
Proceedings of the 2025 Winter Simulation Conference
E. Azar, A. Djanatliev, A. Harper, C. Kogler, V. Ramamohan, A. Anagnostou, and S. J. E. Taylor, eds.

HIERARCHICAL POPULATION SYNTHESIS USING A NEURAL-DIFFERENTIABLE
PROGRAMMING APPROACH

Imran Mahmood1, Anisoara Calinescu1, and Michael Wooldridge1

1Dept. of Computer Science, University of Oxford, Oxford, UK

ABSTRACT

Advances in Artificial Intelligence have enabled more accurate and scalable modeling of complex social
systems, which depend on realistic, high-resolution population data. We introduce a novel methodology
for generating hierarchical synthetic populations using differentiable programming, producing detailed
demographic structures essential for simulation and analysis. Existing approaches struggle to model
hierarchical population structures and optimize over discrete demographic attributes. Leveraging feed-
forward neural networks and Gumbel-Softmax encoding, our approach transforms aggregated census and
survey data into continuous, differentiable forms, enabling gradient-based optimization to match target
demographics with high fidelity. The framework captures multi-scale population structures, including
household composition and socio-economic diversity, with verification via logical rules and validation
against census cross tables. A UK case study shows our model closely replicates real-world distributions.
This scalable approach provides simulation modelers and analysts with, high-fidelity synthetic populations
as input for agent-based simulations of complex societal systems, enabling behavior simulation, intervention
evaluation, and demographic analysis.

1 INTRODUCTION

Agent-based models (ABMs) have become prominent tools for representing and analyzing complex systems,
as they enable the simulation of individual entities that interact within a structured environment, revealing
how local actions contribute to emergent patterns and global phenomena (Crooks et al. 2015; Macal
2016). ABMs are typically composed of three main components: (i) a synthetic population; (ii) a virtual
environment; and (iii) a set of rules regulating agent behaviors and interactions (Railsback and Grimm
2019; Taylor 2014; Gilbert 2019). Each of these components plays a vital role in developing a high-quality
agent-based model (ABM) capable of simulating complex systems effectively. A well-designed ABM is
characterized by its expressiveness, accuracy, scalability, adaptability, and validation against real-world
data. Together, these attributes ensure the robustness and reliability of the model. Given the central role
of reflecting population structure and variability in ABMs, this paper focuses on the methodology for
generating synthetic populations.

1.1 Synthetic Populations

In Agent-based Modeling, synthetic populations play a critical role in modeling individuals, forecasting
policy impacts, and understanding shifts in the societal dynamics (Malleson et al. 2022). The need for
synthetic populations arises from significant challenges related to data availability, driven by concerns
about privacy, security, and government legislation. In many cases, real-world data is either inaccessible
or restricted, making it difficult to study population dynamics. Synthetic populations offer a solution
by providing detailed and realistic datasets that can simulate social systems without violating privacy or
security regulations. As a result, the demand for synthetic data, particularly synthetic populations, has
grown in response to these limitations. These populations serve as input data to initialize agents and their
attributes within models, ensuring that the simulations accurately reflect the demographic, behavioral, and
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socioeconomic characteristics of the real world while maintaining privacy and data integrity. This approach
facilitates a realistic abstraction of society in ABMs, ensuring that interactions and outcomes are based
on empirically grounded distributions. As a result, simulations are high-fidelity and provide meaningful
insights into societal dynamics to help inform interventions, policy decisions, and planning efforts (Jiang
et al. 2022; Jordon et al. 2022).

