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ABSTRACT

Ensuring reliability of energy systems is critical for maintaining a secure and adequate energy supply,
especially as the integration of renewable energy increases systems’ complexity and variability. Digital
Twins offer a promising approach for data-driven reliability assessment and decision support in energy
systems. Digital Twins provide decision support by dynamically modeling and analyzing system reliability
using real-time data to create a digital replica of the physical counterpart. As modern energy systems
generate vast amounts of data, it is essential to precisely define the data required for enabling Digital Twins
for their reliability assessment. In this paper, we systematically investigate the data requirements for
reliability-oriented Digital Twins for energy systems and propose a structured categorization of these
requirements. To illustrate our findings, we present a case study demonstrating the link between data and
model extraction for enhancing system reliability.

1 INTRODUCTION

Ensuring reliability of energy systems is important to maintain an adequate and secure energy supply, which
has a direct impact on industrial productivity, economic stability and critical infrastructure. With the
increasing share of Renewable Energy Sources (RES), the reliability of power systems is challenged by
intermittent supply, unexpected disturbances and demand mismatches (Johnson et al. 2019; Denholm et al.
2020). While the impact of the probabilistic nature of RES on the adequacy of the power system has been
well studied, more attention needs to be paid to the reliability of the renewable energy systems and power
conversion systems (Niu et al. 2021). Unlike traditional power plants, which operate with predictable
output, renewable energy generation is subject to variability due to weather, equipment degradation and
external interactions. Failure of individual renewable components, such as inverters, battery storage or
photovoltaic cells, can result in degraded performance or insufficient output (Sonawane et al. 2023). As
managing renewable energy systems and ensuring the reliability of their electrical equipment becomes more
complex, it is important to use advanced digital and data-driven techniques to assess the reliability of energy
systems throughout their lifecycle (Li and He 2021).

The rapid evolution of digital technologies has paved the way for data-driven reliability assessments in
energy systems. The integration of data-driven reliability assessment with Digital Twins (DTs) offers a
transformative approach to improving reliability of future power systems (Song et al. 2023). DTs can enable
real-time monitoring, predictive maintenance, and optimization capabilities (Li and He 2021). DTs can also
address various challenges in smart energy systems, including digitization and socio-
economic/environmental transitions and can enable remote monitoring, condition assessment, fault
diagnosis, and optimization of renewable energy systems, transmission equipment and storage systems
(Ardebili et al. 2021). Numerous research papers have demonstrated DTs’ ability to improve reliability of
various energy systems and revolutionize the energy sector (e.g., predicting failures and optimizing
maintenance strategies) (Yu et al. 2022; Jafari et al. 2023). As the world faces the challenges of integrating
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renewable energy sources and optimizing energy consumption, the role of DTs in creating more sustainable
and resilient energy systems has become increasingly important.

A key feature of DTs is their bidirectional connection to physical systems, with data flowing both from
the physical system to the DT and vice versa. The underlying models of DTs rely on a continuous flow of
high-quality data to accurately represent and simulate their physical counterparts (Glaessgen and Stargel
2012). The continuous exchange of information between the physical system and its DT allows for adaptive
updates and dynamic feedback. This adaptability enables DTs to proactively respond to emerging issues
and provide decision support to support a more stable, responsive, and sustainable energy infrastructures.

To enable the development and implementation of DTs in energy systems, it is essential to understand
and address the data requirements that enable and facilitate their implementation and functionality. Even
more importantly, data needs to be matched to the purpose of each specific DT (Lazarova-Molnar 2025).
Our focus is on DTs for assessment of reliability of energy systems. Accuracy and effectiveness of DTs is
directly related to the quantity, quality, and timeliness of the data they receive (Ebrahimi 2019).

To illustrate the data requirements for reliability-oriented DTs in energy systems, we present a case
study of a small photovoltaic (PV) system. Based on literature insights, this case study identifies essential
data required for reliability assessment (such as sensor data, fault records, and environmental factors) and
demonstrates the extraction of reliability models from real system data. The study helps illustrate the
theoretical concepts and data collection challenges in DT implementation.

