloading
trains) and ship loaders (used for loading ships). An initial feasible solution is generated using a greedy
constructive heuristic:

Ships are ordered for scheduling.

For each ship, the algorithm checks to see if there is sufficient cargo in existing stacks.

If not, it identifies the first unloaded train capable of supplying the missing cargo.

It then assigns: a route (from train to stack), a stack (existing or new), start and end times for
unloading.

5. Once the ship’s demand is fulfilled, the ship is scheduled for loading.

AP
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6. The total time associated with the solution, considering unloading and loading, is computed and
serves as the initial objective value.

To improve this initial solution, the ACS is applied. In the port operations scheduling problem, each
ant constructs a complete schedule, alternating between

* Unloading task: The ant selects the pair <route, stack>, where a stack can be an existing one or a
yard region where a new stack will be created.

* Loading task: The ant selects the pair <route, stack> that serves the ship. In this case, all stacks
are preexisting.

At each construction step, the ants probabilistically choose their next movement based on pheromone
trails and heuristic attractiveness. The transition probability from location i to location j for ant k is defined
as:

rﬁnﬁ P
) W, if (i, ) ¢ tabuy,
A iv'liy 1
Pij ivétabuy )
0, otherwise.

where 7;; is the amount of pheromone associated with the movement from i to j, 7;; is the attractiveness
associated with this movement (in this case chosen as the inverse of the expected completion time of the
respective task), and @ and f3 are user-defined parameters that balance the importance of pheromone in
relation to attractiveness.

Each ant, after each step in constructing the solution, updates the pheromone of the last chosen < i, j >
pair using 7;; = (1 — ¢)7;; + ¢Tp, where 0 < ¢ < 1 is the pheromone decay coefficient, and 1 is the initial
amount of pheromone.

When locally reducing the pheromone of a previously visited location, the objective is to stimulate the
following ants of the colony to search for alternative routes, exploring alternative solutions. At the end
of each iteration, the pheromone is updated for all paths by a single ant, which could be the best of the
iteration or the best so far, making the equation

oo (1-p)7; +pﬁ, if (i, j) belongs to the best solution,
Y Tij, otherwise.

where L. represents the total stay time of the best solution. Thus, the more ants choose a particular
movement, the higher the probability that in the next iteration that movement will be chosen. The ACS
metaheuristic is particularly suitable for this problem, due to its ability to balance intensification (exploiting
good solutions) and diversification (exploring alternative schedules). By updating the pheromone trail both
locally and globally, the algorithm avoids premature convergence and encourages the discovery of improved
scheduling combinations.

This problem solving technique has been shown to be more efficient in finding the solution, demonstrating
the ability to improve the solution within a feasible computational time (Dorigo et al. 2006).

In summary (see Figure 2), the ants iteratively construct alternative schedules—loading or unloading
tasks—updating the routes/solutions that generate the best total stay time (the stay time in loading or unloading
or even a weighting between the two parameters) up to the moment. The ACS metaheuristic efficiently
supports the search for improved port operation plans by minimizing demurrage costs (fees associated with
the waiting time of ships at the port) and optimizing resource utilization, such as equipment and storage
space.
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Figure 2: Port Operations Scheduler.

3.4 Simulation Model

The simulation model was developed in AnyLogic Professional software, version 8.9.3, chosen for its
features. AnyLogic allows for hybrid simulation, combining discrete events, dynamic systems, and agent-
based simulation in a single model. It also allows for exporting the model as an executable file and facilitates
integration with the developed optimizer due to its communication library with Python programs.

The simulator was based on agents representative of the terminal (Borshchev and Filippov 2004).
The model includes the following agents: Train, Ship, Yard, Stack, Route, Equipment and Berth. The
agent-based simulation approach has two advantages: flexibility in representing different configurations of
the number and layout of equipment, stacks, yards, among others; and ease of evolutionary maintenance
of the model. For example, if it is necessary to implement equipment breakdowns, this can be done
directly in the states of the Equipment agent without causing a significant impact on the processes already
implemented.

3.5 Digital Twin Integration

A DT is a virtual representation of a physical system that allows the monitoring, simulation and optimization
of real-world operations (Tao et al. 2019). In the context of ore export terminals, the DT enables testing of
scheduling strategies in a virtual environment before they are applied to the real system. This contributes
to more informed and robust decision making.

