Proceedings of the 2025 Winter Simulation Conference
E. Azar, A. Djanatliev, A. Harper, C. Kogler, V. Ramamohan, A. Anagnostou, and S. J. E. Taylor, eds.

AGENT-BASED SIMULATION OF PRICE-DEMAND DYNAMICS IN MULTI-SERVICE
CHARGING STATION

Xudong Wang!, Yang Chen?, Brody Skipper!, Olufemi A. Omitaomu?, and Xueping Li'

'Dept. of Industrial and Systems Eng., University of Tennessee - Knoxville, TN, USA
2 Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

ABSTRACT

As the adoption of electric vehicles and hydrogen fuel-cell vehicles grows, understanding how dynamic
pricing strategies influence charging and refueling behaviors becomes crucial for optimizing local energy
markets. This paper proposes a simulation-based analysis of a hydrogen-electricity integrated charging
station that serves both types of vehicles. A multi-agent simulation framework is developed to model
the interactions between vehicles and the station, incorporating price- and delay-sensitive behaviors in
decision-making. The station can dynamically adjust energy prices, while vehicles optimize their charging
or refueling choices based on their utility values. A series of sensitivity analyses are conducted to evaluate
how electricity pricing, infrastructure capacity, and waiting behavior impact station performance. Results
highlight that moderate electricity prices maximize user participation without sacrificing profit, infrastructure
should be right-sized to demand to avoid over- or underutilization, and delay-toleration also affects service
outcomes, which may reach the maximum service coverage at the threshold of 45 minutes.

1 INTRODUCTION

The urgency of climate change has accelerated the global shift toward low-emission transportation. In the
U.S., transportation is the largest source of greenhouse gas emissions, accounting for 27% of the total in
2023, with light-duty vehicles contributing over half (ARPA-E 2024; Congressional Budget Office 2021).
As a result, Electric Vehicles (EVs) and Hydrogen Fuel-Cell Vehicles (HFCVs) have become central to the
shift toward cleaner mobility systems: EVs suit short-range urban travel due to high efficiency and growing
infrastructure, while HFCVs offer fast refueling and longer range, making them suitable for commercial
and long-haul transport (U.S. Department of Energy 2022). Their coexistence underscores the need for
diversified and scalable energy infrastructure to meet national decarbonization goals (U.S. Department of
Transportation 2022).

The growing adoption of EVs and HFCVs increases pressure on refueling and recharging infrastructure
(Wong et al. 2020). However, access remains limited and inconvenient for many users due to complex
coordination across policymakers, manufacturers, utilities, and developers (Miele et al. 2020; Hardman
et al. 2018). Traditional single-fuel stations are inadequate for mixed fleets (Staffell et al. 2019), prompting
interest in multi-energy charging hubs that deliver both electricity and hydrogen (Offer et al. 2010). These
hybrid stations offer flexibility and space efficiency but pose new challenges in coordinating energy flows,
especially under renewable intermittency and fluctuating demand (Ursua et al. 2011).

Multi-energy stations integrate components such as solar panels, wind turbines, batteries, electrolyzers,
and fuel cells to meet real-time energy needs (Lund et al. 2015). Electricity may be used for EV charging,
stored, or converted into hydrogen, while hydrogen can later regenerate electricity via fuel cells (Ursua
et al. 2011; Zeng and Zhang 2010). Efficiently managing these conversions requires dynamic scheduling
responsive to demand and price signals (Aghaei and Alizadeh 2013). Although various optimization models
address energy balancing and cost reduction, they often rely on deterministic user behavior, limiting their
realism in dynamic environments.
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Beyond infrastructure control, user behavior significantly affects charging station performance. Both
EV and HFCV users weigh energy needs against factors like price, wait time, and convenience (Daina
et al. 2017). EV users often trade off cost and delay in systems with limited capacity or dynamic pricing
(Dimitropoulos et al. 2013), while HFCV users may also react to pricing and fuel availability (Manoharan
et al. 2024). Behavioral models attempt to capture these decisions through utility-based and probabilistic
frameworks (Zhang et al. 2011). However, many rely on simplified assumptions that may miss critical
user-level dynamics.

These limitations underscore the value of simulation-based approaches for analyzing complex charging
systems. While optimization offers insights under idealized assumptions, it often fails to capture emergent
behaviors in uncertain settings (Bertsimas and Kallus 2020). Isolated behavioral models also overlook
system-wide effects from infrastructure and renewable variability (Polemis and Spais 2020). Simulation
provides a flexible alternative, enabling the study of dynamic interactions among users, energy flows, and
infrastructure (Ringler et al. 2016; Kremers 2014). In particular, agent-based modeling (ABM) can represent
user heterogeneity, decentralized decisions, and stochastic dynamics that are analytically intractable (Yao
et al. 2023; Ringler et al. 2016).

