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ABSTRACT

Marine pumping systems are among the most essential equipment for maritime operations. Typically, this
type of equipment is manufactured to order in small quantities, thereby increasing the cost and time to
market. The rising demand for this equipment has made the transition to mass production even more
attractive for key players, which can potentially lead to significantly higher competitiveness for these
companies. However, to maintain the competitive advantages of such a transition, it is crucial to make
optimal decisions, taking into account all influential aspects. This study, assisted by experts from pioneering
companies in this industry, proposes an integrated approach that applies redundancy analysis, inventory
policy calibration, and GA-based optimization to address these challenges—all built upon a DES-based
digital twin. Applying our framework to the studied case drastically reduced the cycle time from more
than a week to about one day, raising the annual capacity over the projected demand.

1 INTRODUCTION

Manufacturing companies transitioning from job-shop to mass production face significant operational
challenges, driven primarily by increased market demand and competition. Job-shop systems, characterized
by their flexibility and suitability for customized, small-volume production, often become inefficient and
inadequate when tasked with scaling up production volumes (Mohan et al. 2021). Such transitions
demand comprehensive restructuring across processes, facilities, and organizational management practices,
introducing risks related to cost, resource allocation, and operational disruption. Within the marine pump
manufacturing sector, particularly in high-labor-cost regions such as Scandinavia, companies frequently
grapple with rising demand and heightened expectations for shorter lead times and improved resource
efficiency (Edh Mirzaei et al. 2021).

Traditional production setups in the marine pump industry struggle severely under such conditions,
resulting in persistent bottlenecks, extensive lead times, and suboptimal utilization of available resources.
This highlights an urgent necessity to conduct analyses and reconfigurations of production environments
in order to align with the observed evolving market demands. Here, the complex and expensive equipment
involved in the marine pump production, the complex network of procured and manufactured parts, and
the stochastic sequence-dependent changeover (setup) time for the manufacturing and assembly steps in
this system all increase the intricacy of optimization efforts in this context. This perception of such a
manufacturing system renders it intractable for traditional mathematical modeling techniques, turning the
attention of industrial managers and stakeholders to advanced simulation-based modeling and digital twins
that can offer a realistic representation of these restrictions and complexities.

Among the available simulation techniques, discrete event simulation (DES) has been used successfully
in various industries, some of which are summarized in Table 1. The selected DES platforms are widely
recognized and effective, offering advanced modeling capabilities that align with industry standards.
Additionally, company managers prefer such commercial packages due to their visualization and robust
technical support. Thus, while non-commercial alternatives exist, our focus in this table is on the practical
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Table 1: Summary of the related discrete event simulation literature with industry case studies.
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Heshmat et al. (2013) Cement Buffer re-allocation
Zupan and Herakovic (2015) Metal Cycle time analysis
Attar et al. (2016) Diesel Generator RSM-based Metamodeling
Kuncova and Zajoncova (2018) Electronics General line balancing
de Groot and Hübl (2021) Smart Phone Utilization-based calibration
Gola et al. (2021) Powertrain Line Balancing
Grznár et al. (2021) Shipping Demand optimisation by GA
Pekarcikova et al. (2021) Solar Panels Kanban
Jung et al. (2022) Garment Productivity assessment
Attar et al. (2023) Beverage Re-coding flow management
Boj’ic et al. (2023) Textiles Multi-Objective GA
Ugheoke et al. (2024) Kaolin Systematic Layout Planning

This Study Marine Pumps Redundancy allocation &
Inventory policy calibration by GA

utilization of such established platforms. From the cement, metal, and automotive industries to garment,
beverage, and smartphone manufacturing lines, DES-based models and digital twins were utilized for
monitoring systems and optimizing their key performance indicators (KPIs). For instance, Heshmat et al.
(2013) focused on the simulation modeling of a cement production line to address various allocation problems,
such as the workload allocation, server allocation, and buffer allocation. Using ARENA simulation software,
they developed a DES model to analyze and resolve bottlenecks causing severe congestion in different areas
of the production line. By collecting workstation failure data over a year, they identified optimal buffer
sizes and increased the production rate by more than 15%, while economizing 34% of buffer capacities.