In this case study, we aim to explore and define the essential data requirements for effective
development and implementation of DTs for reliability assessment of energy systems. We begin by
identifying essential system-level parameters (state and condition monitoring data) to model the reliability
of the energy system (in this case a small photovoltaic system). Using these insights, we build a case study
to demonstrate how a DT can use this data to reduce outages and improve fault analysis. Our case study is
based on the Fault Tree (FT) reliability models that the DT automatically discovers from system data and
then uses to assess system reliability. The simulated data includes FT basic events such as sensor data, fault
records, and environmental factors that affect component performance.

In this paper, we begin with a literature review of the related work on energy system reliability using
DTs in Section 2. Then we identify the data requirements for using DTs to maintain reliability of energy
systems in Section 3. After that, we demonstrate the extraction of reliability models from energy system
data with an illustrative case study in Section 4. Finally, we summarize our findings and discuss potential
extensions of this work in Section 5.

2 BACKGROUND AND RELATED WORK

In the following, we provide a background on reliability assessment in energy systems, as well as an
overview on the use of Digital Twins (DTs) in energy systems.

2.1 Reliability of Energy Systems

Reliability of energy systems has two fundamental facets: security and adequacy (Tuinema et al. 2020).
Adequacy is the system's ability to meet demand under normal operating conditions, while security is the
system's ability to withstand disturbances like outages or extreme weather events (Fulli et al. 2016). Each
facet of reliability requires different categories of data to support the functionality of a reliability-oriented
DT. For example, the data required to assess reliability of a component’s availability (adequacy) differs
from the data required to assess a component's remaining service life (security).

Traditional reliability assessments of energy systems are often characterized by limited automation and
heavy dependence on manual methods. Reliability is typically evaluated using analytical methods using
classical models (e.g., event trees, FTs, or reliability block diagrams) and simulation methods (e.g., Monte
Carlo) (Hou et al. 2021). However, the increasing complexity and dynamic nature of modern energy
systems, and rapidly evolving energy networks, incorporating renewable energy sources, smart grids and
distributed energy resources, requires continuous and adaptive reliability assessment (Bera et al. 2020). To
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enable continuous and adaptive reliability assessment, automated reliability assessment methods are
becoming increasingly relevant (Bertozzi et al., n.d.; Duchesne et al. 2020).

Fault Tree Analysis (FTA), for example, is a widely used reliability assessment technique that allows
the identification of critical failure paths by analyzing the logical dependencies between component failures
(Trivedi and Bobbio 2017). FTA consists of two main approaches: qualitative and quantitative. The
qualitative approach focuses on analyzing the structure and components of the FT, while the quantitative
approach focuses on calculating key metrics such as failure probabilities and system reliability using the
FT (Trivedi and Bobbio 2017). However, FTA is typically based on expert-knowledge rather than
observable data from the system (Niloofar and Lazarova-Molnar 2023).

Recent advances in FT extraction have focused on automated, data-driven methods. For example,
Verkuil et al. (2022) used the C4.5 decision tree and LIFT algorithm (Learning FTs from Observational
Data) to generate explainable FTs from sensor data (Nauta et al. 2018). Grimmeisen et al. (2022) introduced
a case study on model-to-model transformation to derive FTs from DTs, integrating them with Markov
chains for continuous reliability assessment. Niloofar and Lazarova-Molnar (2023) introduced their
DDFTA algorithm, using a naive Bayes classifier to predict failures from time series data. These approaches
improve the adaptability and accuracy of reliability assessment for complex power and industrial systems.

2.2 Digital Twins for Reliability of Energy Systems

DTs are high-fidelity digital replicas of physical systems that continuously collect and analyze data for
informed decision making. The concept originated at NASA in the 1960s as a “living model” for the Apollo
program (Allen 2021) and was later introduced to industry by Michael Grieves in 2002 (Grieves and Vickers
2017). In 2012, NASA defined DTs as integrated, multiphysics, multiscale, and probabilistic simulations
of a system that use physical models, sensor updates, and operational history to mirror its corresponding
physical twin (Glaessgen and Stargel 2012). Since then, the concept of DT has evolved to use advanced
technologies such as smart sensors, smart devices, cloud platforms, artificial intelligence (Al), and the
Internet of Energy (IoE) in electric grids (Sifat et al. 2023).

