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ABSTRACT

Material flow simulation and emulation are essential tools used in warehouse automation design and
commissioning, to create a digital twin and validate equipment control logic. The current emulation
platforms lack an internal computer vision (CV) toolkit which poses a challenge for emulating vision-based
control system behavior which requires real-time image processing capability. This paper addresses this
gap by proposing an innovative framework that utilizes a bridge between Emulate3D and MATLAB to
establish real-time bidirectional communication to emulate vision-based control systems. The integration
enables transfer of visual data from Emulate3D to MATLAB, which provides CV toolkit to analyze vision
data and communicate controls decisions back to Emulate3D. We evaluated this approach to develop
a small-footprint package singulator (SFPS) and the results show that SFPS achieved target throughput
with 45% improvement in singulation accuracy over conventional singulators with 64% less footprint and
eliminating the need for gapper equipment required with conventional singulators.

1 INTRODUCTION

The material flow in modern warehouse progresses from inbound receiving through staging, sortation,
storage, and finally to outbound processing and loading. While robotics and automated workcells can
handle many of these operations, their high capital cost demands thorough system validation before
implementation. Simulation and emulation serve as cost-effective tools to evaluate system performance,
test volume surges, identify bottlenecks, and assess operational impacts. However, the reliability of these
evaluations heavily depends on creating high-fidelity models, particularly for robotic systems.

A robotic system comprises three core components (Figure 1): robot hardware, sensors, and a control
system. The hardware encompasses the physical elements - frame, linkages, actuators, and end effectors
- that execute movement. Sensors capture crucial data including kinematic information, object detection,
and visual attributes. Acting as the systems brain, the control system processes sensor data through AI/ML
algorithms and communicates commands to PLCs/IPCs for actuator control.

The current suite of material handling equipment (MHE) emulation software excels at modeling detailed
robot hardware using 3D CAD data and accurate kinematics. Basic sensor data, such as photoeye based
object detection, encoders for speed, and position measurement can be directly emulated. Similarly, actual
PLCs can be connected for low-level control implementation. However, complex data processing - including
vision camera images (Figure 2) and depth point clouds (Figure 3) requires ML based feature extraction.
This capability is typically unavailable in MHE emulation software, making real-time integration with
specialized image analysis tools essential for true emulation.

Figure 2 shows example of robot vision camera image where the robot has to determine pick sequence
from bulk based on various parameters such as package type, stacking over other packages, package
bounding box, shape, etc. The MHE emulation can generate similar package presentation as shown in side
comparison. The emulation generated images (Figure 2) serve as input to ML algorithms that influence
robot movements.
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Figure 1: High-level building blocks of robotic systems.

Figure 2: Vision camera - actual vs emulation image.

Figure 3 (Banner Engineering 2025) depicts an example of an automated package sortation process
to a cart and determining accurate cart fill level is a key metric to decide when to close the container. A
vision camera captures point cloud based on package stacking which is analyzed to determine accurate fill
level. Recreating this in emulation/simulation requires real-time image processing capability for testing
various container fill scenarios. Without integrated computer vision toolkit, we have to rely on simulation
sensor component as abstraction for vision system to get attributes such as package coordinates, orientation,
stacking of packages on other packages in bulk flow, etc. This gap in vision parsed data based on CV
algorithm (deployed in actual system) vs sensor data from simulation impacts model fidelity and can be
addressed using the proposed architecture in this paper.

Figure 3: Determining accurate container fullness based on point cloud.
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2 RELEVANT RESEARCH

Digital twin technology has been used as a powerful tool for validating MHE in a warehouse (Pandey
et al. 2023). These virtual replicas of physical systems offer numerous benefits, including calculating
throughput, evaluating control logic, testing mechanics and design layouts and analyzing product flow.
Research indicates that project life-cycle can significantly be improved by integrating digital twins, leading
to system efficiency while reducing commissioning risks for live systems (Omeragic and Sokic 2020).

Simulation refers to a mathematical model that abstracts system behavior based on certain rules and
test multiple what-if scenarios. Emulation refers to recreating system behavior as close as possible to a
real deployment. Simulation is helpful for large scale model building in short time and test hypothetical
scenarios, while emulation is critical where accurate system behavior is expected and generally takes more
time in model development than simulation (Zhang et al. 2012).