Using Anylogic platform, de Groot and Hübl (2021) explored a Dutch phone and subscription retailer case
during COVID-19 and addressed its long waiting times. Their calibrated model simulated the queueing system
and evaluated employee scheduling improvements. The results suggested that the improved scheduling
scheme can significantly reduce multiple KPIs, i.e., mean waiting times by 20-33%, maximum waiting times
by 12-20%, while increasing service levels by 3-11%, and eventually resulting in an enhanced customer
satisfaction without increasing working hours. Similar but relatively simpler attempts were also reported by
Zupan and Herakovic (2015), Gola et al. (2021), and Kuncova and Zajoncova (2018) in the other industries
that applied cycle time analysis and general line balancing practices for achieving the desired improvement.
Other innovative improvement methods include a smart dynamic buffer recalibration algorithm deployed by
Attar et al. (2023) in the beverage and the systematic layout planning proposed by Ugheoke et al. (2024).
From the simulation platform perspective, the literature reviewed by Kovbasiuk et al. (2021) and Kliment
et al. (2025) supports our observation from Table 1 in favor of the advanced features of Tecnomatix Plant
Simulation (TPS) for manufacturing line simulation purposes.

As seen in Table 1, the marine and offshore equipment manufacturers have been neglected in the
literature. In its current state of transformation from a customized low-volume production pace to the
new era of mass production, this industry has unique specifications and requirements that are in focus in
this study. The existing literature highlights the significant improvements of inventory policy calibrations
for reducing finished goods and work-in-progress (WIP) inventory costs and streamlining manufacturing
processes (Attar et al. 2016; Pekarcikova et al. 2021; Xu et al. 2019). On the other hand, the use of
redundancy allocation for meeting desired serviceability levels was reported successful in other segments
of supply chains (Cheng et al. 2012; Attar et al. 2017, 2024). Therefore, hybridizing this method with
simulation-based line optimization can potentially form an interesting improvement approach. With the
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natural challenges of transformation to mass production in mind, batch-size optimization studied in other
industries (e.g., Mehra et al. 2006; Hung and Liker 2007) may also be effective for reducing the dependence
of new strategies on excessive redundancy in the system.

Therefore, the contributions of this paper are threefold: (i) proposing a practical digital twin for the
marine pump manufacturing industry using the DES method in the TPS environment, (ii) considering
redundancy allocation and batch sizing to meet the required capacity for the expected demand, and (iii)
deploying metaheuristic optimization techniques to calibrate the parameters of the pull inventory policies of
the buffers for a streamlined production process. The rest of the paper is organized as follows: the proposed
methodology framework, simulation model, and optimization method are explained in the following section.
Section 3 reports the numerical results, observations, and discussions. Finally, some concluding remarks
and future research directions are presented in Section 4.

2 METHODOLOGY

In this study, we apply a framework with five main steps to achieve the mass production capacity intended
for the system. This framework is schematically illustrated in Figure 1. As the first step, we study and
model the existing system using simulation tools. This step involves conceptual modeling, deployment
in the selected simulation software, and validation. In the second step of the framework, we analyze the
existing system using the validated model to identify the segments with high potential for developing a
bottleneck. Based on these analyses, we define the required reconfigurations in the stations and the new
levels of redundancy for various parts of the system. Step 4 in this framework attempts to optimize the
system by calibrating the pull inventory system applied to manage the work-in-progress (WIP) stocks in
the critical buffers of the system. Eventually, the last step is meant to provide a numerical comparison of
the projected performance of the system after applying different combinations of the proposed methods,
helping production managers choose the most desirable scenario based on their goals and preferences.

Figure 1: Overview of the applied framework.

