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ABSTRACT

This paper addresses the NP-hard cloud workflow scheduling problem by proposing a novel method that
integrates Graph Neural Networks with Monte Carlo Tree Search (MCTS). Cloud workflows, represented
as Directed Acyclic Graphs, present significant scheduling challenges due to complex task dependencies
and heterogeneous resource requirements. Our method leverages Anisotropic Graph Neural Networks to
extract structural features from workflow and creates a heatmap that guides the MCTS process during both
the selection and simulation phases. Extensive experiments on workflows ranging from 30 to 110 tasks
demonstrate that our method outperforms rule-based algorithms, classic MCTS, and other learning-based
approaches; more notably, it achieves near-optimal solutions with only a 2.56% gap from exact solutions
and demonstrates exceptional scalability to completely unseen workflow sizes. This synergistic integration
of neural network patterns with Monte Carlo simulation-based search not only advances cloud workflow
scheduling but also offers valuable insights for simulation-based optimization across diverse domains.

1 INTRODUCTION

Cloud infrastructure has revolutionized computational ecosystems, enabling complex distributed applications
for data analytics, scientific simulations, and machine learning across various domains (Jalali Khalil Abadi
et al. 2024). These computational tasks are often structured into workflows, which are naturally represented
as Directed Acyclic Graphs (DAG), where vertices denote computational tasks and directed edges capture
their dependencies. As cloud computing proliferates, workflows exhibit increasing heterogeneity in structure
and resource demands. The core challenge in cloud workflow scheduling—assigning interdependent tasks
to resource containers while minimizing the total completion time (makespan)—is an NP-hard problem,
and traditional methods struggle as complexity grows (Zhou et al. 2024).

Existing workflow scheduling approaches may be categorized into three paradigms: rule-based, heuristic,
and learning-based methods. However, each of these paradigms exhibits significant limitations: rule-based
algorithms lack adaptability, heuristic methods struggle with transferability, and learning-based approaches
face scale challenges across diverse workflow structures. These limitations call for more robust approaches
to cloud workflow scheduling. Monte Carlo Tree Search offers a powerful simulation-based method to
explore decision spaces (Kemmerling et al. 2024), but the inefficient exploration strategies might affect
algorithm performance. To solve this problem, we propose a novel approach that integrates Graph Neural
Networks (GNN) with MCTS, combining GNN’s pattern recognition capabilities with MCTS’s robust
decision-making framework.

Our contributions are as follows: (1) We develop a comprehensive workflow generation framework
that captures the structural complexity and resource heterogeneity of modern cloud computing workloads.
(2) We demonstrate how Anisotropic Graph Neural Networks can effectively extract critical structural
features from workflow DAGs. (3) We propose a novel GNN-Heatmap augmented Monte Carlo Tree
Search algorithm, and validate its effectiveness and scalability for the cloud workflow scheduling problem.
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2 RELATED WORK

Cloud workflow scheduling has been widely studied due to its significance in modern computing infras-
tructures. Existing approaches can be broadly categorized into three paradigms: rule-based, heuristic, and
learning-based methods.

Rule-based algorithms rely on predefined rules to schedule tasks based on specific criteria. HEFT
(Topcuoglu et al. 2002) considers task execution times and communication costs to prioritize tasks, but is
limited to heterogeneous resource environments. Graphene (Grandl et al. 2016) focuses on packing tasks
into resource slots, but may delay less demanding but dependency-critical tasks. While rule-based algorithms
are simple and easy to implement, they require extensive parameter tuning and manual adjustments, often
lack adaptability to dynamically changing cloud environments.

Recent years have seen a surge in learning-based approaches that utilize historical data to learn patterns
and make informed scheduling decisions. Topoformer (Gagrani et al. 2022) employs diversified topological
transforms for effective message passing in DAGs, enhancing scheduling efficiency through adaptive attention
mechanisms. GoSU (Lee et al. 2021) integrates GCN and DRL to adaptively schedule DAG tasks by
prioritizing complex dependencies, achieving reduced makespan and enhanced efficiency across diverse
system configurations. However, these methods lack rigorous guarantees in unseen deployment scenarios.