In energy systems, DTs serve as virtual entities that replicate the properties, behaviors, and interactions
of physical energy assets such as power plants, grids, and substations (Song et al. 2023). They enable real-
time monitoring, performance optimization, and predictive maintenance by creating a continuous feedback
loop between the physical and virtual worlds (Palensky et al. 2022; Pan et al. 2020). DTs are transforming
energy systems by enhancing efficiency, reliability, and sustainability across various sectors, including
power generation, transmission, distribution, energy storage, industrial management, and smart cities
(Mchirgui et al. 2024). DTs are increasingly used in various facets of energy systems to improve
cybersecurity, efficiency, sustainability, and reliability (Jafari et al. 2023; Cali et al. 2023).

Other studies have demonstrated the capabilities of DTs in virtual simulation, condition monitoring,
performance optimization, and fault diagnosis for renewable energy systems (Li and He 2021). For
example, De Kooning et al. (2021) provide a comprehensive review of modeling techniques for wind
turbine components in the context of DTs for wind energy conversion systems. Similarly, Augustyn et al.
(2021) presents a probabilistic framework for updating the structural reliability of offshore wind turbine
substructures with DTs. However, these studies focus primarily on component modeling and structural
reliability, respectively, without considering the overall system reliability.

Despite significant advances in DT research, there remains a research gap in the existing literature
regarding the development and implementation of DTs for energy system reliability. This gap highlights
the need for more focused research efforts to bridge the gap between DT technology with advanced
reliability assessment methods for energy systems. While the potential benefits of DTs for improving
energy reliability are clear, the data required to automatically create accurate reliability models (i.e., digital
replicas) are not well defined. This limitation underscores the need for further research into the data
requirements for DTs in power systems, through case study analysis, which can provide practical insights
into implementation challenges and best practices.
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3 DATA REQUIREMENTS FOR RELIABILITY-ORIENTED DIGITAL TWINS OF
ENERGY SYSTEMS

Data generated by energy systems can be used as input to DTs to simulate system behavior and enable
informed decisions to improve reliability. However, the effectiveness of DTs in improving energy system
reliability is fundamentally dependent on the quantity, quality and timeliness of the data provided.
Therefore, to develop and implement reliability-oriented DTs for energy systems, it is essential to identify
and categorize the necessary data sources. This section defines the data required for DT implementation
and their potential sources.

3.1 Reliability Models for Energy Systems

To determine the data requirements for DTs aimed at enhancing the reliability of energy systems, it is first
necessary to understand the underlying reliability models that are used to evaluate them. Reliability
assessment is typically performed using either analytical models or simulation models. Tuinema et al.
(2020) outline three main categories of reliability modeling relevant to energy systems: components, small
systems, and large systems. While small systems allow for component-level modeling, large systems
require aggregation approaches due to their complexity and scale. Below is an overview of reliability
models for energy systems.

3.1.1 Reliability Models of Components in Energy Systems

Component reliability models form the basis of reliability analysis for energy systems. Typical approaches
to component reliability modeling include the use of probability distributions such as the exponential,
Weibull, or bathtub curve (Trivedi and Bobbio 2017). Each distribution is represented by a Probability
Density Function (PDFs) done through parameters such as failure rate (1) and repair rate (u). The
exponential distribution is widely used to describe random failures characterized by a constant failure rate
(steady-state operation) such as an electronic component like circuit breakers and relays. The PDF of an
exponential distribution is f(t) = Ae~*f, where 1 is the constant failure rate and t is time. The Weibull
distribution, on the other hand, can describe components with non-constant failure rates (age-dependent
operation) such as a mechanical component like wind turbine gearboxes and bearings. The PDF of a
Weibull distribution is expressed as
-1 t B
£ = E(E)B e G

n\n

where [ is a shape parameter (f = 0), and 77 is a scale parameter (7 = 0). For a shape parameter § < 1,
B =1,and f > 1, the failure rate is decreasing, constant, and increasing over time, respectively.
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failures failures

failure rate X
=
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Figure 1: The Bathtub Curve.
The Bathtub curve (Figure 1) describes component failure rates over the entire life cycle: an initial high

rate from early defects, a constant rate from random failures, and a rising rate in the wear-out phase due to
aging and degradation.
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Another approach to component reliability modeling is the two-state Markov model (Tuinema et al.
2020), which represents components in two states, either available (up) state or unavailable (down) state,
suitable for repairable systems. The probabilities of these states are represented by:

- - K = A _
Psup + Psdown - 1’ Psup - A+ u - A’ PSdown - A+ u - U’

where Psup the probability of the up state which equals the availability A of the component, and Ps,  the

probability of the down state which equals the unavailability U of the component. Therefore, to model the
reliability of components, data on failure times and repair times is required.