2.1 Conceptual Modeling

The initial stage of the simulation methodology involved developing a detailed conceptual model to represent
the structure and logic of the marine pump manufacturing process. The conceptual model includes the key
production steps, resource interactions, and inventory flow pathways. Process mapping techniques were
applied in collaboration with the company’s manufacturing engineers to identify critical operations, machine
dependencies, and workflow constraints. The system under study comprises 26 main stations that can be
classified into four main classes: 6 assembly stations (Assy1-6), 10 automated machining (Mach1-10),
8 labor-based stations (Stat1-8), 2 finishing treatment stations (Treat1-2). Based on the manufacturing
system’s bill of materials (BOM), 12 different parts are defined in this line, each of which uses a set of
the available stations based on the sequence mentioned in Table 2. Minor parts, procured ones, or those
that do not need processing before assembly have been discarded in this table.
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Table 2: Process sequence and the prerequisites for producing each part in this line.

Part ID Prerequisite ID Sequence

1 Mach4→ Mach9→ Mach2→ Treat1
2 Mach4→ Treat1
3 Mach4→ Mach9→ Mach2→ Treat1
4 Mach6→ Stat3→ Mach7→ Stat7→ Stat1→ Treat2→ Mach3→ Mach8→ Treat1
5 Mach6→ Stat3→ Mach7→ Stat7→ Stat1→ Treat2→ Mach3→ Mach8→ Treat1
6 Assy7→ Treat2→ Mach9→ Stat4
7 Assy7→ Treat2→ Mach3→ Stat4
8 Assy2→ Mach1
9 Assy3

10 1, 2, 4, 7 Assy5→ Mach5→ Stat5→ Mach3→ Mach2
11 3, 5, 6, 8 Assy6→ Stat2→ Stat8→ Mach5→ Mach3→ Stat5→ Assy1→ Mach10
12 9, 10, 11 Assy4

This manufacturing facility makes use of various types of advanced metal processing technologies such
as TIG and MIG/MAG welding, CNC laser welding, and plasma cutting. The patented process sequence of
this manufacturing system is anonymized in this paper by using station codes (Mach, Assy, Stat, and Treat)
instead of process names. For instance, regarding the production of Part ID 10, we need to assemble the
prerequisite parts, send them through machining, and perform a manual handling step before performing
the last two machining processes. The final product in this system is Part ID 12, which concludes the
assembly of all parts in Table 2. Furthermore, our field study identified the following assumptions and
constraints in the system:

• One production year comprises 230 working days, each consisting of a single 8-hour shift with a
30-minute break, totalling 1,725 operational hours.

• Process times represent the complete duration of the work at each station, and a noticeable setup
time is required for some operations.

• Consecutive parts of the same type require 15-30% shorter setup time.
• The frequency of machine breakdowns, defective parts, and rework in this system is negligible.
• Transportation times between stations and worker behavior are disregarded at this planning stage.
• The WIP in all buffers is controlled using a periodic-review base-stock inventory policy, i.e., the

(R, T) policy; in which R and T stand for the reorder point and review period, respectively.

Based on our observations, the setup time reduction mentioned in the assumptions is approximately
15% for Mach5 and 30% for all other stations with non-zero setup time. The review period T is a constant
30 minutes for all buffers in the existing state of the system, and the corresponding reorder point values
will be reported later in this paper in Table 4. These specifications, assumptions, and constraints ensure that
the simulation model authentically mirrors the practical operational conditions within the manufacturing
facility while maintaining necessary simplifications for efficient and accurate simulation analysis.

