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ABSTRACT

We propose anovel algorithm, Nested Denoising Diffusion Sampling (NDDS), for solving deterministic global
optimization problems where the objective function is a black box—unknown, possibly non-differentiable,
and expensive to evaluate. NDDS addresses this challenge by leveraging conditional diffusion models to
efficiently approximate the evolving solution distribution without incurring the cost of extensive function
evaluations. Unlike existing diffusion-based optimization methods that operate in offline settings and rely
on manually specified conditioning variables, NDDS systematically generates these conditioning variables
through a statistically principled mechanism. In addition, we introduce a data reweighting strategy to
address the distribution mismatch between the training data and the target sampling distribution. Numerical
experiments demonstrate that NDDS consistently outperforms the Extended Cross-Entropy (CE) method
under the same function evaluation budget, particularly in high-dimensional settings.

1 INTRODUCTION

We consider the following deterministic global optimization problem:

x* € argmax H (x),
xeZ

where H (x) is an unknown deterministic objective function that lacks an explicit form and is expensive to
evaluate. Such problems commonly arise in domains such as hyperparameter tuning in machine learning,
engineering design, and simulation optimization. This class of problems is often referred to as black-box
optimization (BBO). Traditional gradient-based methods are typically infeasible in these settings due to
the absence of analytical derivatives, necessitating the use of sampling-based strategies with well-designed
exploration and exploitation trade-off mechanism for efficient optimization.

A vast body of literature exists on global optimization methods, including but not limited to metamodel-
based approaches such as Bayesian optimization (Mockus 2005; Frazier 2018) and radial basis function
methods (Buhmann 2000); metaheuristic methods such as genetic algorithms (Reed, Minsker, and Goldberg
2000), simulated annealing (Chibante 2010; Zhou and Chen 2013), and COMPASS (Xu et al. 2010); and
randomized algorithms such as estimation of distribution algorithms (EDAs) in evolutionary computing
(Lozano 2006), the cross-entropy (CE) method (Kroese et al. 2006), model reference adaptive search
(MRAS) (Hu et al. 2007), gradient-based stochastic adaptive search (GASS) (Zhou and Hu 2014), and
particle filtering for optimization (PFO) (Zhou et al. 2013). Most of these methods rely on resampling or
distribution estimation techniques. This motivates us to adopt diffusion models, which offer powerful data
generation capabilities that can enhance optimization efficiency.

As an illustrative example, in this work we focus on a class of randomized algorithms—including
EDAs, CE, MRAS, GASS, and PFO, which iteratively update a probability distribution over potential
solutions, gradually guiding it towards the optimal solution. This updating process is typically expressed
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: Pry1(x) = Sk(H (x)) pi(x)
T T SCHE) P dr”

where pi(x) is the estimated distribution of the optimal solution x* at iteration k, and Si(-) is a positive,
increasing function ensuring the positivity of p;. 1. By progressively increasing the weight of solutions with
higher objective values, the sequence { py(x)} converges to a Dirac measure centered at the optimal solution,
assuming uniqueness of a global optimal solution. A key challenge in distribution-based optimization methods
is that py4| cannot be computed directly. A common approach to this challenge is Monte Carlo estimation,
which requires evaluating multiple samples drawn from the current distribution estimate. However, as
k increases, the number of required evaluations also grows to mitigate Monte Carlo estimation error,
making these methods computationally expensive due to the high cost of evaluating the black-box objective
function. In this work, we propose a novel method without expensive function evaluations by leveraging
on conditional diffusion models.

Diffusion models, well known as a GenAl (generative artificial intelligence) method, was first introduced
by (Sohl-Dickstein et al. 2015). They are a class of generative models that iteratively refine noisy samples to
generate data, through a so-called denoising diffusion process learned from the data. Conditional diffusion
models (Dhariwal and Nichol 2021; Ho and Salimans 2022) extend this approach by incorporating auxiliary
information to guide the generation process. Diffusion models are commonly-used in image processing,
i.e. generate image samples. Not many works have explored utilizing diffusion models in generating data
samples to improve sample efficiency. In our optimization setting, we utilize a conditional diffusion model
to generate solutions corresponding to a specified objective value, where the conditional diffusion model
implicitly learns the inverse mapping from the objective value to the solutions. Instead of sampling directly
from the current estimated distribution, we first draw an intermediate label y from a learned distribution
and then generate solutions via the conditional diffusion model using y as a conditioning variable. Since
the denoising diffusion is nested within the randomly generated label, we call this sampling procedure as
nested denoising diffusion sampling (NDDS). Notably, both the label distribution and the diffusion model
are trained on previously evaluated solutions, this approach avoids costly extensive additional function
evaluations when estimating the updated sampling distribution pj.