Monte Carlo Tree Search is a heuristic search algorithm that combines the principles of tree search
and Monte Carlo simulation. Beyond its well-documented success in games like Go (Silver et al. 2017),
MCTS has demonstrated remarkable versatility across space(Kemmerling et al. 2024) including chemical
compound design, robotics, and optimization problems. As for cloud workflow scheduling, researchers
(Kung et al. 2022) propose to utilize existing heuristic algorithm results as initial upper bounds for MCTS
and implement novel pruning strategies, but these approaches demonstrate inconsistent performance across
diverse workflow configurations. Spear (Hu et al. 2019) first integrates a DRL agent to the expansion and
simulation phases of MCTS, but fails to leverage the critical topological structure of workflow DAGs. Lore
(Peng et al. 2022) employs GCN to learn DAG structures and train a DRL agent to guide MCTS, but
requires extensive parameter input and hyperparameter optimization, which is hard to train on large-scale
workflows.

3 PROBLEM DEFINITION AND MODEL

The cloud workflow scheduling problem can be formulated as follows: given a computational workflow
represented by a task set A = {1,2, ...,n+1} deployed on cloud infrastructure, each task i ∈A requires
processing duration di and consumes resource quantities rik for each resource type k ∈R during runtime.
Our goal is to determine each task’s start time Si within the discrete time horizon T while satisfying the
dependency constraints under the workflow DAG structure and the cloud infrastructure resource capacity
constraints, so as to minimize the overall completion time (makespan) of the workflow:

minimize Sn+1 (1)

subject to Si ≤ t +M(1− xit), ∀i ∈A , t ∈T (2)

Si ≥ t−di +1−M(1− xit), ∀i ∈A , t ∈T (3)

∑
t∈T

xi,t = di, ∀i ∈A (4)

∑
i∈A

rikxit ≤Ck, ∀k ∈R, t ∈T (5)

S j ≥ Si +di, ∀i ∈A , j ∈ Succ(i) (6)

ei ≤ Si ≤ Tmax−di. ∀i ∈A (7)
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The objective function in equation (1) minimizes the makespan, represented by the completion time of
the last virtual task n+1. Equations (2) and (3) define a binary decision variable xit , indicating whether task
i is active at time t; these constraints ensure that xit = 1 if and only if task i is being processed at time t (i.e.,
Si ≤ t < Si+di). Equation (4) guarantees that each task runs continuously for exactly its required duration.
Equation (5) guarantees that the total resource consumption across all active tasks at any time does not
exceed the available capacity for each resource type. Equation (6) maintains the workflow’s DAG structure
by ensuring that successors of task i, i.e., Succ(i), can only begin after task i completes; in particular, the
virtual task n+1 with no processing time is the successor of any other task and has no successor for itself,
which makes it always the last task of the workflow. Equation (7) enforces the earliest possible start time
ei for each task i and ensures the workflow completes within the scheduling horizon Tmax.

4 METHODOLOGY

In this section, we present our novel GNN-Heatmap augmented Monte Carlo Tree Search algorithm for
cloud workflow scheduling. We begin with an overview of classic Monte Carlo Tree Search and identify its
limitations in scheduling contexts. Next, we detail the construction of our Graph Neural Network Heatmap
that captures workflow dependencies. Finally, we demonstrate how this GNN-Heatmap integrates with
MCTS to enhance search efficiency and solution quality.

4.1 Monte Carlo Tree Search

Monte Carlo Tree Search is a simulation-based search algorithm that effectively navigates complex decision
spaces by balancing exploration and exploitation. It operates in four iterative phases: Selection, Expansion,
Simulation, and Backpropagation.

Selection: Starting from the root, the algorithm recursively selects the most promising child node until
reaching a leaf. This process is guided by the Upper Confidence Bound for Trees (UCT) policy (Kocsis and
Szepesvári 2006), which balances exploiting nodes with high estimated values, Q(s,a), against exploring
less-visited nodes:

UCT (s,a) = Q(s,a)+ c

√
ln(Np)

N(s,a)
,

where Np is the parent’s visit count, N(s,a) is the current node’s visit count, and c is the exploration
parameter.

Expansion: Once a leaf node is reached, the algorithm expands the node by adding child nodes
representing possible actions from the current state. This involves creating new nodes based on the search
tree’s current state and available actions. In classic MCTS, expansion typically occurs by randomly selecting
one available action to generate a new child node.

Simulation: The algorithm performs a simulation from the newly expanded node to estimate the
potential outcome of that node. This is done by running a quick rollout. In classic MCTS, it is often done
by randomly selecting an available action until a terminal state is reached. The simulation result is used
to evaluate the quality of the node and its potential impact on the overall search process.