A hierarchical, multi-scale, multi-resolution structured synthetic population is a statistically represen-
tative, anonymized collection of entities such as individuals and households that mirrors the structural,
behavioral, and demographic characteristics of the real population while maintaining multilevel relation-
ships or hierarchy, such as family units within households (Mahmood et al. 2024). Multi-scale synthetic
populations capture demographic variations across different geographic levels, such as national, regional,
city, or neighborhood scales. The population characteristics of a city differ from those of a smaller region,
e.g., an output area. Multi-resolution populations represent data at different levels of detail, such as grouping
individuals by broad age ranges, e.g., children, adults, and elders (low resolution) or specific age ranges, e.g.,
5-year age categories (high resolution). Generating synthetic populations that accurately reflect real-world
societies presents several challenges. The main challenge of building these populations lies in ensuring their
fidelity across various demographic characteristics and maintaining their dynamic nature over time. These
populations are typically generated from aggregated census data and survey results, using computational
techniques to ensure that diversity and distributions closely align with the actual population (Wu et al.
2022). Census and survey data, often used as source material, are inherently complex, exhibiting hierarchical
structures and intricate relationships between variables (Malleson et al. 2022). Moreover, data sparsity
can hinder the accurate inference of the complete joint distribution of individual characteristics (Wu et al.
2022). Generating large-scale synthetic populations with high-dimensional data can be computationally
expensive (Prédhumeau and Manley 2023).

This paper proposes a neural-differentiable programming method for generating accurate and hier-
archically structured synthetic populations. We assess the accuracy and computational efficiency of this
method and provide a robust tool for generating input data for agent-based modeling of complex societal
systems. To achieve these objectives, we introduce a differentiable programming framework (Blondel and
Roulet 2024) that utilizes neural networks and the Gumbel-Softmax encoding technique. This framework
seamlessly transforms discrete data (i.e., distributions obtained from census data) into continuous, differ-
entiable forms suitable for synthesis and optimization using gradient-based methods. This in turn, permits
the training of neural networks that can produce generated distributions (synthetic populations) that closely
match real-world target distributions, such as those implicitly defined by cross-table aggregates of census
data. Cross-table aggregates summarize census data by showing how one categorical variable is distributed
across the categories of another, helping to analyze relationships between variables. The optimization
process is guided by a nested loss function (see section 3.2.2) that aligns the generated output with target
distributions. Previous works, (Borysov et al. 2018; Aemmer and MacKenzie 2022), were constrained by
relying solely on continuous distributions, which limited the applicability of back-propagation to discrete
attributes. In contrast, the reparametrisation trick introduced in (Jang et al. 2016) enables gradient-based
optimization over discrete variables. We adopt this technique to effectively model and synthesize discrete
population attributes. Our method offers several key advantages:

• Expressiveness: It can represent complex relationships and hierarchical structures at any level
of granularity and resolution within the population. The nested loss function naturally supports
hierarchical relationships among variables (e.g., age within sex or marital status within ethnic
groups), enabling structured and interpretable population synthesis.

• Computational Efficiency: The use of differentiable programming and gradient-based optimization
leads to faster convergence rates. This enables the generation of large-scale synthetic populations
without requiring excessive computational resources.
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• Scalability: The framework can handle a large number of characteristics and batch sizes, allowing
for the incorporation of diverse demographic, socioeconomic, and behavioral factors at multiple
scales.

• Extensibility: New categorical variables can be easily added to the model by extending the nested
loss function with additional cross-table aggregates, ensuring flexibility and modularity in model
design. The framework supports modeling synthetic populations across different geographical
regions or administrative levels (e.g., Output Areas, Wards, Community Councils, Local Authority
Districts, Metropolitan Boroughs, Districts, Cities, Counties, Regions, and Countries). In this paper,
we use Middle layer Super Output Areas (MSOA) as a geographic unit.

These advantages make our approach particularly well-suited for generating realistic and representative
synthetic populations for use in agent-based models and other simulation-based studies of complex societal
systems. Our main contributions are as follows:

1. Development of a differentiable programming framework that leverages feedforward neural networks
and Gumbel-Softmax encoding to efficiently transform aggregated census and survey data into
continuous, differentiable forms for synthetic population generation, resulting in a robust population
synthesis tool.

2. Demonstration of the accuracy, scalability, flexibility, and expressiveness of the framework in
generating hierarchically structured populations through a case study using UK census data.

3. Verification of the structural integrity of the synthetic population generated using logical rules and
validation through goodness-of-fit analysis with census cross tables to assess the precision of the
output.