The use of ABM has been extensively explored in energy and transportation systems for capturing
decentralized, dynamic interactions. In multi-energy systems, ABM has been applied to model the coor-
dination of electricity, heating, and mobility components (Yao et al. 2023), while in electricity markets
and grids it has supported the analysis of distributed behaviors and system-level outcomes (Ringler et al.
2016). In EV-related research, ABM has been used to assess user behavior and its influence on charging
infrastructure performance (Pagani et al. 2019), as well as the impact of charging strategies on energy hub
management (Lin et al. 2018). However, most of these studies are limited to electricity-only infrastructure
or single vehicle types. To address this gap, our work develops an agent-based simulation framework that
jointly models EV and HFCV agents within a dual-energy station, incorporating behavioral responses to
delay, price, and renewable variability to evaluate hybrid system performance.

In this study, we develop a detailed simulation framework for a hydrogen-electricity integrated charging
station that accounts for both technical operations and user behavior. Our model incorporates delay- and
price-sensitive EV and HFCV agents, real-time renewable generation, storage dynamics, and market-based
electricity pricing. Through this approach, we aim to evaluate not only the station’s operational performance
but also the behavioral outcomes of different infrastructure and pricing strategies. The paper is organized
as follows: In Section 2, we illustrate our system framework and the problem. In Section 3, we describe
the simulation model with agents and actions. In Section 4, we use real-world data to do an experiment
and some sensitivity analysis is produced to learn how these factors will affect this system. In Section 5,
we made a summary of the paper and provide some potential future extension directions.

2 PROBLEM DESCRIPTION

This study investigates the operational and behavioral dynamics of a hybrid charging station (CS) that
delivers both electricity and hydrogen services. An embedded optimization model determines energy
prices based on probabilistic demand distributions. The CS integrates photovoltaic (PV) panels, wind
energy, battery storage, fuel cell, hydrogen tank and grid connections to balance variable supply with
fluctuating vehicle demand. While on-site solar is commonly implemented, the inclusion of wind power
in our model serves an exploratory role to assess the potential benefits of diversified renewable sourcing.
The wind component does not necessarily represent a turbine physically installed at the station. Instead,
it can reflect a self-owned or contracted wind asset located nearby. This broader interpretation allows
evaluation of localized renewable contributions beyond grid purchases, particularly in settings with limited
grid flexibility. Generated electricity supports EV charging, battery storage, or hydrogen production via
electrolysis. Hydrogen is stored for future HFCV refueling or converted back into electricity using fuel cells.
While centralized hydrogen production currently dominates due to cost and thermodynamic efficiency, we
include on-site electrolysis to examine its potential in decentralized, self-sufficient energy hubs. Hydrogen’s
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capacity for long-term energy storage enhances resilience against renewable intermittency. Technologies
such as GenCell’s GreenFSG illustrate the growing feasibility of integrating on-site hydrogen storage and
ultra-efficient alkaline fuel cells into hybrid charging systems (GenCell Energy 2023).
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Figure 1: Energy flow in the hybrid CS.

Figure 1 illustrates the structure of the hybrid CS. The system operates under physical capacity
constraints, with dedicated EV chargers and HFCV refueling stations. The CS can serve EVs and HFCVss
using solar, wind, or market electricity, and can convert electricity to hydrogen via electrolysis. If stored
energy is insufficient, additional electricity or hydrogen is purchased from external markets at a cost.
Vehicles arrive randomly and make service decisions based on real-time energy prices and personal energy
needs. A queue system handles excess demand when immediate service is unavailable.

To analyze system performance, a simulation-based framework is developed to capture interactions
between renewable generation, storage, energy conversion, user behavior, and market dynamics. It evaluates
how pricing strategies affect user behavior and profitability under varying conditions, offering insights for
the design of future integrated multi-energy hubs.

3 SIMULATION LOGIC

In this section, we describe the simulation design using three components: agent definitions, their behavioral
logic, and the operational steps executed at every time step to capture the dynamic interactions between
EVs, HFCVs, and the CS.

3.1 Agent Definitions
3.1.1 EVs

Each EV agent (i) is characterized by several parameters including its battery capacity c;, and charging
speed v;; initial state of charge (SOC) s;, and accumulated waiting time w;.

Figure 2 illustrates the decision-making logic of EVs. When an EV arrives at the station, it first assesses
whether to enter the queue based on the queue length and its own SOC. This decision is governed by a
simple balking rule: if the vehicle’s SOC is above 50% and the queue length exceeds a threshold, it will
leave the station; otherwise, it will join the queue. Once in the queue, the EV will wait until an electric
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Figure 2: Decision-making logic for EV agents.

charging spot becomes available. During this period, if its waiting time w; exceeds a threshold, the EV
will renege and depart the station (Lai et al. 2022).