Recent works (Krishnamoorthy et al. 2023; Li et al. 2024) have explored diffusion models for
offline black-box optimization, where optimization is performed on a fixed dataset without further function
evaluations. In contrast, we consider an online setting where the optimizer iteratively interacts with the
objective function to refine the solution, enabling more adaptive and efficient exploration. Moreover, to the
best of our knowledge, the proposed NDDS method is the first to systematically generate the conditioning
variable y for the denoising process, as opposed to the aforementioned existing methods (Krishnamoorthy
et al. 2023; Li et al. 2024), where y is manually chosen or heuristically determined.

2 PRELIMINARIES
2.1 Problem Formulation

In this section, we present the formal mathematical formulation of the problem. We aim to solve the
following problem:

ilel?.?)f(H(x), ()

where H(x) is a deterministic function and .2~ C RY is the set of solutions. We make the following
assumptions for problem (1).

Assumption 1

1. Z is a compact set.
2. There exists a unique x* € argmax,e 2~ H(x).
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Assumption 1.1 implies the feasible domain is a bounded set, which generally holds in practice.
Assumption 1.2 requires the existence of a unique global optimal solution for the ease of demonstration of
the algorithm. Note that, our algorithm is also applicable for multi-modal cases. The framework presented
in this work can be applied when multiple optimal solutions exist. Here we do not assume any structure
of H(x) such as convexity, and H(x) may contain multiple local optimal solutions.

2.2 Sequential Distribution Estimate for Optimal Solution

As discussed in Section 1, a class of algorithms such as EDAs, CE, MRAS and PFO iteratively update
a probability distribution, which gradually concentrates on the optimal solution. Let {pi(x)};>, denote a
sequence of distributions where py(x) is the distribution estimate for optimal solution at iteration k. We
rewrite the update rule for py;(x) as follows:

Si(H (x)) pi (%)

Prr1(x) = fxxegsk(H(x/))Pk(x/)dxl. )

where Si(y) is a positive and strictly increasing function in R. Notably, since pyy1(x) o< Sg(H (x))pi(x), for

x',x € 2" such that H(x') > H(x), we have /= ‘I(()i)) = “?S’;((Z(()i)))) 2 i(()i)) > i(()i)) . That is, promising solutions
with a higher function value will be assigned a (relatively) larger density in the update process. Rigorous
study of convergence of such distribution update (2) has been studied in (Hu et al. 2007; Zhou et al. 2013).
It was proved that under mild conditions, the sequence {py(x)} converge to the Dirac measure & (x —x*).

However, (2) cannot be directly calculated. Previous approaches such as CE, MRAS, PFO, etc, used
Monte Carlo estimation plus some density estimation technique to ease the computation. One possibly

simplest estimator is

" Sk(H (x)) 6 (x — x;
Piy1(x) == Liz i Sil ii)) k xk>7

where x};,i =1,...,n is drawn from p; and &(-) is the Dirac measure centered at origin. Notably, the
function value H (x;) for each sampled solution xj, needs to be evaluated, which is very costly. Moreover, to
ensure convergence of the algorithm, it is required in (Hu et al. 2007) that the sample size n; goes to infinity
as k — oo, further reducing sample efficiency and making such methods impractical in high-cost settings.
To address this issue, we leverage advances in conditional diffusion models, which allow us to estimate
the updated distribution without excessive function evaluations. We introduce the relevant background in
the following section.

2.3 Denoising Diffusion Probabilistic Models (DDPM) and Conditional Diffusion Models

In this section, we introduce some basic knowledge about Denoising Diffusion Probabilistic Models (DDPM),
which we will later utilize to develop an efficient way of estimating py.; in (2). DDPMs ((Sohl-Dickstein
et al. 2015; Ho et al. 2020)) are a class of generative models that learn to synthesize complex data
distributions through a two-step process: a forward diffusion process that gradually corrupts data into
noise and a backward process that reconstructs the original data distribution by iteratively denoising
samples.

Forward Diffusion Process: Given a data sample xo ~ g(xo), the forward process iteratively adds Gaussian
noise over 7' time steps:

‘I(xt|xt—1) = =/V(xt§ V1 —tht—laﬁtl)a 3)

where f, is a variance schedule controlling the noise level at each step z. After sufficient steps, xr
approximates an isotropic Gaussian distribution.