The rest of the paper is structured as follows: Section 2 reviews related work. In Section 3, we describe
our proposed method using a neural-differentiable programming approach. Section 4 presents the results of
our case study using UK census data, and Section 5 reports conclusions and outlines directions for future
work.

2 RELATED WORK

Synthetic population generation is a rapidly evolving field, driven by the growing need for synthetic data
and accurate representations of real-world populations. Existing methods can be broadly classified by their
underlying techniques and focus, as follows:

2.1 Traditional Methods

Traditional approaches often use iterative proportional fitting (IPF), synthetic reconstruction, or combina-
torial optimization. IPF, a foundational technique, iteratively adjusts attribute weights to match marginal
distributions (Albiston et al. 2024; Casati et al. 2015; Ponge et al. 2021), but it struggles to capture
complex attribute correlations and can lack diversity. Wu et al. (2022) propose an extension of the IPF to
estimate health and socioeconomic outcomes in small areas of Great Britain. Combinatorial optimization
methods seek attribute combinations that best match target characteristics. Mahmood et al. (2024) present a
multi-objective framework for hierarchical synthesis, addressing IPF limitations by incorporating multiple
objectives. Antoni et al. (2017) focus on generating individuals and households, while Kim and Lee (2016)
use simulated annealing to align synthetic populations with marginal constraints. However, such methods
can be computationally expensive at large scales because of the combinatorial search space.
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2.2 Machine Learning Methods

Machine learning, and in particular deep generative models (DGMs), has seen growing adoption for modeling
complex population structures. Generative Adversarial Networks (GANs) and Variational Auto-encoders
(VAEs) have shown promise in producing realistic, diverse populations (Kim and Bansal 2023). GANs use
adversarial training between generator and discriminator networks to generate realistic samples, although
they often suffer from mode collapse. Neekhra et al. (2023) apply GANs at multiple administrative levels
for national-scale synthesis. VAEs, introduced to this domain by (Borysov et al. 2019), provide more
stable training by learning compressed latent representations, albeit with reduced diversity compared to
GANs. Qian et al. (2023) present Synthcity, a framework supporting multiple ML methods for tabular data
synthesis and evaluation across diverse applications. Jeong et al. (2016) introduced a copula-based approach
to capture complex dependencies between attributes. Alonso-Betanzos et al. (2021) utilized decision trees
for this purpose. Jiang et al. (2021) developed a method incorporating social networks into geographically
explicit agent-based models. Dyer et al. (2024) presented a framework aligning synthetic populations with
target scenarios in agent-based models. Albiston et al. (2024) proposed a neural network approach, while
Rahman and Fatmi (2023) introduced a Bayesian Network and generalized raking technique. Tuccillo et al.
(2023) developed UrbanPop, a spatial microsimulation framework for demographic analysis.

Our approach leverages differentiable programming and neural networks to significantly improve the
generation of synthetic populations by enhancing accuracy, scalability, and adaptability. Unlike traditional
rule-based methods like IPF or combinatorial optimization, which require manual tuning and lack flexibility,
our model adapts continuously to new data, reducing computational overhead and integrating auxiliary
sources for greater robustness.

3 PROPOSED METHOD

3.1 Differentiable programming

Differentiable programming enhances traditional programming by enabling the computation of gradients
through the construction of computational graphs. These graphs represent the flow of data and operations.
A forward pass is used to compute the outputs, while a backward pass applies automatic differentiation
using the chain rule to propagate gradients through the graph. This enables the use of gradient-based
optimization methods, such as those employed to train neural networks, where the gradients guide updates
to model parameters to minimize loss functions (Blondel and Roulet 2024).