Backpropagation: After the simulation, the algorithm backpropagates the simulation result up the
tree, updating the value of the nodes along the path from the leaf node to the root node. The state value of
a node is updated by the simulation results of its child nodes, and the visit count is incremented by one.

Adapting MCTS from game-playing to optimization problems like scheduling requires two key modi-
fications (Xing and Tu 2020):

Value Recording: Instead of tracking average outcomes (e.g., win rates), we record the best value
(minimum makespan) found, as optimization prioritizes extreme performance over average results.

Value Normalization: Since makespan values can span arbitrary ranges, rewards are normalized among
sibling nodes to fit the UCT framework without extensive parameter tuning. The normalized value Qnorm(s,a)

2445



Zhou, Huang, Zhang, and Chan

is calculated as:

Qnorm(s,a) =
Q(s,a)−Qw(s)
Qb(s)−Qw(s)

,

where Qb(s) and Qw(s) are the best (minimum) and worst (maximum) makespan values among the children
of state s. This scales values to a [0, 1] range, preserving the exploration-exploitation balance.

However, classic MCTS algorithm mentioned above has some limitations. In the expansion step, the
algorithm randomly selects one of the available actions, which may lead to inefficient searches and slow
convergence. In the simulation step, the algorithm randomly selects an available action until a terminal
state is reached, which may not accurately represent the true value of the node. Thus, we can train a neural
network to learn patterns from historical scheduling structures and use this knowledge to guide the MCTS
search process, potentially improving convergence speed and solution quality.

4.2 Graph Neural Network Heatmap

4.2.1 Anisotropic Graph Neural Network Encoding

Cloud workflow architectures can be modeled as the DAG denoted by G = (V,E), wherein the vertex set V
comprises computational tasks, and the directed edge set E encodes the execution dependencies between
these interconnected tasks. Graph Neural Networks have emerged as a powerful framework for learning
on graph structured data, enabling the extraction of meaningful representations from complex relational
structures. Stacking L GNN layers allows for the aggregation from L-hop neighbors.

We denote the d-dimensional feature vector of node i at layer ℓ as xℓi , and for each edge connecting nodes
i and j, we denote the edge feature as wℓ

i j. To facilitate efficient message passing and feature aggregation for
DAG structure, we introduce extended edges and self-loop edges, shown in the left of Figure 1. Extended
edges allow nodes to propagate information beyond original dependencies, while self-loop edges ensure
that each node retains a portion of its original feature during updates. This structure is critical for DAG’s
architecture, enabling efficient long-range information flow and preserving essential node-specific features
during message passing. In this paper, the input features of the node are the task resource requirements and
its duration, and the input features of the edge are varying from [1,0,0], [0,1,0] and [0,0,1], representing
the type of the edge among original dependencies, extended edges and self-loop edges.

After establishing this enhanced graph structure, we implement the Anisotropic Graph Neural Network
encoding recommended by (Joshi et al. 2019) as follows:

xℓ+1
i = xℓi +RELU

(
BN

(
U ℓxℓi +AGGR j∈Ni

(
σ(wℓ

i j)⊙V ℓxℓj
)))

, (8)

wℓ+1
i j = wℓ

i j +RELU
(

BN
(

Rℓwℓ
i j +Sℓxℓi +T ℓxℓj

))
, (9)

where U ℓ,V ℓ,Rℓ,Sℓ,T ℓ ∈ Rd×d are learnable parameters, Ni represents the neighborhood of node i,
AGGR is the neighborhood aggregation function, σ is the sigmoid function that gates the importance of edge
features, ⊙ is the element-wise multiplication, and BN is the batch normalization function that stabilizes
training. On the right of Figure 1, we show the message passing process of the Anisotropic GNN. In each
update step, nodes aggregate information from their neighbors (yellow arrows) while edges dynamically
adjust their features based on node interactions (red arrows). This bidirectional updating process allows
nodes and edges to refine their representations iteratively, capturing complex dependencies in the workflow
graph structure.

4.2.2 Process of Decoding

The decoding process transforms the final GNN edge features, wL
i j, into a heatmap that provides probability

scores for each edge, guiding the scheduling process. This transformation is achieved through a multi-layer
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Figure 1: Left: original dependencies, extended edges and self-loop edges for DAG; Right: message passing
of Anisotropic GNN.