Backward Denoising Process: To generate new samples, DDPM learns a parameterized denoising function
Py(x:—1]x;) that reverses the diffusion process:

Gy (Xe—1]x0) = A (115 Loy (x1,2), Xy (32,)). “)
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The model is trained to predict the noise component using a neural network, typically a U-Net architecture.
Conditional Diffusion Models: Conditional diffusion models (Dhariwal and Nichol 2021; Ho and Salimans
2022) extend DDPM by incorporating auxiliary information y (e.g., class labels) to guide the generative
process. The conditional backward process is formulated as:

QW(XI*I ‘xtay) = ‘/V(xlfl;.ulll(xtayat)v):ll/(xtayvt))» (5)

We can see from (4) to (5) the only difference from DDPM to conditional diffusion model is the inclusion
of y, where y influences the learned denoising function. Such models enable controlled generation by
guiding the sampling process toward desired outputs. In this work, we propose a nested denoising diffusion
sampling method (NDDS), which leverages conditional diffusion models to generate promising candidate
solutions for optimization by conditioning on the objective value drawn from a learned distribution.

3 NESTED DENOISING DIFFUSION SAMPLING

In this section, we present the NDDS method, which we will utilize to directly draw samples that follow
the post-update distribution pg. ;. For notational simplicity, in the remainder of the section, we simply
assume Sy (H(x)) = H(x) and H(x) > 0. Notably, this does not affect the generalization of NDDS.

To start with, suppose we are given a labeled data set D = {(x;,y;) : y; = H(x;)}).; in hand, which will
be used to train a conditional DDPM. We make the following assumption.

Assumption 2 {(x;,y;)}", are independent and identically distributed (i.i.d.) and follow a joint distribution
axy ().

Furthermore, let gx(-) and gy (-) denote the marginal distribution for x; and y;, respectively. Also, let
q(x]y) denote the conditional distribution of x given y, and ¢g(y|x) = §(y — H(x)) denote the conditional
distribution of y given x.

Let .V denote the conditional DDPM with parameter y trained from data set D, and Gy (x|y) denote
the distribution of the generated samples x by .Y conditioning on a specific y. Recall .ZVY is trained
such that gy (x|y) = g(x|y). NDDS generate a sample by taking the following two steps.

» Step 1. Draw a sample y with density proportional to y- gy(y).
+ Step 2. Generate x ~ gy (x[y) via the denoising process of .# ¥, conditioning on y from Step 1.

Compared to the classic conditional denoising, NDDS uses a randomly generated conditioning variable y.
The reason is summarized in the following theorem.

Theorem 1 Suppose conditional DDPM ./ is perfectly trained, i.e., gy (x[y) = q(x]y),V(x,y). Then, the
sample x generated by NDDS follows a distribution whose density is proportional to H(x)gx (x).

Proof.  Let f(x) denote the density of x generated by NDDS. We have
1@ e [v-arateay
= /} Y- qx.y(x,y)dy
= [ y-ax(x)gq(ylx)dy

y

= gx(x) yy~5(y—H(x))dy

= gx(x)H(x).
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Recall the goal is to estimate pyi(x) o< H(x)pi(x). If gx(x) =~ pr(x), then NDDS generates samples
that approximately follows py.1(x). However, gx is the marginal distribution of the data set Dy, which
is the data set that contains the evaluated solutions so far and is used to train the conditional DDPM. In
an iterative framework where one sequentially chooses candidate solution to evaluate, the data set Dy,
i.e., the set that contains all previously evaluated solutions, is also iteratively updated and hence, the data
distribution gx of Dy, varies over iterations and gy is generally different from p;. To address this distribution
mismatch between gx and p;, we adopt a data reweighting approach. We will introduce this approach in
Section 4, along with the presentation of the full algorithm.

Remark: For general function Si(-), the derivation directly follows with y = H(x) replaced by
y=Sk(H(x)), and gy denote the marginal distribution of Si(H (x)) with x ~ gx.

4 NDDS FOR GLOBAL OPTIMIZATION

In this section, we present an iterative framework for solving global optimization, utilizing NDDS introduced
in previous section. Generally speaking, our iterative framework contains three main steps in each iteration
k, summarized as follows.

1. Evaluation of new solutions: Draw and evaluate some new solutions {(x}, H(x}))}%,}, where
x; ~ pk, and add them to dataset Dy_; to get Dy.
2. Training of conditional DDPM: Train a conditional DDPM .# ¥ using data set Dy.