3.2 Synthetic Population Differentiable Model

The mathematical formulation of a synthetic population is given below. Let Pindividual and Phousehold be the
set of individuals and the set of households, respectively, in the synthetic population:

Pindividual = {i1, i2, . . . , in}
Phousehold = {h1,h2, . . . ,hm} (1)

Each individual ik is characterized by a set of demographic attributes Ai, such as age, sex, ethnicity,
religion, marital status, and qualification. Each household hl is characterized by attributes such as household
size, composition, ethnicity, and religion of the household reference person:

Ai = {Ai1,Ai2, . . . ,Aim}
Ah = {Ah1,Ah2, . . . ,Ahn} (2)

The relationship between individuals and households can be expressed as a mapping M : Pindividual→
Phousehold
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In the context of synthetic population generation, differentiable programming transforms discrete
census data into continuous forms, making them amenable to gradient-based optimization techniques. This
transformation involves expressing categorical variables and counts as probabilities and expected values,
which can then be optimized to match real-world distributions more accurately. This framework provides
a robust basis for training a model to generate a synthetic population that accurately reflects complex
multi-dimensional joint distributions from real-world demographic data, ensuring that the synthetic data
are realistic and useful for simulation and analysis in various applications. We define a feed-forward neural
network f parameterized by weights Θ, which takes an input tensor and produces two output tensors
Pindividual and Phousehold representing demographic probabilities:

Pindividual, Phousehold = f (X ;Θ) (3)

with X as the input, hidden layers comprising linear transformations, batch normalization, ReLU
activation, and an output layer applying soft-max to each attribute category. ReLU (Rectified Linear Unit)
is an activation function defined as ReLU(x) = max(0,x), which introduces non-linearity by zeroing out
negative inputs. The output P is structured to include several segments, each representing a probability
distribution for a demographic attribute. These attributes are: age, sex, ethnicity, religion, marital status
and qualification, and household size, household composition, ethnicity, and religion of the household
reference person, and a set of assignments of individuals to the household:

Pindividual = Page, Psex, Pethnicity, Preligion, Pmarital status, Pqualification

Phousehold = Psize, Pcomposition, Pethnicity, Preligion, Passignment. (4)

Where Psize represents the probabilities associated with different household sizes, ensuring that the
distribution aligns with demographic data. Pcomposition is a vector of probabilities corresponding to the
categories of household composition as given in Table 1, where C = Children, A = Adults, E = Elders. Pethnicity
denotes the probabilities for the ethnicity categories of the household reference person. Preligion indicates
the probabilities for the religion categories of the household reference person. Passignment encapsulates the
probabilities of a set of individuals assigned to each household category using an algorithm that deals with
the assignments, discussed later in Algorithm 1. Each Pattribute is a softmax probability vector corresponding
to the categories of that attribute. A cross table, also known as a contingency table, is a type of table in
a matrix format that displays the (multivariate) frequency distribution of the variables. In census data a
cross table is a triplet of three selected attributes.

3.2.1 Gumbel-Softmax Encoding

We employ the Gumbel-Softmax encoding, to handle the sampling of discrete distributions and to enable
differentiable sampling from discrete categorical variables, which is essential for backpropagation in neural
networks:

y∼ softmax
(

logP+G
τ

)
(5)

where G are i.i.d Gumbel noise vectors and τ is a temperature parameter controlling the discreteness of
the output. Given a categorical distribution parameterized by logits z= (z1,z2, ...,zK), where K represents the
number of classes, the Gumbel-Softmax sample y = (y1,y2, ...,yK) is computed using Gumbel distribution,
Gumble noise and a softmax function (Jang et al. 2016). The probability density function (PDF) of the
Gumbel distribution is given by:

f (gi) =
1
β

exp
(

gi−µ

β
− exp

(
gi−µ

β

))
(6)

where gi is a sample from the Gumbel distribution for a given variable (e.g., personal or household
attribute), µ is the location parameter, and β is the scale parameter. µ determines where the peak of the
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distribution occurs along the primary axis. The scale parameter controls the spread or variability of the
distribution. For each attribute, we set µ = 0 and β = 1. Gumbel noise ε = (ε1,ε2, ...,εK) is generated by
sampling from the Gumbel distribution.