Figure 2: Description of the solution construction process of GNN-Heatmap using sampling methods.

fully connected network. First, the edge features wL
i j are transformed into the initial heatmap layer M0.

This is followed by H−1 hidden layers processed with RELU activation functions. Finally, an output layer
with a Sigmoid function compresses the tensor into a two-dimensional edge score matrix MH ∈ Rn×n×1,
as follows:

M0 = transform
(
wL

i j
)
, M0 ∈ Rn×n×d

Mh = RELU
(

W h
f M

h−1 +bh
f

)
, h = 1, . . . ,H−1

MH = σ
(
W H

f MH−1 +bH
f
)
. MH ∈ Rn×n×1

(10)

After obtaining the Anisotropic Graph Neural Network Heatmap (GNN-Heatmap), we need to use it
to generate the scheduling solution. Figure 2 shows an example of stochastic sampling methods. It starts
from the root node, and iteratively selects the next task to be scheduled based on the probability scores
of the GNN-Heatmap. The Mask matrix is used to ensure that the selected task is valid and satisfies the
dependency constraints. Other sampling methods such as greedy search and beam search will be discussed
in the Section 5.2.

4.2.3 Training Strategy

In this paper, we use Reinforcement Learning to train the GNN-Heatmap. The training process is based
on the policy gradient, which aims to minimize the expected makespan C given the workflow instance d:

L (θ | d) = Eπ∼πθ
[C(π)] ,
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where πθ is the policy network parameterized by θ . We can calculate the policy gradient using the
REINFORCE algorithm (Williams 1992):

∇θ L (θ | d) = Eπ∼πθ
[(C(π)−b(d)) ·∇θ logπθ ] ,

where b(d) is the baseline function, which is used to reduce the variance of the policy gradient. In
practice, we use the Monte Carlo method to estimate the expected makespan C(π) and the baseline function
b(d). First we stochastically sample T trajectories τ from the GNN-Heatmap, and then we calculate the
expected makespan C(τ) and the baseline function b(d) using the greedy search method. To eliminate
the mean differences between batches and reduce the variance, we adopt the central self-critical form
recommended by (Ma et al. 2019) and (Xiao et al. 2024):

∇L (θ) =
1
B

B

∑
i=1

[(C(π)−b(d)−ω) ·∇ logπθ ] ,

ω =
1
B

B

∑
i=1

(C(π)−b(d)),

where B is the batch size. The overall training process is shown in Algorithm 1.

Algorithm 1 Training Process for GNN-Heatmap
Require: Training iterations I, steps per iteration S, mini-batch size B, validation size V

1: Initialize model parameters θ , set best validation loss L ∗←+∞

2: Generate validation instances Dval with size V
3: for iteration i = 1 to I do
4: for optimization step k = 1 to S do
5: Sample training batch Dtr with B instances
6: Compute node features xℓi and edge features wℓ

i j with equation (8) and (9)
7: Obtain the GNN-Heatmap M with the decoding process in equation (10)
8: Compute stochastic policy πθ , trajectories τ ← T times stochastic sampling(M,T )
9: Generate baseline solution s∗← Greedy Search(M)

10: Calculate policy gradient ∇θ L (θ)← 1
B ∑

B
i=1[(C(τ)−b(d)−ω) ·∇θ logπθ ]

11: Update parameters via θ ← Optimizer(θ ,∇θ L (θ))

12: Evaluate on validation set: Mval← fθ (Dval)
13: Compute validation solutions sval← T times stochastic sampling(Mval,T )
14: if E[C(sval)]< L ∗ then
15: Update L ∗← E[C(sval)]
16: Store best parameters θ ∗← θ

4.3 Augmented Monte Carlo Tree Search

After obtaining the GNN-Heatmap, we can use it to augment the classic MCTS mentioned in Section 4.1.
In the selection step, we can use the GNN-Heatmap to guide the search process. Inspired by methods that
incorporate prior knowledge into the search policy (Silver et al. 2017), we integrate the GNN-Heatmap’s
probability score P(s,a) into the UCT formula:

UCTGNN−Heatmap(s,a) = Q(s,a)+ cP(s,a)

√
ln(Np)

N(s,a)
,
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where P(s,a) is the prior probability provided by the GNN-Heatmap. This modified policy balances
exploitation by favoring nodes with high estimated values (Q(s,a)) and exploration by prioritizing moves
that are both promising (high P(s,a)) and less-visited. In the simulation step, instead of randomly selecting
an available action in each step of the rollout, we can use the GNN-Heatmap to sample the available action
with the higher probability score. This can help accurately represent the true value of the node, thus leading
the search process to the optimal solution. The overall framework of GNN-Heatmap augmented MCTS is
illustrated in Figure 3.