3. Estimate of p;,; using NDDS: Generate sufficiently many solutions {)Z’}:lli , by NDDS to get an
estimate of pyi.

In Step 2 and 3, we update the distribution estimate using NDDS. Notably here no function evaluations are
conducted, and hence, the sample size n; for NDDS can be selected to be a sufficiently large number. In
Step 1, draw some new solutions to evaluate to enlarge the data set Dy, which is used to train a conditional
DDPM. Due to the costly evaluation of the objective function H, ny is much smaller than n; and is usually
constrained by the practical budget.

4.1 Parametric Estimation for p;;

In Step 3, we generate nj, samples that approximate py 1, where n; is chosen to be a sufficiently large number.
To estimate the distribution py | from these samples, we adopt a parametric model { f(x,0) : 6 € ®}, where
f(-,0) denotes a family of density functions parameterized by 6 € ®. The rationale for using a parametric
model is twofold. First, it allows us to efficiently estimate pj. i, for example via maximum likelihood

estimation (MLE), using the generated samples {& }:1 - The estimated distribution is then represented
by f(x,6k+1), where 6y, is the learned parameter. Second, this approach enables us to evaluate the
likelihood f(x, 6;) for any given x, which we use to reweight the data in training the conditional DDPM,
as discussed in Section 3. Additionally, the parametric form f(x, 6y, ) facilitates exploration in Step
1 of the algorithm. Specifically, we draw new candidate solutions according to a mixture distribution:
xt ~ (1= A) f(x, 6¢) + A f(x,00), where A € (0,1) denotes a small exploration probability, and f(x, 6)
is the initial distribution used to ensure global exploration of the domain. In the remaining of the paper,
let fi(x) := f(x,6;) for notational simplicity.

4.2 Data Reweighting

Recall in Section 3, in order for NDDS to generate solutions that well approximate py1, the underlying
data distribution gy y of the data set Dy should possess the property that the marginal distribution gy is a
good approximation of p;. However, note D; contains all previously evaluated data (xj'(/,H (x}'{,)),k’ <k,i=
1,...,np, where xi, ~ (1= A) fir(x) + A fo(x). Therefore, the marginal distribution gx is not necessarily
a good approximation of py.
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To account for the fact that past samples x};/ were drawn from a mixture distribution, rather than the
current target distribution f(x), we apply a likelihood-ratio-based reweighting to adjust the empirical data
distribution. Specifically, let &, = (x},, H(x},)) denote the i-th solution-objective pair evaluated at iteration
k' < k. According to our mixture sampling strategy, the sampling distribution at iteration k” is

(1= Ap) fie (x) + Aw fo (x).
To correct for the mismatch between this mixture and the current distribution fi (x), we assign each sample
X, a weight:
Wi — f k ('x;cl ) .
ST (= 2) fie (k) + A fo ()

We then construct a weighted empirical distribution over the augmented data:
nyr -
Yo Ozzklwkk’ (¥ — %)
I’lk/ / °
Yi_oXi) Wi

This weighted distribution py serves as a refinement of the raw empirical distribution toward the current
target joint distribution of (x,H(x)) induced by f(x,6), via the likelihood ratios {w; . }. Rather than

(%) := (6)

training the conditional DDPM directly on the raw dataset Dy, we draw Ny = Zl,@:o ny samples from py
to form a reweighted dataset D;, which is then used to train the conditional DDPM. As a result, the
effective data distribution becomes gx y = pi, and its marginal gx (x) = gx y (x, H(x)) = px(x, H(x)) closely
approximates the desired distribution f(x, 6;) ~ pi(x).

Remark: We want to emphasize that here the reweighting is done for the augmented solution X = (x, H(x))
that already contain the function evaluation. What’s more, the discrete empirical distribution (6) can also
be replaced by some continuous approximation.

4.3 Algorithm

Equipped with the parametric estimation and data reweighting, we are ready to provide the full algorithm
of Nested Denoising Diffusion Sampling for Global Optimization (NDDS-GO) in Algorithm 1.

Please note that while Algorithm 1 supports a general choice of the transformation function Sy, in line
13, we continue to train the conditional DDPM using pairs of the form (x, H(x)). This choice facilitates more
stable and efficient model updates across iterations, particularly when S varies across different iterations
k. To ensure the validity of NDDS under this setup, the denoising step (line 14) is modified to condition
on Sk’l(y i), where the inverse is well-defined due to the strict monotonicity of S. Moreover, the NDDS
step (lines 12-15) can be executed in parallel to improve computational efficiency.