3.2.2 Aggregation, Nested Loss Function and Optimization

We define a nested loss function to jointly optimize over multiple levels of aggregation. Specifically, this
loss incorporates errors from both marginal distributions (e.g., Sex, Age) and higher-order cross-tabulations
(e.g., Sex by Age, Religion by Sex by Age). This nested structure allows the model to capture fine-grained
dependencies between attributes while preserving overall demographic targets. To compare the attributes
with the cross tables from census data, we aggregate the individual and household attributes to form
distributions that can be compared with the census data distributions. Let Ci represent the cross table from
the census data for a specific attribute combination, and let Ai represent the aggregated attributes from the
synthetic population. The comparison is done using the Root Mean Squared Error (RMSE):

L = ∑
Li

√
∑(Ai−Ci)2 (7)

where L is the total loss (or nested loss), Li is the loss of an attribute, Ai are the aggregated values, and
Ci is the actual data from the cross table and our objective is to minimize the loss function. Our training
objective uses a root mean squared error (RMSE) loss over aggregated counts derived from cross-tabulated
population attributes (see Eq. 7). This loss measures the Euclidean distance between predicted and target
aggregates and guides the optimization process. However, for evaluation and visualization, we report
accuracy scores, computed as:

accuracy = 1− |P−T |
T

×100% (8)

where P is the predicted count and T is the target count for a given attribute category.

• m is the total number of members
• Agei is the age group of the i-th individual, where C = Child, A = Adult, E = Elder
• Mi is the marital status of the i-th individual
• The FM category denotes a male–female married couple, while FC includes all cohabiting couples,

regardless of gender, in line with census definitions.

3.2.3 Individuals and Household Generation

Algorithm 1 generates a synthetic population by learning demographic distributions from census data
using a feed-forward neural network. A separate network is trained for each demographic attribute, with
input tensors Xi and priors Pi, Hi. Each network comprises linear layers, batch normalization, and ReLU
activations. During training, the network predicts the attribute distributions, aggregates them to compare with
the cross tables Ci, and updates the parameters through forward and backward propagation. At each epoch,
the GeneratePopulation function samples synthetic individuals and households using Gumbel-Softmax,
forming tensors Pind and Phh. Once generated, individuals are assigned to households based on attribute
matching and composition rules, as shown in table 1. Where, m is the total number of members, Agei
denotes the age group of the i-th individual, where C stands for Child, A for Adult, and E for Elder, and
Mi represents the marital status of the i-th individual. The FM category refers to a male-female married
couple, while FC includes all cohabiting couples, regardless of gender, in line with census definitions.

For each household h ∈ Phh, n individuals are sampled from Pind such that n = hsize. These samples are
filtered to match the household’s ethnicity and religion, and then evaluated against predefined composition
rules which check attributes such as age, sex, and marital status. For example, in a 1FM-1C household,
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Algorithm 1 Generation of Individuals and Households
Input: Input tensor Xi, set of attributes Pi, Hi, cross tables Ci

Output: Converged Pind and Phh
1: Define a feed-forward neural network with a forward pass function P = f (X ;Θ)
2: Initialize the network structure with input nodes, hidden layers, output nodes, linear layers, batch

normalization, and ReLU activation
3: Initialize the weights in the network using Pi and Hi

▷ Training Loop
4: Initialize neural networks for each demographic attribute
5: Initialize optimizer and learning rate scheduler
6: for epoch = 1 to maxEpoch do
7: (Pi,Hi)← GeneratePopulation(Xi)
8: Aggregate probabilities based on Ci

9: Perform forward propagation
10: Compute total loss L ∈ Li using aggregated outputs Ai

11: Perform backward propagation and compute gradients
12: Update network parameters θt(i)
13: end for

▷ Assign individuals to households based on attributes and composition rules
14: for each household h ∈ Phh do

▷ Sample individuals as per household size and match attributes
▷ Check composition rule R for household compatibility

15: Sample n individuals from Pind such that:
n = hsize ∧ ∀p ∈ n : peth = hethnicity ∧ prel = hreligion ∧ R(p,h)