3.1.2 Reliability Models of Small Energy Systems

Small energy systems consist of several components. Common reliability models for small energy systems
are reliability networks, FTs, event trees and Markov models. For example, Fault Tree Analysis (FTA)
systematically identifies potential failure modes and their logical links to system-level failures, offering
qualitative insight into critical failure paths and quantitative metrics such as system reliability and failure
probabilities (Tuinema et al. 2020). In FTA, a top event is the undesired system failure being analyzed,
intermediate events are failures caused by other events, and basic events are the simplest occurrences that
represent component-level faults. System failure probabilities are derived from basic events probabilities
using Boolean logic (Niloofar and Lazarova-Molnar 2023). Markov models are also effective for reliability
modeling of small energy systems, especially for capturing various states of the same components (Tuinema
et al. 2020). Thus, modeling reliability of small systems requires data on component failure probabilities,
system architecture/topology, and interdependencies between components.

3.1.3 Reliability Models of Large Energy Systems

For larger energy systems, modeling each component state would result in an extremely complicated model.
Therefore, there are reliability methods specific to larger systems, such as state enumeration and Monte
Carlo simulations. State enumeration considers system states defined by different combinations of
component states to determine failure probabilities and impacts. When analytical enumeration is
impractical, Monte Carlo simulation can be used. Monte Carlo simulation estimates system reliability by
simulating random failure scenarios to evaluate their impact on system reliability. Both methods are used
to calculate probabilistic reliability indicators such as Loss of Load Probability (LOLP) or Expected Energy
Not Supplied (EENS). These methods typically require data on component failure rates, operational loads,
and generation profiles to accurately model system reliability (Tuinema et al. 2020).

3.2 Categorizing Data for Enabling Reliability-Oriented Digital Twins in Energy Systems

Reliability-oriented DTs in energy systems require a variety of data to support the modeling techniques
introduced in Section 3.1. Kasper et al. (2022) emphasize that effective DT platforms must meet the specific
data and integration needs of industrial energy systems. The data needed for automatic reliability
assessment of an energy system can be grouped into state data and condition monitoring data. Both are
represented as time series and are critical for learning reliability models of energy systems.

State data captures discrete states of system components over time, such as operating states and fault
events. Typically in the form of fault records of system components, this data enables automatic learning
of systems’ reliability models, such as a FTs (Niloofar and Lazarova-Molnar 2023; Dai et al. 2022).
Condition monitoring data, on the other hand, includes continuous sensor readings, such as temperature,
voltage, vibration, and pressure, providing insights into component health. This data can be used to
automatically detect degradation patterns and estimate failure rates through probability distribution fitting
or machine learning (e.g., Weibull or exponential models) (Friederich et al. 2021; Li and He 2021).

Based on the reviewed literature, we categorize the data sources essential for reliability-oriented DTs
for energy systems into four application-specific categories: component-level, system-level, environmental
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data, and expert knowledge. Component-level data include component’s operating parameters and
performance metrics used to estimate component health and failure rates. System-level data capture
interactions between components and system performance metrics to identify potential failure modes for
small system as noted in Section 3.1. Examples include system topology, unit capacity, and load.
Environmental data capture external factors affecting system reliability, such as weather conditions and
grid stability information. This kind of data allows DT models to respond to changing external conditions,
improving overall reliability. Finally, expert knowledge supports validation of DTs’ underlying reliability
models with respect to behaviors of corresponding real-world systems. Figure 2 illustrates these four data
categories hierarchically according to the scope of integration and relevance to reliability-oriented DTs.

Condition
Monitoring

§~—< T
8 pattern

State Data

M

Failure &
Repair Rates
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- Models
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Component Level System Level

Figure 2: Levels of data sources essential for reliability-oriented DT in energy systems specific to the
application.