Real-time image processing for warehouse automation is an area that has been explored in several
studies. For instance, (Wang and Li 2023) developed a clustering technique using the YOLO algorithm
to identify similarities in product features. (Weichert et al. 2014) presented an actuator coupling system
that uses image processing to gather and group packaging identification data in automated pick and place
systems. (Suemitsu et al. 2022) created a training model to identify optimal sequences of activities for
automated vehicle-picking systems. These ML-driven approaches also helped improve efficiency in material
handling processes, leading to more intelligent and adaptive warehouse systems.

The literature review indicates that there are multiple advancements in digital twin methodology as
well as use of image processing in domain of warehouse applications. However, there is opportunity to
integrate the benefits of both these technologies within digital twin models that will enable emulation of
vision systems for warehouse automation.

3 SIMULATION VS EMULATION VS VISION-INTEGRATED EMULATION

Warehouse design engineers rely on Factory Acceptance Tests (FAT) along with digital modeling tools such
as simulation and emulation for evaluating automation technologies and material flow analysis. Figure 4
shows the phases involved in warehouse design life cycle and compares the impact of simulation approach
vs emulation approach vs proposed vision-integrated emulation approach on each phase.

The first phase is the design phase where conceptual planning is done about system flow and different
process paths. Once the requirements are known, Request of Proposal (RFP) is submitted to vendor. During
FAT phase, the subsystem FAT is conducted to evaluate if it can meet all specifications. Once the FAT
results data are available, simulation can be correlated for ensuring confidence in model results. Emulation
can be time consuming and one-time effort for a frequently deployed robotic module, however once the
emulation is setup, it can eliminate need for onsite testing. Vision-integrated emulation provides high
fidelity behavior of vision system and eliminates need of simplified logic for extracting attributes based on
vision data. For control logic validation phase, simulation can be used for combining subsystems and run a
large scale model in short time. Emulation can be used for connecting to PLC and Warehouse Management
System. The vision-integrated emulation can be used to mimic production system behavior where external
services that use AI/ML can parse vision data in real-time and send controls feedback to emulation model.
The commissioning phase involves actual system build based on results from digital warehouse model.
From continuous improvement perspective, simulation takes least cost to run analysis, while emulation
and vision-integrated emulation require high upfront resources for one-time development but lower cost
for troubleshooting, operator training and significant savings on travel and controls software development
timeline. The choice of modeling approach depends on level of input details required for each subsystem
and expected accuracy of results.
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Figure 4: Simulation vs emulation vs vision-integrated emulation comparison for warehouse design.

4 VISION-INTEGRATED EMULATION ARCHITECTURE

The architecture consists of three main components: 1) Emulate3D for virtual MHE simulation/emulation,
2) MATLAB Interface Layer with Image Processing Toolbox, and 3) Continuous Feedback Loop as shown
in Figure 5. The Emulate3D component handles 3D modeling, physics simulation, and control system
integration. The MATLAB interface layer serves as a bridge for data conversion and offers multiple
libraries for computer vision tasks. The feedback loop creates real-time data transfer between Emulate3D
and MATLAB which enables vision based emulation.

4.1 Emulate3D for Virtual MHE Modeling

The process begins with capturing image from the Emulate3D after every fixed time interval, which are
then processed through MATLAB’s image processing pipeline (Step 1 in Figure 6). The image is captured
using camera catalog in Emulate3D. The image is then stored on local hard drive. The camera is adjusted
in such a way that it captures the entire line of sight similar to production system. The frequency at which
images are captured can be tuned to production camera frame per second specification (as shown in Figure
5 continuous feedback loop block). The next generated image can be overwritten onto the previous image
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Figure 5: Vision-integrated emulation architecture.

to optimize hard drive storage space. The same image file storage location is used in MATLAB for further
image acquisition and processing.