16: Assign individuals n to household h
17: end for
18: return Pind and Phh

▷ Function to generate population tensors via sampling distributions
19: function GENERATEPOPULATION(Xi)
20: Initialize tensors Pind and Phh using input data
21: for each demographic attribute in Pi and Hi do
22: Compute logits using corresponding neural network
23: Apply Gumbel-Softmax sampling to convert logits to probabilities
24: Stack sampled values into final output tensors
25: end for
26: return Pind, Phh
27: end function

one married male, one married female (both adults), and one unmarried child are sampled. Once the rule is
satisfied, individuals are assigned to the household. Our approach is implemented in PyTorch which uses
CUDA devices for GPU acceleration, hence the code is scalable, modular, adaptable and reusable, allowing
seamless customization for different datasets and regional contexts. In our experiments, the synthetic
population consisted of 7,209 individuals and 3,167 households, matching the size of a real MSOA. The
model was trained using a feed-forward neural network with three hidden layers and approximately 120k
trainable parameters. Training on this dataset converged within 300 epochs (approximately 45 seconds on
a standard laptop CPU), demonstrating good scalability for small to medium-sized populations.
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Table 1: Household Composition Structures and Rules

Composition Description and Rules

1PE
One-person household: Aged 65 and over
Rule: m = 1∧∀i,Agei ∈ E

1PA
One-person household: Aged 18 to 64
Rule: m = 1∧∀i,Agei ∈ A

1FM-0C
One family only: Married couple: No children
Rule: m = 2∧∀i,Agei ̸∈C∧Mi = ’Married’

1FM-1C
One family only: Married couple: One dependent child
Rule: m = 3∧∃i, j,k∧ (i ̸= j ̸= k)∧Agei,Age j /∈C∧Mi = M j = ’Married’∧∀k,⇒ Agek ∈C

1FM-nC
One family only: Married couple: Two or more dependent children
Rule: m≥ 3∧∃i, j,k∧ (i ̸= j ̸= k)∧Agei,Age j /∈C∧Mi = M j = ’Married’∧∀k,⇒ Agek ∈C

1FM-nA
One family only: Married couple: All children non-dependent
Rule: m≥ 3∧∃i, j,k∧ (i ̸= j ̸= k)∧Agei,Age j /∈C∧Mi = M j = ’Married’∧∀k,⇒ Agek ∈ A

1FC-0C
One family only: Cohabiting couple: No children
Rule: m = 2∧∀i,Agei ̸∈C∧∀i,Mi ̸= ’Married’

1FC-nC
One family only: Cohabiting couple: Two or more dependent children
Rule: m≥ 3∧∃i, j,k∧ (i ̸= j ̸= k)∧Agei,Age j /∈C∧Mi,M j ̸= ’Married’∧∀k,⇒ Agek ∈C

1FL-1C
One family only: Lone parent: One dependent child
Rule: m = 2∧∃i, j Agei /∈C∧∃i,Mi ∈ {’Separated’, ’Widowed’, ’Divorced’}∧∀ j, j ̸= i⇒ Age j ∈C)

1FL-nC
One family only: Lone parent: Two or more dependent children
Rule: m≥ 3∧∃i, j Agei /∈C∧∃i,Mi ∈ {’Separated’, ’Widowed’, ’Divorced’}∧∀ j, j ̸= i⇒ Age j ∈C)

4 RESULTS AND ANALYSIS

This section illustrates the simulation results of a UK case study, presented to demonstrate our proposed
approach. In this case study we obtained census data of Oxford City from the office for national statistics
NOMIS, at the scale of Middle layer Super Output Areas (MSOA), and selected one MSOA: E02005941,
to generate the synthetic population. The results displayed in Figure 1 (a) illustrate the output distributions
of Persons based on selected attributes: Sex, Age, Ethnicity, Religion, Marital status and Qualification.
Each generated attribute is displayed in blue and compared with the targeted distribution displayed in
red. The accuracy calculated using Root Mean Squared Error (RMSE) is highlighted. Similarly, the
output distributions of Households are displayed in Figure 1 (b). All generated persons are assigned to the
corresponding households according to the characteristic match and composition rules. Notice, that the
ethnicities and religions in the household distributions characterise the household reference persons. The
generation results show conformity to the target distributions.