3.3  Linking Reliability Models to Data for Reliability-Oriented Digital Twins of Energy Systems

This section links the reliability models discussed in Section 3.1 with the corresponding data requirements
outlined in Section 3.2. Table 1 outlines the specific data needed for reliability-oriented DT in energy
systems, based on different reliability models, allowing for automated model extraction and adaptation.

4 ILLUSTRATIVE CASE STUDY

In the following, we present a case study to illustrate the data requirements for extraction of reliability
models from energy system data to enable Fault Trees (FTs) as underlying models for reliability-oriented
DTs for energy systems. The goal is to identify the data needed to accurately reconstruct the original
reliability model from a state log using a data-driven method. For FT model extraction, we use the Data-
Driven Fault Tree Analysis (DDFTA) method, as introduced by Niloofar and Lazarova-Molnar (2023).

4.1 Case Study Model

Our case study examines a small solar power system consisting of a Photovoltaic (PV) module, a diode, a
Miniature Circuit Breaker (MCB), a fuse, and an electrical load. The system converts solar energy to
electricity, making it suitable for studying the impact of solar variability on reliability. The diode provides
unidirectional current flow, while the fuse protects against overcurrent from the PV module. We assume a
direct current (DC) load, such as a battery storage system. Figure 3a illustrates the case study system layout.

The reliability model is a FT, which typically consists of three levels: basic events (BE), intermediate
events (IE) and a top event (TE) (Trivedi and Bobbio 2017). BEs include electrical failures, material
degradation, high temperatures, environmental factors (e.g., shading) and other technical faults. IEs are
derived from BEs and reduction in the power output or performance of components. TE represents the
reduction or failure of the system to generate energy and serves as the ultimate indicator of reliability
(Sonawane et al. 2023). Figure 3b shows the FT model for the system, which is also the ground truth model.
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Table 1: Linking data requirements with different reliability models in energy systems.
Reliability Model | Data Required Model Extraction Key Performance Energy System References
Indicators (KPIs) Examples
Reliability Maintenance logs Distribution Fitting  Failure rate, Mean- ~ Components: (Trivedi and
Distributions (failure and repair (exponential, Time-To-Failure Battery storage, = Bobbio
times/duration) Weibull, bathtub, (MTTF), Mean- transformer, 2017)
etc.), Time-To-Repair turbine gearbox
(MTTR)
Reliability Block System Topological Overall system Small-scale (Tuinema et
Diagram (RBD) & | architecture/topology,  analysis of system reliability and grids, al. 2020)
Reliability interdependencies, connections from failure probability, distribution
Networks component failure minimal cut sets risk indices, networks,
probabilities sensitivity indices microgrids
Markov Models/ | Component state data ~ Hybrid physics- Availability, MTTF, Components: (Liu et al.
Two-State (up/down), guided neural MTTR, transition Battery storage,  2022)
Markov Model failure/repair times, network modeling probabilities inverter,
sensor and operational  of state transitions, transformer
time-series data variational inference
training
Fault & Event Basic event failure Topological Overall system Small-scale (Lazarova-
Tree Models probabilities, system analysis of system reliability and grids, Molnar et
architecture/topology,  connections from failure probability, distribution al. 2020;
interdependencies minimal cut sets risk indices, networks, Niloofar and
sensitivity indices microgrids Lazarova-
Molnar
2023a;
Sonawane et
al. 2023)
Large System Time-series load and Data-driven Voltage stability Large-scale (Tuinema et
Models (State generation data, probabilistic indices, overload networks, smart  al. 2020)
enumeration and | component failure methods probabilities, grids,
Monte Carlo data, outage records reliability indices transmission
simulations) weather/environment (e.g., LOLP, EENS) networks

We use the ground-truth FT model of the PV system (Figure 3a) and the failure probabilities in Table
2 to generate synthetic data for faults and failures, including event logs, sensor readings, and environmental
conditions that reflect the real-world behavior. Niloofar and Lazarova-Molnar (2023) introduced a Data-
Driven FT Analysis (DDFTA) method, which automatically learns FTs from time-series fault data. Using
this method, we automatically construct the FT from the synthetic data. To validate the extracted FT model,
we compare it to the ground-truth FT model either through its Boolean equivalent or truth table. The
Boolean expression represents the FT structure through logical relationships between components and
system failure (TE), while the truth table lists all possible component states and their impact on the TE.
This validation ensures accuracy of the data-driven reliability model extraction.