4.4 Consistency

In this section, we present the consistency of the proposed algorithm, which refers to the asymptotic global
convergence. Recall we need to generate samples from the mixture distribution (line 4 in Algorithm 1).
Specifically, we run the following steps to generate x;.

1. Generate U,i ~ Uniform(0, 1) independently from all previous random variables. . '
If Uy < A, generate X~ Jo (x) independent of all previous random variables and set x} < Xeps

otherwise generate xf{z ~ fi(x) independnet of all previous random variables conditioned on 6,
i i
and set xy < x; 5.

We make the following regularity condition on fy(x).
Assumption 3
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Algorithm 1 Nested Denoising Diffusion Sampling for Global Optimization (NDDS-GO)

1: Input: Sample size for function evaluation {rny };>o and for NDDS {#} },>¢. Parametric density family
{f(-,0): 6 € ®} and initial parameter 6y € ®. Exploration probability {A};>1. Conditional DDPM
family {.#V : y € P}. Stopping criterion STOP until evaluation budget is exhausted.

2: Imitialization: k < 0, D_; + 0.
3: while Budget left do
4: Draw and evaluate xi ~ (1 — ) fi(x) + A fo(x) to get & = (xi,H(x})), for 1 <i<mn.
5 Update dataset: Dy < Dy_j U{% }1,.
6: Initialize weights: w;'c’k o llk)f/{(kx(ix)a arat for 1 <i<my.
7: Update previous weights:
l
Wil ) i
’ ’ * (xlk/
> Reweighting
Compute p; as defined in Equation (6).
Draw N; = YX,_onp samples {(x}, )}, from p; to obtain dataset Dy. > Resampling
10: Compute a marginal empirical distribution gy with data {y; = Si(h}) f\z 1
11: Train a conditional DDPM .Z ¥ with dataset Dy.
12: for j=1:n, do > NDDS
13: Draw y; with density proportional to ygy (y).
14: Generate #/ via the denoising process of .# ¥, conditioning on Sk_1 (vj)-
15: end for

16: Compute 6, with data {¥/ }7‘: , using MLE:

it .
Opi1 < argmax — Z Inf(&,0).
k j=1

17: k< k+1.
18: end while

For all € >0, [, fo(x)dx >0, where Ag :={x€ 2" : H(x) > H(x") — €}.

Proposition 1 Suppose Assumption 3 holds. Let {A;} be a deterministic, non-increasing sequence. If
{M}i=0 and {mi}i>o satisfy Y7 A = oo and ;7 ny = oo, respectively. Then, maxo<j<k.1<i<n, H (x’J) —
H(x*) as k — oo almost surely.

Proof. Let k;,i; denote the index pair such that j = Z:’: 701 ni+ij, that is, x;(’j is the jth sample evaluated
by Algorithm 1. Define

i T
L if X, = X1
lj = ~
Z 0.W.

where Zis any fixed pointin 2" other than x*. Then, z;, j > 1 are independent since U, / ,x}; 1 Vk>0,1<i<n
are independent. For any € > 0, by Assumption 3, P(z; € A¢) > A, [4, f(x,60)dx > 0. Hence,

j;P(ZjEAs) Z/Asfo(X)dxj;lk_, z/Asfo(x)de;)AFW,
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The last inequality holds because{A };>0 is non-increasing and the last equality holds since Y ;o Ay = o.
Furthermore, since {z;};>1 is an independent sequence, we obtain IP(z; € A, infinitely often) = 1 by the

second Borel-Cantelli Lemma. Moreover, for € < H(x*) —H(Z), we know {z; € A¢} C {x;’j € Ag¢}. This

implies P (x;gj € A¢ infinitely often) = 1. Since ¢ is arbitrary, we prove the desired result. O

5 EXPERIMENT
5.1 Diffusion Model

In this section, we would like to show that the conditional diffusion model could successfully learn the
one-to-many mapping x = H~'(y), which maps a given function value y to the design points. We use
StybTang (Styblinski-Tang) 2D as an illustration example and its mathematical form is:

H(x) = —= Y (x} — 16x7 + 5x;), @)

N =
.MQ.

1

where d=2. The StybTang 2D function has only one optimal solution [—2.903534,—2.903534] with a
maximum value of 78.33. Figure 1 shows its surface and contour plots. The function is multi-modal with
three local maximums and a global maximum.