Figure 3: GNN-Heatmap augmented Monte Carlo Tree Search.

5 EXPERIMENTS

5.1 Generation of Workflow

In this paper, we adopt and implement the workflow generation methods from (Peng et al. 2022) and
(Arabnejad and Barbosa 2014) to generate training data and test data for evaluating the performance of the
proposed method. The generation rules are as follows:

n: Reflects the number of tasks in the DAG.
fat: This parameter governs the structural proportions of the DAG and is selected from {0.5,1,1.5,2,3}.

It influences the task distribution across DAG layers, where the number of tasks per level approximates a
normal distribution with mean µ =

√
n/fat. The DAG’s height (total number of layers) expands until all n

tasks have been incorporated into the structure. Larger fat values produce DAGs with greater breadth and
enhanced parallelization opportunities, while smaller values create taller, more sequential structures with
constrained parallel execution possibilities.

density: Determines the maximum out-degree of a task, selected from {2, 3, 4, 5}. This parameter
controls the number of edges between consecutive levels, with lower values resulting in sparse connectivity
and higher values creating dense dependency networks.

regularity: Controls the uniformity of task distribution across levels, represented as the variance σ2 of
the normal distribution that generates the number of tasks per level. Values range from {0.5,1,2,3,4}, where
lower values indicate heterogeneous levels and higher values produce more uniform task distributions.

Here we give an example of a DAG generated by the above parameters in Figure 4.
We consider three typical cloud computing resources (CPU, memory, and disk storage) with capacity

limits CCPU = 24, CMEM = 64 GB, and CDISK = 1000 GB, simulating modern cloud infrastructure con-
figurations. Resource requirements are modeled based on four distinct task types, with equal probability:
compute-intensive, memory-intensive, storage-intensive, and non-intensive tasks. Intensive tasks are as-
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Figure 4: Example of a parameterized workflow DAG. The STA and END nodes represent dummy source
and sink nodes, to standardize workflow entry and exit points.

signed randomly from 25% to 50% of the corresponding resource capacity, while non-intensive tasks are
assigned from 2% to 10%. The task duration is uniformly distributed between 3 and 12 minutes, simulating
realistic task complexities.

5.2 Baselines

The proposed method aimed at minimizing the makespan is compared with the following baselines:
CP: The Critical Path (CP) method, a classic heuristic that prioritizes tasks on the longest execution

path of the workflow. To implement this, we adopt the upward ranking value from the Heterogeneous
Earliest Finish Time (HEFT) algorithm (Topcuoglu et al. 2002):

priority(vi) = wi + max
v j∈succ(vi)

{priority(v j)},

where wi represents the execution time of task vi, and succ(vi) denotes the set of immediate successor tasks
of vi. HEFT schedules tasks in descending order of priority to ensure most critical tasks are allocated first.

Graphene: A scheduling algorithm that focuses on the complex dependency structures of the workflow
and heterogeneous resource requirements (Grandl et al. 2016). It first identifies "troublesome tasks" - those
with long execution times or complex resource requirements that could become bottlenecks. These are
identified using LongScore (task duration divided by maximum task duration) and FragScore (minimum
ratio of resource capacity to task demand across all resource types). The algorithm then partitions the
workflow DAG into four distinct subsets and schedules them in a carefully determined order that ensures
optimal resource utilization while preventing potential execution bottlenecks.
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IP: Integer Programming. In this paper, we use the Gurobi solver to solve the Integer Programming
model defined in Section 3.

Classic MCTS: Classic Monte Carlo Tree Search algorithm, which is defined in the Section 4.1.
Random search: A random search algorithm that randomly selects an available task at each step. It

is not guided by any heuristic or prior knowledge. This process is inherently parallelized.
Stochastic sampling: Based on the probability scores of the GNN-Heatmap, the stochastic sampling

algorithm randomly selects an available task at each step, with the probability of selecting each task
proportional to its score. It allows for exploration of different scheduling configurations, potentially leading
to diverse solutions. This process is inherently parallelized.

Greedy search: Based on the probability scores of the GNN-Heatmap, the greedy search algorithm
selects an available task with the highest score at each step.