From the original FT model of the PV system (Figure 3b), the Boolean expression can be derived using
the plus sign (+) to represent logical OR gates and the dot (*) to represent logical AND gates between BEs.
The resulting Boolean expression of the ground-truth FT model is given in equation (1):

TE = BE, + BE, + (BE3 - BE,) + BEs + -+ + BE;; + BEy3 (1)

4.2 Hlustration of Data Requirements

To extract the system reliability model from data, this data must be first identified. The original FT model
of the system includes several component faults and failure modes and their relationships with the system
failure. To derive these relationships, we need to analyze the possible faults/failures (internal or external)
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and study their impact on the system performance. Therefore, the data needed for such a study include time-
series fault logs and sensor measurements related to system performance.

Fault logs are historical records of discrete events and alarms that indicate specific component faults or
failures detected by monitoring systems. However, fault logs often overlook gradual performance
degradation, such as soiling, partial shading, or hot spots in PV cells, that impact overall system reliability
without triggering alarms. Continuous data from sensors measuring voltage (V), current (I), and
temperature can help detect component performance degradations. For example, a localized temperature
spike in a PV cell compared to other PV cells may indicate a developing hot spot in the PV module.
Integrating sensor data with fault logs provides a complete view of system reliability, enabling more
accurate and proactive reliability modeling and analysis.

The data required in our case study include fault logs, sensor readings from the system (e.g., voltage,
current, temperature), and environmental conditions (e.g., solar irradiance). These data can be used to detect
fault/failure events and their relationship to system performance (i.e., to extract reliability models such as
FT) collected from sources such as Supervisory Control and Data Acquisition (SCADA) systems or
Industrial Internet of Things (IloT) devices. However, collecting accurate and complete data can be
challenging due to gaps in fault logs and limited access to SCADA and IloT devices. To generate the
synthetic data, we used literature-sourced failure probabilities for each of the BEs in the original FT model.

a b Loss or Reduction
( ) Light Source ( ) Top Event of Power Output
s
H Fuse A

MCEB 1 No Input to Fuse
Diode
PV Module
MCB 2 /\ No Input to MCB
DC Load l | | I
Grounding ‘ 1

v | I Faulty MCB | | Failure of Cable |

No Qutput or Reduced

Output from PV Module | [Short or Open
Q Circuit
Faulty Faulty | [ Insulation Material
idati Hot Spot
Oxidation or [MCB 1] "MCB 2‘| [ Failure W [ Aging J
Corrosion
l l I |
Improper Broken Faulty Bypass| | | Grounding Glass
Maintenance [Bmken CE"] [Intercomnec’( Diode System Breakage

[Rack Structure] [ Encapsulant Fault ] [ Solder Bond Failure ] [ Soilling I [Shalding]

Figure 3: (a) PV system layout for the case study. (b) True FT model of the case study system.

4.3 Model Extraction from Data

For our case study, we used data on failure probabilities from the existing literature on PV system
components and subcomponents such as cables, racks, and grounding (Sonawane et al. 2023; Colli 2015;
Golnas 2013). For simplicity, all faults and failures are assumed to have constant failure rates following the
exponential distribution. This assumption does not limit the model extraction approach, which supports
arbitrary probability distributions. Table 2 lists fault/failure occurrence probabilities, data requirements,
and data sources for reliability model extraction for all the BEs of the original FT model (Figure 3b). We
generated synthetic fault logs using failure probabilities of BEs and Monte Carlo simulations to create a
synthetic fault log for the PV system, mimicking real-world data. The synthetic data are simplified/reduced
into state data serve as an input for the FT extraction algorithm. The state data represents the truth table of
the original FT model of the PV system, which we use later to validate the extracted FT model result. Table
3 shows an example of the generated fault log and its equivalent state data shown in Table 4.

2339



Mostafa and Lazarova-Molnar

Table 2: Faults and Failures in the Case Study PV System: Associated Occurrence Probabilities, Data
Requirements, Data Sources, and Data Categories for Reliability Model Extraction.