4.2 MATLAB for Image Processing

The MATLAB Image Processing Toolbox is used for image pre-processing and segmentation. We use
MATLAB Color Thresholder app to create binary segmentation masks based on different color spaces
(MathWorks 2025). We collected simulation images showing various package combinations (based on
package different material type, shape, etc.) and used this dataset to train and develop image processing
algorithm. Information on the model training and validation is controlled due to proprietary reasons.

Figure 6: Image processing using color thresholding technique.

Following image acquisition from Emulate3D (Step 1 in Figure 6), the pre-processing stage encompasses
two main areas: image enhancement and geometric operations. Image enhancement includes contrast
adjustment, brightness correction, sharpening/blurring operations, and color space conversions between
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formats like RGB and HSV. Color space conversion between RGB and HSV transforms colors between
two different representation systems. RGB uses three values (red, green, blue) ranging from 0-255 to
create colors by mixing, making it ideal for digital displays. HSV represents colors using Hue (color type,
0-360°), Saturation (color intensity, 0-100%), and Value (brightness, 0-100%), making it more intuitive for
human interpretation and image processing tasks. While RGB is better for display and storage purposes,
HSV is preferred for color selection, image segmentation, and object detection (Step 3 in Figure 6). We
have used HSV color space in Color Thresholder app for our case study. The geometric operations handle
tasks such as scaling, resizing, rotation, translation and cropping functions. These two initial stages form
the foundation for all subsequent image processing tasks by ensuring the input images are properly acquired
and optimized for further analysis.

Image segmentation is a mid-level vision task, where the input is a preprocessed image as shown in
step 4 of Figure 6. The output could be image attributes such as a set of points representing the edges of
object. The boundaries of objects can be defined based on discontinuity (e.g. abrupt changes in intensity)
or similarity (e.g. color, texture) as shown in step 5 of Figure 6.

4.3 Emulate3D-MATLAB Continuous Feedback Loop

The continuous feedback loop establishes bi-directional communication of Emulate3D with MATLAB.
For control logic development, we used MATLAB code editor that uses output from processed image.
Emulate3D provides connectivity to MATLAB using Tag Browser feature that enables mapping of virtual
equipment attributes to control tags in MATLAB as shown in Figure 7. The information that flows from
Emulate3D to MATLAB is image data, and from MATLAB to Emulate3D, it is the control decision in
form of on/off state and parameter values.

Figure 7: MATLAB controls input to E3D tag browser.
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5 CASE STUDY

5.1 Problem Statement

The challenge was to develop a compact yet efficient package singulation system, as existing conventional
solutions either required too much space or couldn’t achieve desired throughput rate. To address this, we
designed a conveyor belt matrix system where each belt could be controlled independently and a vision
camera system tracks incoming package positions as shown in Figure 8. The controls code was implemented
in MATLAB, which processed the visual data and applied appropriate control actions based on the identified
package characteristics.

Figure 8: Small-footprint package singulator.

5.2 Methodology

The singulator emulation model using Emulate3D and MATLAB was developed to identify system throughput
and refine singulation/gapping logic. Emulate3D generates 2D images at a frequency of 50 ms. These
images are imported into MATLAB environment for image processing. Once the individual packages are
identified, the centroid and leading/trailing edge of these packages are captured with reference to belt.
Figure 9 shows the dimensions A, B, L, W, X, Y and Z captured for every image generated for all packages
within line of sight. Using these measurements, control logic built in MATLAB adjusts individual belt
speeds to create spacing between packages.

The vision system captures the entire multi-belt section and part of the infeed belt in each image. As
packages enter the multi-belt region, they are labeled sequentially, starting from the infeed side. The control
logic works backwards, beginning with the package closest to outfeed, measuring gaps between consecutive
packages. For instance, it calculates the space between packages by measuring the distance between one
package’s trailing edge and the next package’s leading edge [like (Z4 – (Z3 +W3))]. The system follows a
simple decision-making process: if the gap between packages meets or exceeds the required threshold, the
belt speeds remain unchanged. However, when the system detects packages that are too close together (gap
below threshold), it identifies their location using the row number corresponding to the package’s center
point. For example, when packages 3 and 4 are side by side, the system identifies Row4 and specifically
targets belt (4,4) for speed adjustment as shown in step 1 of Figure 10.
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Figure 9: Example of package dimensions captured from image.