In the optimization process, an ACS-based heuristic was applied to plan the various activities of the
terminal. The simulation phase follows the optimization and is essential to validate the operational plan
obtained by the heuristic. The simulation provides a detailed view of the operation, allowing risk analysis,
real-time visualization of operations, and comparison of different scenarios. Additionally, the tool generates
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an analysis report with the main problems encountered during the simulation, allowing the user to identify
opportunities for system improvement. Figure 3 illustrates the structure of the proposed DT, showing the
interaction between the optimization engine and the simulation environment.
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Figure 3: Integration of optimization and simulation components within the Digital Twin.
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4 RESULTS

The tool is highly customizable, so, for example, solutions can be sought that only improve the stay time
in loading or unloading, or even the weighting between the two parameters. As results, in addition to the
fully optimized operations schedule, with times and descriptions of resources and routes used, the tool
provides results in a graphical and visual format, such as the timelines for loading and routes. Various
tests were conducted on the simulator not only to verify the quality of the response but also to identify the
best input parameters for the metaheuristic (number of ants, attractiveness exponents, etc.).

4.1 Simulation Verification

The validation stage in a simulation project is crucial, as it aims to eliminate errors in the simulator
that could compromise its use (verification) and ensure that the results obtained are comparable to the
real system (validation). This process begins with the analysis of consistent data from the real system,
from which parameters such as process times, distributions, and representative Key Performance Indicators
(KPIs) are extracted. The main goal is that, by inputting real data into the model, the simulator’s outputs
are compatible with the KPIs observed in the real system.

For the simulation, real operational data from the studied bulk port terminal were used, including
routes, equipment, and the breakdown and blockage curves obtained from data analysis. The validation and
calibration of the model considered the ships serviced between January and the following January, with the
"ship queue" lasting 13 months, though the simulation was limited to 12 months, ensuring that rail batches
were generated until the last day of the year. In the model, trains are automatically generated during the
simulation, considering parameters such as the number of wagons, the weight per wagon for each product,
and the maximum number of daily trains per product. During the analysis year, a long period of preventive
maintenance for the VV-1 was recorded as corrective maintenance in the system. For simulation purposes,
this downtime was treated as preventive, with the outputs adapted to reflect the corrective values, ensuring
consistency with operational reports.

The input data for validating the scenario (Table 2) included information on the dates and durations of
preventive maintenance carried out throughout the year, operational stoppages due to equipment breakdowns,
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with their probabilistic distributions, the effective loading rates by operation type and material, as well as
unloading rates by equipment and operation. Data on ship arrivals and the routes adopted for transport
were also considered. Additionally, the capacities and configurations of the yards and stacks were analyzed,
considering the operational and logistical aspects for executing the loading process.

Table 2: Input data for validation.

Input Parameter  Value Input Parameter Value

Period of Analyse (months) 12 Train Capacity (t) 13,974
Materials 4 Nominal Rate (tph) ER-1 7,100

Stockyard 3 Nominal Rate (tph) ER-2 7,100

Total Capacity of yards (t) 913,500 Nominal Rate (tph) E-3 8,800
Berth 1 Nominal Rate (tph) E-4 10,560

Reclaimers 3 Nominal Rate (tph) R-4 8,800

Ships 167 Nominal Rate (tph) VVs 8,800

Types of ships 2 Nominal Rate (tph) CN-1 14,000

As a validation criterion, representative KPIs for the port were considered, such as:

* Loading: total cargo loaded, cargo loaded by direct loading, effective loading rate, productivity,
utilization, preventive maintenance (total hours in the year), corrective maintenance (total hours in
the year per turner), total effective operational hours in the year, hours of operational blockages in
the year.

* Unloading: total cargo unloaded, effective unloading rate, productivity, utilization, preventive
maintenance (total hours in the year), corrective maintenance, total effective operational hours in
the year, and hours of operational blockages in the year.

In this process, the objective was to minimize the deviation between the real values and the simulated
values for each selected KPI. As a criterion, a maximum deviation of 5% was established: d = W <
5%.

In Table 3, a comparison is presented between the simulated and real values for the loading and unloading
KPIs of the port terminal during validation. The table includes the following columns: ’Simulated’, which
shows the values generated by the simulation; 'Real’, which presents the values observed at the port
terminal; *Abs. Dif.” (Absolute Difference), which calculates the difference between the simulated and
real values; and ’Rel. Dif. (%)’ (Relative Difference), which expresses the difference as a percentage of
the real value.

Table 3: Validation between the simulated and real values.

Parameter Simulated Real Dif. Abs. Dif. Rel. (%)
Loading [Mtpy] 28.02 28.05 -0.03 0.11
Direct Loading [Mtpy] 19.06 18.34 0.72 -3.93
% Effective Rate [tph]  6,425.89 6,463 -37.11 0.57
E Productivity [%] 36.51 36.69 -0.18 0.49
é Utilization [%] 66.41 67.27 -0.86 1.28
— Preventive [hpy] 775.62 775.62 0.00 0.00
Corrective [hpy]  1,417.44  1,408.58 8.86 -0.63
Operationals [hpy] 604.48 612.00 -7.52 1.23
Parameter Simulated Real Abs. Dif. Rel. Dif. (%)
Unloading [Mtpy] 28.08 28.10 -0.02 0.07
% Effective Rate [tph]  4,855.15  4,848.41 6.74 -0.14
a Productivity [%] 55.17 55.10 0.07 -0.13
g Utilization [%] 31.83 31.82 0.01 -0.03
E Preventive [hpy]  1,640.17  1,689.57  -49.40 2.92
=) Corrective [hpy] 6,471.44  6,356.24  115.20 -1.81
Operationals [hpy] ~ 473.00 468.79 4.21 -0.90