Beam search: Based on the probability scores of the GNN-Heatmap, the beam search algorithm main-
tains a fixed number of the best candidate solutions at each step. It explores multiple paths simultaneously,
allowing for a more comprehensive search of the solution space. This process is inherently parallelized.

End2End: a neural network-based approach, which uses an Encoder-Decoder architecture to generate
scheduling solutions directly from the workflow DAG. In this paper, the Encoder part is based on the
Anisotropic Graph Neural Network encoding method described in Section 4.2.1, and for the Decoder part,
we refer to the procedures in (Kool et al. 2019) and (Cai et al. 2024):

At each step t, the Decoder constructs an initial context vector x̂C
t by concatenating the embeddings of

the last scheduled task (xL
πt−1

), available tasks (xava), and the global graph (xG). This vector then serves as
the query in a standard Multi-Head Attention (MHA) operation:

xC
i = MHA(Q = x̂C

t ,K = {xL
1 , . . . ,x

L
n},V = {xL

1 , . . . ,x
L
n}),

where Q, K, and V are the query, key, and value inputs for the M-headed attention mechanism (M = 8).
The resulting context-aware embedding xC

i is used to compute attention scores zi j, which are then normalized
into probabilities p̂i j:

zi j =

C · tanh
(

(WQxC
i )

T (WKxL
j )√

d

)
if task j is available

−∞ otherwise
,

p̂i j = Softmax(zi j/T ).

A clipping coefficient C (typically 10) prevents exploding gradients. The temperature T controls
the distribution’s sharpness, with higher values (T = 1) for exploration during training and lower values
(T = 0.6) for exploitation during evaluation.

5.3 Experimental Settings

In the encoding process, we set the number of GNN layers L = 8 and the dimension of the GNN model
d = 64. In the decoding process, we set the number of fully connected layers H = 3. In the training process,
we set the batch size B = 16, the validation size V = 20, the training iterations I = 150, and the steps per
iteration S = 16. We use the Adam optimizer with a learning rate of 3×10−4. As for the MCTS, we set
the number of simulations in each layer N = 300 and the coefficient c = 1.4.

6 RESULTS

6.1 Makespan Performance

We compare the performance of the proposed GNN-Heatmap augmented MCTS with the baselines on
the workflow scheduling problem. We conduct our experiments on the generated workflows mentioned in

2451



Zhou, Huang, Zhang, and Chan

Section 5.1, with different sizes of 30, 50, 70, and 110 tasks. For each size of the workflow, we generate
500 instances for training and 50 instances for testing.

Figure 5 illustrates the average makespan performance across different workflow sizes. For these
learning-based methods (greedy search, beam search, stochastic sampling, End2End), they perform better
than rule-based methods (CP and Graphene). The Anisotropic GNN demonstrates strong feature extraction
capability from DAG structures, enabling these methods to obtain near-optimal solutions in a short time.
However, they are not as good as the classic MCTS. Our proposed method, which leverages the Anisotropic
GNN-Heatmap to augment the classic MCTS, consistently outperforms other baseline methods across all
workflow sizes. For small workflows (30 tasks), our method shows very competitive performance compared
with the IP. As workflow size increases to 50, 70, and 110, our method demonstrates the best performance,
achieving the lowest makespan among all methods.

Figure 5: Performances of different methods. Left: Average makespan performances. Random, sampling
and beam search are run with 300×n parallel searches. We solve the IP model using Gurobi for the sizes
of 30 and 50. Right: Average evaluation time. We set the time limit of Gurobi for 15 minutes and 30
minutes for the sizes of 30 and 50 respectively, with 5% tolerance relative gap.

Table 1 presents the performance relative gap of each algorithm across different workflow sizes, where
the gap is calculated as the difference between the solution makespan and optimal makespan, normalized
by the optimal makespan. Based on IP solution tolerance gaps below 5%, we categorize instances into
optimal (Opt.), non-optimal (Not Opt.), and all the instances (All). For size 30 instances with optimal
IP solutions (3.36% tolerance), our method achieves a mere 1.99% gap from IP solutions. For size 50
instances with optimal IP solutions (3.49% tolerance), our method maintains a 3.30% gap; remarkably,
when IP solutions are suboptimal (28.49% tolerance), our method outperforms IP. For larger instances (70
and 110 tasks) where IP fails to converge, our method consistently achieves optimal performance against all
baselines. These results demonstrate that our approach reliably converges to high-quality solutions across
both optimally solved and challenging instances, indicating superior robustness and convergence capability.