4.1 Verification and Validation

To verify that the structure of the output distributions is correct, i.e., that household sizes and person
allocations are consistent with the composition structures, we formalize a rule-based verification approach
using a set of logical rules for each household composition type, as shown in Table 1. We executed unit tests
on output table rows to assess compliance with these logical rules. Figure 2 reports a 3.3% error rate, showing
mismatches in household sizes (red) and incorrect individual-to-household assignments (blue), grouped by
household composition type. For validation, we used RMSE to compare the predicted values against actual
census data from NOMIS, including person-level cross tables lc1117ew, dc2101ew, dc2107ew, dc1107ew,
dc5102ew, and household-level tables dc1201ew, dc1202ew. As there are multiple attributes, we evaluate
each combination (triple) of attributes with a cross table available in the UK census data, and calculate the
respective RMSE. The overall accuracy of the model is the sum of all RMSE values computed in each
iteration. Figure 3 shows that the computed curves (blue bars) and target curves (red bars) are closely aligned.
Similarly, Figure 4 illustrates the validation for the generated households. This shows a good fit of the model
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Figure 1: (left) Persons targeted vs computed [Sex, Age, Ethnicity, Religion, Marital Status, Qualification]
(right) Household Targeted vs Computed - [Size, Composition, Ethnicity, Religion].

Figure 2: Verification results (errors 3.3%).

in accurately predicting the data. The X-axis of these plots represents the number of keys generated by
the product of the attribute fields. E.g., Sex×Age = {Male,Female}×{0–4, 5–7, . . . , 80–84, 85+}= 42
points

4.1.1 Micro-data Access and Validation Constraints

In the UK, validation of synthetic populations at the micro level is constrained by restricted access to
individual-level census data. Publicly available resources such as NOMIS provide only aggregate statistics,
while access to micro-data is governed by strict privacy, ethical, and legal controls. Relevant datasets
include the UK Longitudinal Study (UKLS), the Secure Research Service (SRS) of the Office for National
Statistics, and the Understanding Society dataset (UKHLS). These datasets require secure access, and
approved research protocols, and are often only usable in controlled environments. Given these access
limitations, aggregate-level validation remains a standard practice in UK-based synthetic population studies
(Wu et al. 2022). In this context, our inclusion of a logical rule-based verification framework represents
an innovative step toward micro-level structural assessment and logical correctness. Although international
datasets such as the US Public Use Microdata Sample (PUMS) provide more accessible micro-data, used
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Figure 3: Persons validation using cross-tables.

Figure 4: Households validation using cross-tables.

by (Qian et al. 2024) for the synthesis of households, they are not directly applicable to UK-based models
due to differences in demographic structure and household typologies. Future work will aim to integrate
secure-access UK micro-data to support deeper structural validation, where permitted.

5 CONCLUSION

This paper presents a novel differentiable programming framework for generating highly accurate and
scalable hierarchical synthetic populations, specifically designed for modeling complex societal systems.
By leveraging feedforward neural networks and Gumbel-Softmax encoding, our methodology transforms
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aggregated census and survey data into continuous, differentiable forms, enabling the generation of synthetic
populations that accurately reflect real-world demographic and socio-economic structures. The framework
captures the intricate hierarchical relationships within populations, ensuring that these representations are
realistic and adaptable across different scales. The key contributions of this work include the development of
a scalable and flexible synthetic population generation tool, which significantly improves the representational
accuracy required for complex societal system simulations. Our approach integrates an in-loop verification
and validation process, ensuring that the synthetic populations adhere to logical consistency and align with
empirical data. The case study using UK census data demonstrates the method’s robustness, providing
synthetic populations that closely match real-world distributions across various demographic and socio-
economic dimensions. By improving the accuracy and scalability of synthetic population generation, our
framework provides researchers and policymakers with a powerful tool for simulating complex societal
dynamics. In future work, we plan to extend the framework to incorporate additional features in synthesizing
populations such as activities and movements, and to explore its applicability across diverse geographic
regions. By continuing to refine and scale our synthetic population generation method, we aim to further
enhance its utility in modeling the dynamic complex societal systems.
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