3054



Neyra, Silva, Netto, and Medina

In general, the differences between the simulated and real values are small, with most of the relative
deviations being below 1%. The model validation was considered successful, as all the relative differences
between the simulated and real data are within the 5% limit established as the acceptance criterion. This
confirms that the model works correctly and produces results that reflect the reality of the system, ensuring
its reliability for analysis and predictions of the performance of the port terminal. Since the terminal
operates to maximize occupancy and, therefore, takes advantage of the formation of long queues, this
indicator was not considered for validation (the longer the queue, the better for the terminal).

4.2 Base Scenario

A base scenario was constructed, more appropriate to the Brazilian port reality, and tested with the heuristic
method. This scenario includes: 19 ships (14 ships loading 1 product and 5 ships loading 2 different
products) and 231 trains; Planning horizon: 30 days; 15 different products; 17 stacks at the beginning of
planning, distributed across 3 yards; 13 possible cargo transfer routes, 20 unloading routes, 8 loading routes,
and 8 direct loading routes (or ’train on board’), formed by the composition of 30 available equipment.
This scenario was used to calibrate the optimal parameters of the ACS metaheuristic and to assess the
effectiveness of the approach in minimizing both the total queue time and the number of ships awaiting
service. The evaluation was carried out through a series of experiments under the following scenarios:

e ID: O - Base Scenario;

e ID: 1 - Previous scenario + direct loading (without passing through the yard);

e ID: 2 - Previous scenario + preventive maintenance of the ship loader (CN) for 3 days;

e ID: 3 - Previous scenario + possibility of more than one simultaneous route from the yard to the
ship (two reclaimers operating simultaneously from two stacks, which means an increase in the
loading rate).

Table 4: Consolidated Results.

Scenario 0 1 2 3
Initial Solution (h) 199,6 175,0 228,1 116,3
Best Solution 194,3 160,0 215,0 84,8
Estimated Demurrage Reduction (USD) 130.750,00 375.870,00 325.425,44 788.969,36
Total time in Queue Ships (h) 158.,8 123,7 174,3 59,5
Ships Serviced 19 19 19 19
Average Queue (days/ship) 8.3 6,5 9,2 3,1
Unloaded Cargo (Mt) 3,19 3,19 3,19 3,19
Loaded Cargo (Mt) 3,12 3,12 3,12 3,12
Total Processing Time (s) 340 287 289 271

In the base scenario, the heuristic method generated a feasible operational plan in just 0.1 seconds, resulting
in a total ship stay time of 199.6 hours. After applying the improvement procedure, a better solution
was obtained, reducing the total stay time to 194.3 hours—equivalent to a reduction of approximately 5.2
days in ship queue time. This reduction is operationally significant, especially when considering a daily
demurrage cost of USD 25,000. The optimization process required 340 seconds of computation, executed
on a Nitro AN515-51 laptop (Intel Core i7-7700HQ CPU @ 2.80GHz, 16.0GB RAM, Windows 10 x64,
Python 3.8).

5 CONCLUSIONS AND FUTURE WORKS

This study demonstrated the application of a DT-based tool to optimize the unloading, transportation,
storage, and loading operations of bulk cargo at port terminals. The combination of agent-based simulation
and the Ant Colony System metaheuristic allowed for optimized results in viable computational times,
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resulting in a reduction in the ships’ stay time and, consequently, the estimated reduction in demurrage.
Additionally, there was an improvement in the use of logistic resources, such as equipment and storage
yards.

The integration of the model with real operational data enabled adjustments and improvements in the
scheduling of the bulk port terminal, providing relevant support for decision-making. The tool demonstrated
the ability to optimize cargo flow and increase the overall efficiency of the operations performed. Thus, the
research answered the proposed question by confirming that the use of DT, which combines optimization
and simulation methods, generates benefits for decision making and operational performance in complex
logistic environments.

As future work, it is proposed to incorporate new aspects, such as improving ship arrivals, considering
the Transportable Moisture Limit (TML) of ores, and unplanned equipment unavailability, allowing for
a more realistic modeling of port operations. Furthermore, the implementation and integration of other
techniques, such as Greedy Randomized Adaptive Search Procedures (GRASP) and machine learning, are
suggested, aiming for more effective strategies for dynamic and complex scenarios.
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