System Fault / Failure  Basic Occurrence Data Required for Possible Data Data Source
Element Event Probability Reliability Model Sources (from Category
(from literature)  Extraction actual systems)
Oxidation or Electrical resistance ~ Ohmmeter,

Fuse Corrosion (BEy) 0.0001 or temperature thermal sensor Component-level
Improper (BE,) 0.0002 Maintenance Maintenance Expert
Maintenance 2 ) records Logbooks Knowledge

MCB Faulty MCB  (BEs, BE,) 0.0008 Voltage or current 1 SISOTOVET - Component-level
Brok q Infrared ,

Inrt(ér(?(l)lnnect (BEs) 0.0846 Thermal images or Ifl\/? ifrvgiﬁig Component-level
. Ground insulation
grgtlggmg (BEg) 0.0490 resistance or dGét(Z:léltl(?r- fault System-level
Y leakage current
glzziage (BE;) 0.0003 Visual inspection Camera Component-level
. Irradiance and PV Pyranometer, I-  Environment /
Soiling (BEg) 0.0013 output V curve tracer External
Shading (BEy) 0.0088 Irradiance Pyranometer Eggﬁgﬁl ent/
Thermal imaging

PV Broken Cell (BE1p) 0.1115 and cell power In{‘ﬁre\(}i tcamera, Component-level

output cell I-V tracer

Module | solderBond 0.1487 Cell Cell .V C level
Failure (BE11) . ell power output ell I-V tracer omponent-leve
Hot Spot (BEy>) 0.0101 Thermal imaging Infrared camera  Component-level
g?ggg Bypass (BE13) 0.0021 Voltage or current <I:1-iX dseensor over Component-level
glllr%ﬁ/l?p cn (BE14) 0.0052 Voltage or current I-V sensor System-level

Tilt angle

Rack : Bb Gyroscope or
Structure (BEjs5) 0.0729 3{t1)err§?ég)n, or camera System-level

. . . High- luti
Encapsulant (BE1g) 0.0570 Visual inspection calrglerraisl(z\l/l on Component-level
Fault and PV output ourve tracer
Insulati Electrical insulati
Fr;sﬁlu? elOIl (BE17) 0.0001 r eseicst;lgg o msulation - ohmmeter Component-level

Cable . Cumulative Weather station .

Material (BE,s) 0.0002 environmental data (UV index, ~ EDVIronment/
ging exposure temperature) X

Table 3: Exemplary fault log dataset for a PV system generated using failure probabilities.

Timestamp Component Description Status Severity
2025-02-12 10:53:24 PV_Grounding_System Fault  Grounding System Fault detected. Active High
2025-02-12 17:32:11 PV_Grounding_System Fault  Grounding System Fault detected. Cleared High
2025-02-17 11:20:54 PV _Panel Fault PV Hot Spot detected. Cleared Medium
2025-02-18 13:23:51 PV_Panel Fault PV Solder Bond Failure detected. Active High
2025-02-18 08:55:02 Structure Fault Structural misalignment. Active Low

Table 4: State dataset based on the synthetic fault logs from Table 3.

Timestamp Grounding System Hot Spot Solder Bond Failure Rack Structure Loss or Reduction in
Power Output
1 1 0 0 0 1
2 0 0 0 0 0
3 0 1 0 0 1
4 0 0 0 0 0
5 0 0 1 0 1
6 0 0 0 1 1
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To extract FT model in our case study, we have implemented an algorithm using Python that
automatically identifies Minimal Cut Sets (MCSs), smallest combinations of BEs (component failures)
leading to the TE, from the truth table (state data). The algorithm iterates over the state data to find MCSs
and then derives a Boolean expression that captures the logical structure of the FT model. For validation,
we compare the extracted Boolean expression to the original FT model (Figure 3b), represented by Equation
(1). Algorithm 1 outlines this process. The code used is publicly available (Mostafa 2025). Algorithm 1
shows the extracted FT model from data using the algorithm. Validating the Boolean expression in Figure
4 with equation (1), we find that both the original model and the extracted FT model match.