2.2 Simulation Modelling and Validation

The initial phase for developing this simulation model is extensive data collection at the factory site. Historical
production data, including cycle times, machine processing times, and setup times, were gathered from
the company’s existing production records through their Enterprise Resource Planning (ERP) software.
Interviews and consultations with process engineers and operational managers further enriched the dataset,
ensuring a high degree of model fidelity and validity, and reflecting the real system. The collected data for
each manufacturing step was statistically analyzed and best fitted to Weibull distributions. This distribution is
known to provide suitability for accurately modeling the variability and reliability characteristics commonly
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Figure 2: Simulation model of the studied system in TPS for the baseline state.

observed in manufacturing processes, enabling precise representation of operational uncertainties within
the simulation (Attar et al. 2017). For CNC machining steps (i.e., Mach), the process duration was split into
separate cycle and setup times. Based on our observations, CNC machines only experienced stochasticity
in their manual setup, followed by a fairly constant cycle time.

In this study, we develop the simulation model in Siemens Tecnomatix Plant Simulation (TPS) software,
which has been used practically in various companies in Europe (see, for instance, Alfas et al. 2025;
Attar et al. 2023; Boj’ic et al. 2023). The statistically refined data, the concept, and the logic of this
system were integrated into a comprehensive DES model that accurately represented the existing job-shop
manufacturing layout and processes. Each workstation, buffer, and production resource was explicitly
modeled, enabling detailed analysis of workflow dynamics and bottleneck identification. Buffer objects
were used to manage intermediate storage, ensuring parts were readily available for downstream processing.
Standard and parallel station objects, assembly, and dismantle stations are among the main built-in objects
used to model various segments of this manufacturing system.

An aerial 3D view of the proposed simulation model is shown in Figure 2. As presented in this Figure 2,
the model has one instance of all stations mentioned in Section 2.1 except for Stat2 which has a redundancy
level of 2 (marked by 2.1 and 2.2 in the layout). While the standard blocks provided the foundational
structure, complex control logic — such as dynamic routing, prioritization, and trigger-based responses
— was also implemented using the Method object class written in SimTalk programming language. This
enabled responsive and condition-driven behaviors aligned with real operational dynamics and the predefined
Bill-of-Materials (BOM). To model the pull WIP inventory policy in the buffers, we defined a customized
set of controller method objects that would trigger the replenishment orders based on the preset reorder
point and review period values of each buffer. For more details on modeling such base-stock policies, one
may refer to the comprehensive DES-based studies by Attar et al. (2016) and Xu et al. (2019).

In the next step, the proposed baseline simulation model was validated and verified from multiple aspects
to ensure that it accurately represented the structure and behavior of the real production system. For each
product type, part flows and processing durations at individual stations were analyzed and cross-checked
against ERP-reported cycle times by setting tags and attributes to the entities of the simulation model.
Furthermore, the total number of parts required for a complete unit was confirmed to enter the system using
the pull inventory logic, and the accumulated processing time per station matched the expected values.
In addition to the above quantitative checks, the model was reviewed and validated in collaboration with
FRAMO’s Production Engineering department. Moreover, in order to assess the long-term behavior of the
digital twin, the baseline scenario was executed for an extended batch of 1,000 units (five times the annual
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target). This test ensured operational sustainability over time and verified that resource utilization, buffer
behavior, and part sequencing remained stable under extended production runs.

2.3 Optimization

To support the transition toward a balanced and scalable production system, the optimization phase focused
on aligning individual process capabilities with the system’s overall production target. The defined goal
was to produce 200 units of Product A within a single-shift operational calendar of 230 working days,
resulting in an effective Takt time of 8.625 hours per unit:

Takt Time =
Available Production Time

Customer Demand
=

230×7.5hours
200units

= 8.625hours/unit.