Table 1: Performance relative gap, with lower values indicating better performance. Best performance
(0%) is marked in bold.

size IP Status
(Average tolerance

relative gap)

Average Performance Relative Gap
CP Graph- Random Samp- Greedy Beam End2 MCTS GNN- IP

ene ling End MCTS

30
Opt. (3.36%) 50.88% 21.27% 11.86% 5.62% 19.07% 8.76% 14.87% 5.39% 1.99% 0.00%

Not Opt. (7.93%) 66.20% 33.97% 19.76% 10.57% 27.21% 15.60% 21.75% 9.36% 4.89% 0.00%
All (4.18%) 53.09% 23.10% 13.00% 6.34% 20.25% 9.75% 15.86% 5.96% 2.56% 0.00%

50
Opt. (3.49%) 59.32% 29.00% 15.92% 8.71% 25.37% 14.97% 20.07% 7.23% 3.30% 0.00%

Not Opt. (28.49%) 74.49% 26.66% 18.38% 8.15% 24.35% 14.21% 17.37% 6.77% 0.00% 29.51%
All (17.99%) 64.89% 30.83% 15.64% 7.00% 23.21% 13.08% 18.75% 5.59% 0.00% 13.60%

70 All (-) 73.26% 31.76% 19.77% 8.72% 22.09% 15.70% 19.19% 8.14% 0.00% -
110 All (-) 89.21% 30.52% 20.96% 10.09% 22.64% 17.95% 19.51% 10.46% 0.00% -
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6.2 Scalability

We also evaluate the scalability of the proposed method on unseen workflow sizes. Specifically, we construct
a mixed training dataset consisting of 250 instances of size 30 workflows and 250 instances of size 50
workflows (500 instances total), and evaluate its performance on completely unseen workflow sizes: 60,
70, and 90 tasks, with each size containing 50 instances.

Table 2 shows the performance relative gap of the proposed method and the baselines on unseen
workflow sizes. The performance relative gap of the Graphene, classic MCTS, and parallelized searching
methods (Random, Sampling) is stable across different workflow sizes. However, the performance relative
gap of the learning-based methods (greedy search, beam search, End2End) increases significantly. For
example, the greedy search algorithm’s gap increases from 23.87% at size 60 to 30.10% at size 90,
while beam search deteriorates from 20.42% to 26.86%. In contrast, our method consistently maintains
optimal performance across all unseen workflow sizes, demonstrating superior scalability compared to pure
learning-based approaches, which struggle with structural variations in larger workflows.

Table 2: Performance relative gap demonstrating the scalability. The training dataset is composed of
workflow sizes 30 and 50 only. Best performance (0%) is marked in bold.

size CP Graphene Random Sampling Greedy Beam End2End MCTS GNN-MCTS
60 82.13% 28.60% 18.35% 9.33% 23.87% 20.42% 21.70% 7.38% 0.00%
70 73.58% 30.27% 18.65% 9.85% 26.00% 21.38% 24.84% 8.40% 0.00%
90 87.60% 29.51% 21.96% 11.47% 30.10% 26.86% 28.13% 10.37% 0.00%

7 CONCLUSION AND DISCUSSION

In this paper, we propose a GNN-Heatmap augmented Monte Carlo Tree Search algorithm, to solve the
cloud workflow scheduling problem in heterogeneous environments. The GNN-Heatmap is designed to
learn the complex dependencies of the workflow and augment the classic MCTS in the selection and
simulation steps. The experimental results show that our proposed method is superior to the baselines in
terms of makespan performance and better scalability on unseen workflow sizes.

However, there are still many potential extensions for this work. First, while our method demonstrates
robust performance across synthetic workflows with varying structural parameters, future work could
explore GNN-Heatmap behavior across distinct DAG topologies (sparse vs. dense, layered vs. irregular)
and analyze failure cases where neural guidance misguides MCTS to enhance reliability. Second, to further
strengthen the practical impact of our findings beyond synthetic distributions, future research could focus
on validating our approach using actual workflows sourced from cloud providers.

Fundamentally, our approach advances Monte Carlo simulation techniques for complex optimization
across diverse domains, offering valuable insights for network traffic orchestration, manufacturing systems,
and healthcare operations modeling.
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