Algorithm 1: Extracting FT Boolean Expression from Truth Table.
Input: 7 € {0,1}™*"+D: Tryth table with m rows (Ry, R, ..., Ry, timestamps, and n + 1 columns (BEy, BE,, ..., BE,, TE).
Output: ®(BE;, BE,, ..., BE,): Extracted FT Boolean expression.

I: LoadT >
: Step 1: Identify Cut Sets

Load the truth table as input dataset 7.

13:  Step 3: Construct Boolean Expression
14: foreach M; € MCS do

3. Initialize CS < @ » Create dataset CS to store potential cut sets.

4: foreachi €{1,2,..,m}do » Iterate over rows in the T to identify cut sets.

5: if 7[i, TE] = 1 then

6: C; < {BE; | R;[BE;] = 1} » Check for set of BEs that lead to TE = 1.

7: CS « CcSu{c;} > Store identified set of BEs as a cut set in CS.

8: Step 2: Minimalize Cut Sets

9: Initialize MCS « @ » Creating a dataset MCS to store minimal cut sets.
10:  foreach C; € sort(CS, by |C| T) do > Iterate over all cut sets in CS to scan for minimal cut sets.
11: if A M € MCS such that M < C; then » ldentify minimal cut sets by eliminating supersets from CS.
12: MCS « MCS U {C;} > Store identified minimal cut sets into MCS.

>

Construct the Boolean expression using logical OR (+)

15: D = Y yiemcs [1prem; BE between minimal cut sets and logical AND ( - ) between BEs.
Identifying Cut Sets (first 4 shown): Minimal Cut Sets:
Cut Set 1: ['BE18'] ['BE18'], ['BEl7'], ['BEl6'], ['BE15'], ['BEl1l4'],
Cut Set 2: ['BE1l7'] ['BE13'], ['BEl2'], ['BE11l'], ['BE10'], ['BE9'],
Cut Set 3: ['BEL7', 'BE18'] ['BE8'], ['BE7'], ['BE6'], ['BE5'], ['BE2'], ['BEl'],
Cut Set 4: ['BE18', 'BE4'] ['BE3', 'BE4']

Extracted Fault Tree Boolean Expression: TE = BE18 + BEl7 + BEl6 + BE15 + BE14 + BE13 + BE12 +
BE1l + BE10 + BE9 + BE8 + BE7 + BE6 + BE5 + BE2 + BEl + BE3 -'BE4

Constructed Truth Table (sample):

R BEl BE2 BE3 BE4 BES5 BE6 BE7 BE13 BEl14 BE15 BEl6 BEl7 BE18 TE
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 0 0 0 0 0 1 0 1
3 0 0 0 0 0 0 0 0 0 0 0 1 1 1
4 0 0 0 1 0 0 0 0 0 0 0 0 0 0
[

5 rows x 19 columns]
Truth table generated and saved from Boolean expression.
[Validation Successful]: Truth Tables Match!
The constructed fault tree produces an identical truth table to the original.

Figure 4: Extracted FT model using Algorithm 1.

5 SUMMARY AND OUTLOOK

We investigated the data requirements for the development and implementation of Digital Twins for the
reliability assessment of energy systems. Specifically, we identified the distinct data categories, component-
level data, system-level data, environmental data and expert knowledge, required to support effective
Digital Twin applications. Using a photovoltaic energy system as an illustrative case study, we
demonstrated that the combination of fault logs with continuous sensor data enables the automated
extraction of data-driven reliability models, in this case Fault Trees. The fault logs of the photovoltaic
system, which were synthetically generated using literature-sourced component failure probabilities, were
transformed into structured state data that enabled Fault Tree model extraction. The extracted reliability
models from Digital Twins can be used for reliability assessment of energy systems.
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Our research shows that while the accurate extraction of reliability models, as enabler for reliability-
oriented Digital Twins, is feasible, it presents challenges, particularly in system complexity and collecting
time series, high quality, continuous data about the system. Further research is needed to address model
validation and practical decision support to develop a standard framework for implementing reliability-
oriented Digital Twins. Future studies could extend on our data-driven methodology by exploring
alternative energy system applications and reliability models beyond Fault Trees, such as Reliability Block
Diagrams and Markov models. Developing further methods for data-driven reliability model extraction
would support the implementation of Reliability-Oriented Digital Twins in complex energy systems.
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