A detailed analysis of the processing times across all stations in the baseline simulation model was
conducted to evaluate system capacity relative to this Takt time. Stations operating above this threshold
were identified as bottlenecks, indicating areas requiring intervention. Several line-balancing strategies were
explored, including the addition of process redundancies, deployment of extra workers where applicable,
and minimization of part switching to reduce setup durations. For example, multi-part stations, reduction
factors were applied to setup times when consecutive parts were of the same type, reflecting realistic
operational behavior stated in the model assumptions

To further mitigate idle time and prevent upstream blocking, buffer reallocation was implemented. Buffer
capacities and locations were systematically adjusted to ensure that each station maintained a consistent flow
of parts and that upstream workstations could continue operating without interruption. These modifications
enhanced material flow continuity and stabilized workstation utilization. As an additional attempt, the
production system is equipped with rule-based flow control mechanisms. These controllers functioned as
entry gates to stations, prioritizing parts based on downstream demand and proximity to final assembly.
By dynamically sequencing part entry according to strategic production demand, flow controllers reduced
congestion and improved synchronization across the line. Collectively, these modifications contributed to
improved throughput, better resource utilization, and alignment with production targets.

2.3.1 Redundancy Allocation

In this part of the study, we attempt to reallocate the number of redundant stations in the system based
on the observed results from the baseline model. The optimal reallocation of redundancies has long been
considered an effective approach for improving the overall service-level and enhancing throughput in
manufacturing and supply chain design (Cheng et al. 2012; Attar et al. 2015, 2017, 2024). The projected
annual demand to be satisfied in this system is 200 units. Here, to measure the proper performance of
each segment of the system in meeting this target, we use the process serviceability KPI, defined as the
percentage of the target demand fulfilled by the station in the given time frame. Calculating this KPI for
all stations revealed that six stations are not capable of handling the intended demand load in full. Table
3 reports these critical stations, the corresponding number of workers allocated to each group, the average
time per unit (E), and the calculated values of the local serviceability percentage.

As shown in Table 3, these station groups currently have an available capacity for fulfilling between 18
and 79.7 percent of the projected annual demand. We explored the following three potential improvement
pathways to address these issues: (a) increasing the number of redundants in these station groups, (b) adding
redundants to the workers dedicated to these station groups, and (c) allocating specific parts to some of
these redundants to eliminate the repeated station preparation and setup time. Upon initial examination of
these pathways and consulting the production experts, the second pathway was eliminated. The automated
machines were naturally functioning with very minimal supervision from the human workers, and several
automated machines can be supervised by each existing operator. On the other hand, further workforce
additions to the Assy4 and Stat2 station groups were not feasible due to space constraints at each station. The
new layout of the system after applying the proposed redundancy is graphically demonstrated in Figure 3.
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Table 3: Station groups with insufficient capacity before and after the redundancy allocation pathways.

Process Baseline Proposed

Redundancy Worker E (hh:mm) Serviceability Redundancy Worker E (hh:mm) Serviceability

Assy4 1 2 15:00 58.0% 2 2 07:30 115.0%
Mach1 1 1 16:24 53.0% 2 1 08:12 105.0%
Mach3 1 1 25:04 34.4% 3 1 07:59 108.0%
Mach5 1 1 48:00 18.0% 5 1 08:34 100.7%
Mach9 1 1 15:15 56.6% 2 1 07:37 113.3%
Stat2 2 3 10:50 79.7% 3 3 07:13 119.5%

For Mach3 and Mach5, a hybrid strategy was pursued involving both redundancy increases (i.e., pathway
a) and dedicated part-type routing (i.e., pathway c). In particular, pathway c for these two station groups
takes advantage of the existing setup time reduction rules described in Section 2.1 (30% for Mach3 and
15% for Mach5 when processing the same part sequentially). More details on the analysis and proposed
actions related to these two critical station groups are provided below:

• Mach3 Optimization: Analysis of Mach3’s cumulative process time revealed that meeting the
takt target would require tripling its capacity. Among the five distinct part types processed by Mach3,
Part IDs 4 and 5 demonstrate the potential to meet the takt time when processed in batches, attributable
to a notable decrease in setup time. These parts were assigned to dedicated stations (i.e., Mach3.1 and
3.2, respectively) to reduce setup frequency and improve flow stability. To further balance the system, a
third station, Mach3.3, was introduced to intermittently process Part ID 4 and the remaining lower-volume
parts. A parameterized SimTalk control method is implemented to redirect Part ID 4 to Mach3.3 whenever
Mach3.1 falls behind Mach3.2 by a specified output threshold θ . At this stage of the optimization, this
threshold was experimentally set to 4. The proposed configuration improved the output’s regularity and
decreased the overall setup-to-working state ratio. Most importantly, as seen in Table 3, this workaround
increased usable capacity by reducing the average time per unit of this station group from 8:22 (after
redundancy) to 7:59.