We trained a conditional diffusion model based on 5,000 design and value pairs (x;, H (x;)),i = 1,...,5000,
obtained by Latin hypercube sampling (LHS). Figure 2 shows the contours of H~!(y) (red dots) and diffusion
samples (blue dots) for different values of y. We observe that the diffusion samples closely match the
target contours for different conditional values of y, indicating good learning of the one-to-many mapping
x=H"'(y) using the diffusion model.

5.1.1 Optimization

We evaluated the performance of the NDDS-GO algorithm on StybTang 2D (d = 2) and StybTang 10D
(d = 10) (see Equation (7) for the mathematical form). We compare NDDS-GO with the Extended Cross-
Entropy (CE) algorithm (i.e., CE with S; to be an exponential function). For both algorithms, we set
Sk(y) = €. For StybTang 2D, both algorithms start with 500 initial designs generated via LHS, followed
by 20 iterations that each adds n; = 50 new evaluation points; for StybTang10D, both algorithms start with

Surface Plot Contour Plot

80
4 40
0
= —40
0 -80
~120
- ~160
—200
—4
—240
4 2 0 2 4
X

Figure 1: The surface and contour plot of StybTang 2D. The cross mark represents the best design with
the maximum value.

8]

8]

3413



Wang, Wang, Zhou, Ng

StybTang 2D aty = 78 StybTang 20D aty = 60 StybTang 2D aty = 50

° - D e DO

-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

(a) Conditioning on y =78 (b) Conditioning on y = 60 (c) Conditioning on y = 50
Figure 2: Conditional diffusion model for StybTang 2D under different values of y. The blue dots are the
samples generated by the diffusion model, and the red dots show the ground truth inverse contours found

using grid search. The cross mark represents the best design with the maximum value.

5,000 initial designs obtained using LHS and then run for 20 iterations with n; = 500. The number of
diffusion samples for each iteration is chosen to be 2,000.

Figure 3 shows the best evaluated function value vs the number of evaluations for the NDDS-GO
and Extended CE algorithms over 10 macro-replications. For StybTang2D, both algorithms successfully
converge to the true optimal solution. However, NDDS-GO achieves this more efficiently than Extended
CE. Figure 4 provides insight into the distribution estimate of optimal solution for different algorithms. It
shows that the estimated distribution based on the diffusion model is much closer to the true distribution (py
in Equation (2)) in earlier iterations, and it demonstrates superior accuracy and concentration early in the
optimization process, resulting in faster convergence compared to the Extended CE. For higher dimension
problems like StybTang 10D, the Extended CE algorithm can get stuck in local maximum, whereas the
NDDS-GO more easily escapes the local maximum, leading to a more accurate estimation of the maximum
value.

StybTang 2D StybTang 10D

78.25 1

78.00

77.75

77.50 1

77.25 1

77.00 1

Best evaluated function value

76.75 A

—— NDDS-GO
——- Extended CE

Best evaluated function value

—— NDDS-GO
——- Extended CE

76.50 280 A

T T T T T
600 800 1000 1200 1400
The number of evaluations

T T T T
8000 10000 12000 14000

The number of evaluations

T
6000

(a) StybTang 2D with a maximum value of 78.33 (b) StybTang 10D with a maximum value of 391.65

Figure 3: The best evaluated function value against the number of evaluations for NDDS-GO and Extended
CE for StybTang 2D and StybTang 10D over 10 macro-replications.
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-4 -2 0 2 4 -4 -2 0 2 4

(a) True py

(b) NDDS-GO

P11 2

(c) Extended CE

Figure 4: The density plot of the true distribution of the optimal solution (p; from (2)) and the estimated
distribution of the optimal solution for NDDS-GO and Extended CE for StybTang 2D. The cross mark
represents the true optimal solution with the maximum value.

6 CONCLUSION

We proposed Nested Denoising Diffusion Sampling (NDDS), a novel approach for global optimization
of expensive black-box functions. NDDS leverages conditional diffusion models to approximate the
evolving solution distribution while systematically generating conditioning variables through a statistically
principled mechanism. To improve sample efficiency, we introduced a data reweighting strategy that aligns
the training data with the target distribution. Numerical experiments demonstrate that NDDS achieves
better performance with the same number of function evaluations, particularly in high-dimensional settings.
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This work highlights the promise of combining generative modeling with adaptive sampling for efficient
black-box optimization.
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