The system analyzes package dimensions to determine which conveyor belts need speed adjustments.
First, it checks package height against the standard belt width of 0.5ft. When a package is taller, like in
our example, the system includes adjacent belts on either side of the center belt. For instance, with the
package centered on belt (4,4), it expands control to belts (4,3:5) as shown in step 2 of Figure 10.

Figure 10: Step-by-step visualization of package singulation logic.

Next, the system examines package width relative to the standard belt length of 1ft. For wider packages,
it includes belts in the row behind the center point. In our example, this expands control to belts (3:4, 3:5),
creating a larger control zone as shown in step 3 of Figure 10.

The system then checks for multiple packages in the same row. In this case, package 3 and package 4
both fall in row 3. For package 3, if it’s taller than 0.5ft, the system controls belts (3,5:7). Similarly, for
package 4, it controls belts (3,3:4) and (4,3:5) as shown in step 4 of Figure 10. Based on the measured
gap between packages, these belt groups either operate at different speeds or some may temporarily stop
to maintain proper spacing. This analysis and adjustment process repeats continuously for all packages in
view, ensuring proper spacing through dynamic speed control.
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5.3 Mathematical Modeling

Model Variables: A planar image can be represented by a two-dimensional function f (X, Y). The value
of f at the spatial coordinates (X, Y) is positive and it is determined by the source of the image. If the
image is generated from a physical process, its intensity values are proportional to the energy radiated by
a physical source. Therefore, f(X, Y) must be nonzero and finite: 0 ≤ f (X ,Y ) ≤ ∞. A digital image is
represented as a M × N matrix 

f0,0 f0,1 ... f0,N−1
f1,0 f1,1 ... f1,N−1
... ... ... ...

fM−1,0 fM−1,1 ... fM−1,N−1

 .

The mathematical relation that can be established between gray-level resolution and bits per pixel can
be given as

L = 2k(k > 0).

In this equation, L refers to number of gray levels. It can also be defined as the shades of gray. k refers
to bpp or bits per pixel. The 2 raised to the power of bits per pixel is equal to the gray level resolution.
Many times, digital images take values 0, 1, 2, ..., 255, thus 256 distinct gray levels (Young et al. 1998).

From the above construction, we have Lmin ≤ L(X ,Y ) ≤ Lmax, where L(X, Y) is the gray-level at
coordinates (X, Y) within interval [Lmin,Lmax]. The intermediate values are shades varying from black to
white. With image denoising, the linear degradation model becomes

g(X ,Y ) = L(X ,Y )+n(X ,Y ).

For the case study, the conveyance system can be represented as a matrix of belts C(r,c) with r rows
and c columns. The individual conveyor speeds range from 0 to Tmax FPM (feet per min). The conveyor
velocity matrix can be represented as

Vr,c ∈ [0,Tmax].

Package Identification and Feature Extraction: MATLAB Color Thresholder app converts the grayscale
image L(X, Y) to binary image BW(L, level), by replacing all pixels in the input image with luminance
greater than threshold level with the value 1 (white) and replacing all other pixels with the value 0 (black).
The binary image BW is a black and white image in order to prepare for boundary tracing. This binary
image is preprocessed using morphology functions to remove pixels which do not belong to the objects of
interest, fill any gaps or holes to estimate the area enclosed by each of the packages. By looping over the
detected boundaries of packages and centroid locations, let x(t) represent the position of a package on a
conveyor belt at time t.

Pseudo Logic for Package Singulation: We need to consider the dynamics of package movement
and separation to formulate a differential equation (refer Figure 11). We can describe the system using
second-order differential equation

F(t) = m(dx/dt)2 +µ.N(dx/dt)

where, F(t) = forces acting on the package;
m = mass of package;
µ = coefficient of friction;
N = normal force.
Let g(t) = dynamic gap between consecutive packages.
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Figure 11: Representation of consecutive packages in direction of flow.

In order to achieve a desired gap G, the complete system could be described as

F(t) = m(dx/dt)2 +µ.N(dx/dt)+K(g(t)−G).