• Mach5 Optimization: Initial examination of this station group indicated that six stations of this
type would be required to meet takt time using redundancy alone. However, in Table 2 only two distinct
part types cycle through Mach5, making it a suitable candidate for sequence-based optimization. Thus,
we proposed 5 redundant Mach5 stations accompanied by a part-type-based routing controller to eliminate
excessive setup frequency. Four of the redundants were configured to process a single part type exclusively
(i.e., Part ID 10 or 11), leveraging the 15% setup time reduction achievable through series production. The
fifth station, Mach5.5, was shared between both part types and programmed with a batch-based switching

Figure 3: A glance at the proposed system layout in TPS after redundancy allocation.
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logic to minimize setup overhead. Here, a controller balances the output by alternating part types based on
preset batch sizes of γ1 and γ2 for part IDs 10 and 11, respectively. At this stage of optimization, the batch
size values for Mach5.5 were arbitrarily set to 3. These all reduced the E value of this group of stations
from 9:36 (for 5 redundants) to the acceptable value of 8 hours and 34 minutes (see Table 3).

2.3.2 Ordering and Flow Optimization using Genetic Algorithm

In this section, we use a metaheuristic algorithm for optimizing another aspect of the system. Buffer
management and ordering policy play a pivotal role in ensuring smooth material flow and minimizing the
resource idle time across the manufacturing system. As a foundational step for this type of optimization,
buffers are restricted to store only a single part type, enabling targeted flow control and more accurate
WIP tracking. This design supported the implementation of selective routing strategies, where part-specific
controllers governed the release of parts from buffers to downstream stations. This was particularly effective
in high-variability areas such as the aforementioned Mach3 and Mach5, where controlling setup frequency
and balancing throughput were critical. To regulate the WIP levels and prevent overproduction, each buffer
was linked to a stock controller that periodically monitors buffer levels and temporarily halts upstream
production when a predefined threshold is met. This (R, T) policy stabilizes part availability throughout
the system and ensures stations are operated without excessive inventory buildup or shortages.

In this model, we define 13 variables, representing the reorder points of the important buffers. These
buffers are upstream of the Assy2, Mach3, Mach5, Stat3, and Treat1 station groups. We also add an extra
variable for determining the inventory review period length for these buffers (see Table 4). Additional
routing logics are also introduced using some Flow Control objects in the bottleneck stations (such as
the laser welding CNCs in Mach5 group), which manage the part entry into processing stations based on
real-time buffer conditions. Flow priority was assigned to part types from buffers with the lowest output
count or lowest relative fill level, effectively prioritizing components needed by downstream processes.
Each flow controller covers multiple dedicated input buffers simultaneously, enhancing the responsiveness
and synchronization of part supply throughout the line. Collectively, these flow control strategies can
potentially contribute to a more balanced and predictable production environment, reducing variability and
improving the overall alignment of part availability with takt-driven throughput demands.

In order to refine these variables, we utilize the built-in GAWizard in TPS. The genetic algorithm
(GA) in the backend of this optimization tool — inspired by natural selection principles — offers an
effective method for navigating complex search spaces to identify near-optimal solutions. In this case, the
above-mentioned global variables are set as decision variables for this metaheuristic method. Furthermore,
the acceptable range for each of these variables is determined based on the existing physical limits of the
buffers and by consulting experienced manufacturing system managers in this industry. Additionally, to
approach the ideal goals of mass production in this industry, we introduce replenishment batch sizes for the
critical machines, especially the Mach5 CNC group. Applying these additional variables (already declared
as γ1 and γ2 in Section 2.3.1) helps the optimization algorithm explore alternative possible options for
reducing the setup time of these stations by sending consecutive identical parts to the same machine. As
an extra optimization freedom for the optimization algorithm of this calibration process, we also include
the threshold value used in Mach3 optimization (i.e., θ ) as a decision variable.

Aligned with the company’s goals for this project, the optimization algorithm is set to minimize the total
production time required to reach an annual target output of 200 units. During each iteration, simulation
runs evaluate candidate solutions based on this fitness criterion. The algorithm iteratively evolves the
variable set through selection, crossover, and mutation until convergence. The population size, number of
generations, crossover rate, and mutation probability of this algorithm were experimentally set to 100, 20,
0.8, and 0.1, respectively. This approach ensures systematic tuning of buffer attributes and reorder policies,
resulting in an improved balance and minimized lead time across the system. Figure 4 demonstrates the
algorithm’s convergence across iterations for a reprsentative case based on Scenario III.
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Figure 4: The convergence diagrams of the genetic algorithm for a sample scenario (Scen. III).

3 RESULTS AND DISCUSSIONS

In this section, we define three improvement scenarios based on different combinations of the proposed
improvement methods and compare them with the performance of the system in its baseline state. In the first
scenario, we use the baseline scenario and deploy the proposed GA-based ordering and flow optimization
(GA-OFO) approach. The second scenario, however, benefits from the redundancy and batch sizing
features introduced in Section 2.3.1. Eventually, the last scenario encompasses a hybrid of both proposed
improvement methods. The system is run for a maximum duration of 10 years with a termination criterion
of meeting the projected 200-unit demand. Other specifications of the system (probability distribution of
process times, production sequence, part types, etc.) remained unchanged for all scenarios. The simulated
performance results, values of decision variables, and the corresponding relative improvement percentage
against the baseline are reported in Table 4 for all scenarios.

As seen in Table 4, the fulfillment of the expected demand takes about 1235 days in the current state
of the system. That is, by assuming the unfulfilled portion of the demand as lost sales (or backlog in the
most optimistic way), the company would only satisfy 18.6% of the annual demand on time if no capacity
expansion is applied to this line. It is also observed that deploying the GA-OFO with no redundancy (i.e.,
Scen. I) would have a negligible effect on the lost sales ratio, highlighting the necessity of investments in
the new redundant stations. Even though both Scenario II and III have achieved significant improvement
compared to the baseline, applying the redundancy approach with no buffer inventory optimization still
causes a significant loss of sales of up to 66 units (based on the new cycle time of 1.71 days). That is

Table 4: Variable settings and system performance under various scenarios.

Variables Baseline Optimization Approach*

I II III
WIP Review Period (in min) 30 41 30 60

Buffer Attribute ROP1−4 10, 10, 10, 10 3, 3, 19, 17 10, 10, 10, 10 29, 27, 5, 1
ROP5−8 24, 5, 45, 10 20, 2, 2, 43 6, 4, 4, 4 12, 1, 4, 27
ROP9−13 10, 4, 2, -, - 43, 12, 5, -, - 4, 10, 10, 4, 4 23, 6, 22, 8, 5
γ1 , γ2 , θ -, -, - -, -, - 3, 3, 2 2, 2, 1

Demand Fulfillment Time ** 1235:09:13 1226:14:24 342:10:45 214:13:49
Cycle Time (days/unit) 6.18 6.13 1.71 1.07
Improvement (%) - 0.7% 72.3% 82.7%
* I : GA-OFO, II : Redundancy Allocation, III : Redundancy Allocation & GA-OFO; ** Format: days: hours: minutes
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Table 5: Mean utilization statistics by category for the baseline and the best scenario.