The gap between consecutive packages at time t is

g(t) = xi(t)− xi+1(t)−L′
i+1

where, K = proportional gain;
L’ = apparent length between leading and trailing edge of the package;

L′
i+1 = Li+1 | cosθ |+Wi+1 | cos(90−θ) |

L = actual length of the package;
W = actual width of the package;
θ= orientation angle of the package relative to the direction of travel.

Hence,

F(t) = m(dx/dt)2 +µ.N(dx/dt)+K(xi(t)− xi+1(t)−Li+1cosθ +Wi+1 | cos(90−θ) | −G).

The belt speed is changed only if the consecutive gap between packages is less than the desired gap G.

Control Belt Matrix Identification: Let C(r,c) represent matrix of independent conveyors with r rows
and c columns. Based on the consecutive package location x(t) and xi+1(t) in the direction of flow, two
groups of conveyors

C[niXmi ],

and
Ci+1[ni+1Xmi+1 ]

are identified by solving the control component from described differential equation

K(g(t)−G)≥ 0.

The identified conveyor belt speeds are dynamically changed until the gap between consecutive packages
is greater than or equal to desired gap G.
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5.4 Outcome

The conventional singulators show throughput in range of 4500 to 5500 packages per hour (PPH) depending
on package mix with ~90% singulation accuracy. For our application, our target rate was 7000 PPH but actual
tests showed the singulation accuracy dropped significantly to ~50%. Using vision-integrated emulation
(Table 1), we were able to precisely track each package and control individual matrix belt which increased
our singulation accuracy to 95%. This approach eliminated need for a gapper equipment that is required for
operation with conventional singulators and reduced singulator footprint by 64%. We were able to develop
high fidelity digital twin, determine optimal belt matrix configuration (8 x 4 belts) to meet 7K PPH target
throughput and develop controls software without need for physical machine, thus significantly optimizing
commissioning timeline.

Table 1: Comparison of conventional singulators with small-footprint singulation and gapping system.

Attribute Conventional singulators Small-footprint singulation and gapping system
System Throughput (PPH) 4500-5500 7000 7000

Singulation Accuracy ~90% ~50% 95%
Footprint (Length in ft) 27-34 11

Gapper Requirement Yes (9ft length) No

6 CHALLENGES

Current simulation tools struggle to fully replicate the complexities of real-world package handling. At
the physical level, they cannot accurately model package deformation and soft body physics, mechanical
vibrations, or critical environmental factors such as temperature, humidity, and static electricity. Vision
system simulation poses another set of challenges. Current tools inadequately render realistic lighting
conditions, shadows, and reflections, while failing to accurately represent camera characteristics like sensor
noise, lens distortion, and motion blur. Environmental influences such as dust, vibration, and changing
ambient light conditions are often oversimplified or ignored entirely. The limitations extend to processing
and performance aspects as well. Real-time processing delays, edge detection accuracy, and pattern matching
challenges are not realistically simulated. System integration aspects, particularly communication latency
and hardware timing, are often oversimplified. Perhaps the most challenging are the real-world scenarios
that resist accurate modeling - variable package orientations, damaged labels, and partial occlusion cases.
These challenges are beyond emulation scope and cannot be accurately modeled.

7 CONCLUSION

Warehouse design is a complex process that integrates various automation technologies. Simulation and
emulation tools play a crucial role in speeding up the planning phase, ensuring a high-quality launch with
minimal defects. The accuracy of these digital models is essential for making informed decisions about capital
investments and operations planning. While simulation models typically rely on simplified representations
of software and control logic, emulation models take a step further by integrating actual controls and
software to assess system performance more realistically. In this paper, we explored the components of
robotic and automation systems that can be modeled with high fidelity using existing standalone software
packages. However, we identified a significant gap in vision system modeling within current emulation tools,
necessitating integration with external software for comprehensive system representation. To address this,
we presented an architecture and case study demonstrating how emulation fidelity can be enhanced for more
effective controls software development and validation. The integration of image processing capabilities with
simulation and emulation software opens up numerous opportunities for improving warehouse automation
deployment.
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