Station
Type

Baseline Scenario III

Working Set-up Waiting Blocked Working Set-up Waiting Blocked

Assy 11.17% 0.00% 65.09% 23.75% 56.17% 0.00% 43.82% 0.01%
Mach 12.26% 10.73% 67.92% 9.08% 36.00% 30.82% 27.92% 5.25%
Stat 10.10% 0.00% 89.82% 0.07% 42.43% 0.00% 57.30% 0.26%
Treat 4.17% 0.00% 95.83% 0.00% 22.78% 0.00% 77.22% 0.00%

All 10.51% 3.83% 76.46% 9.20% 41.88% 14.45% 41.16% 2.52%

while the last hybrid scenario fulfills the demand in less than one year and promises no lost sales. The new
expected cycle time for each pump has reached the record low of only one day, which would substantially
increase the competitiveness of this company in the market.

Comparing the performance of various types of stations in the baseline and the best scenario in Table 5,
shows that the overall waiting time of the stations has been lowered significantly from 76.46% to 41.16%.
This value for our automated CNC machines has dropped from around 68% to less than 28% which
indicates considerable savings in the available time of these expensive assets of the company. It is worth
noting that for the CNC machines (i.e., the Mach type), the changeover (setup) time is a vital part of the
process. For this reason, we believe that the amount of reduction in the average waiting time can be the
best performance measure for this category of stations. Moreover, based on the results of Table 5, the
assembly stations of this manufacturing system experienced the highest amount of improvement in their
utilization, with their working state estimation reaching over 56%. Further exploring the status results of
different station groups (Figure 5) indicates that the blockage in all stations was effectively mitigated and
the working state has been improved noticeably. More specifically, Stat2, Mach3, and other station groups
that were diagnosed with insufficient capacity were all effectively strengthened in the proposed scenario.

It is notable that the optimal scenario still shows significant waiting time for many stations while
Mach5 is fully utilized (in either setup or working states). This indicates that if the system were meant to
be enhanced even further, Mach5 would potentially receive further investments. While future cost-benefit
analyses will quantify ROI, the 50% resource expansion is the catalyst for competitive mass production from
constrained job-shop and can strategically be justified by the operational transformations, i.e., scalability
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Figure 5: Station status charts and utilization for the baseline and the best proposed scenario.
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payoff and dynamic flexibility. This investment unlocks mass-production economies of scale, turning high
upfront costs into long-term margin growth with 82% higher throughput and no lost sales.

4 CONCLUSIONS

The increasing demand for pumping equipment in the offshore and marine industry has introduced new
challenges for key players in this market. This study investigated the utilization of simulation-based digital
twins for optimizing the process of capacity expansion and mass production in this industry to mitigate
these new demand patterns. To achieve an optimal expansion plan for such manufacturing systems, this
study proposes a hybrid approach involving redundancy allocation, pull order batch sizing, and buffer
inventory policy optimization using metaheuristic algorithms. All combinations of these methods were
explored numerically as separate scenarios to examine the individual effectiveness of each method on the
overall performance of the system. The reported results showed a significant improvement of up to 82.7%
for the hybrid scenario that applies all of the above-mentioned optimization workarounds.

Based on our improved results, this company is now able to meet the annual projected demand in just
214 days, and the cycle time for the pumps has experienced a drastic decrease from 6.18 days to as low
as one day. This has led to the system achieving the goal of not having lost sales while it was suffering
from over 80% lost sales in the initial setup. The promising results achieved in this study underscore the
applicability of the proposed framework in maritime equipment manufacturing industries and pave the way
for more acceptance of digital twin-based analysis among the stakeholders of this sector of the maritime
industry. Applying this framework in other manufacturing case studies and investigating its effectiveness
in other contexts can be an interesting extension to this study. In this study, we ignored prolonged machine
maintenance and considered one work shift. Another potential avenue for future research can involve
sensitivity analysis and resiliency studies of such systems against various types of failures in the comprising
processes, as well as investigating the effect of multi-shift work schedules on the throughput.
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Niezawodność 23(2):242–252.
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