Upon reaching a charging spot, the EV determines how much energy to request based on its budget
and utility values (Lai et al. 2023). The utility incorporates three components: (1) satisfaction from energy
gain modeled as a logarithmic function, while At is the unit time interval of the simulation environment, ¢
is the coefficient for perceived benefit, and Pr is the monetary value of charging utility, (2) disutility from
the monetary cost of charging, while p; is the price of electricity at time ¢, and (3) penalty from waiting
and charging time, in which o is the penalty for time. The utility for each time increment ¢ is computed as:

T
U(i)= Z[a-loglo(v,--At—i—l)-Pr—i—vi~At-pt]—I—G-wi
t=1

Note the summation runs from ¢ =1 to 7, where T is the number of discrete time intervals in the
simulation horizon (e.g., 24 hours with 5-minute intervals means 7 = (60/5) * 24 = 288 while Ar = 5).
Each EV has its expected budget B(i) for charging which is based on the price of electricity upon arrival at
the CS, as well as its capacity and SOC. The utility value will increase when continue to charge, and it will
stop charge when the utility value reaches its budget limitation, which is formulated as: B(i) = p; - (¢; — ;).

3.1.2 HFCVs

Each HFCV agent (j) possesses a fixed hydrogen tank capacity H;, and an initial hydrogen level §;. Figure
3 shows the decision logic of HFCVs: unlike EVs, HFCVs do not queue. To simplify the model with
minimal delay sensitivity, we assume the HFCV leaves the station immediately, if all hydrogen refueling
piles are occupied.
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Figure 3: Behavior model of HFCV agents.

When a refueling pile is available, the HFCV computes its optimal refueling quantity #* to maximize

g
its utility function which equals the summation of its satisfaction value S=¢&-H;- (1 —e A i) 1

(e P)
(Chen et al. 2019) and refueling cost F; - h. The utility balances the benefit of obtaining hydrogen against

the price, taking into account diminishing returns of energy. Based on Backward Induction, the closed-form

solution of /* is: h* = % -log (g?ls_’:f)

value of energy utility at time ¢, and P is the price of hydrogen at time ¢.

>, where f3 is the sensitivity to diminishing utility, & is the expected
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3.1.3CS

As the centralized decision-maker, the CS agent operates s, electric charging spots and s, hydrogen refueling
piles, maintains dual storage systems for electricity and hydrogen, and manages multiple energy conversion
and generation modules. Solar PV panels generate electricity based on real-time irradiance €2;, ambient
temperature ¢, transmissivity 7, panel efficiency 7, degradation coefficient ¥, and total surface area Area,
as described in Equation 1 (Chen et al. 2023). Similarly, wind turbines produce electricity depending on
wind speed V; and turbine parameters including the rated power Ry, rated speed V,, cut-in speed V,;, and
cut-out speed V,,, as detailed in Equation 2 (Atia and Yamada 2016).

To enable hydrogen production, the CS deploys an electrolyzer that converts surplus electricity into
hydrogen, constrained by its rated capacity Rz and minimum operational load ¢ ,. The hydrogen production
depends on the electrolyzer efficiency 1z and conversion factor K}, shown in Equation 3. After hydrogen
is produced, a compressor consumes additional electricity to store the gas in high-pressure tanks so that they
can refuel HFCVs. The compression process is modeled by Equation 4 using kj,;, as the power consumption
per unit hydrogen (Elmasry et al. 2024).

In the reverse direction, a fuel cell enables hydrogen-to-electricity conversion when needed. The output
depends on the hydrogen flow rate, fuel cell efficiency g, conversion factor kj,;,, and operational bounds
set by rated capacity Ry and coefficient o, as shown in Equation 5.
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The CS can generate energy by itself without any costs. However, when the demand is higher that it
cannot meet by itself, the CS can purchase energy from the outside market which will bring additional
costs and make fewer profits.

3.2 Simulation Procedure

The simulation proceeds in discrete time intervals, emulating the real-time operation of a charging station
serving both EVs and HFCVs. Each step updates the internal system state based on renewable energy
generation, energy conversion, vehicle arrivals, and agent interactions.

At the beginning of each step, the CS generates electricity from solar and wind sources using real-time
weather inputs and updates the energy storage levels accordingly. If energy resources are imbalanced
based on the demand, the CS performs electricity-hydrogen conversion using electrolyzers and fuel cells,
as described in Section 3.1.3. The prices for electricity and hydrogen are computed through an embedded
optimization process that ensures budget constraints and utility maximization are satisfied based on a
determined demand distribution.

New vehicle arrivals are stochastically generated based on Poisson distributions for EVs and HFCVs
(Kurtz et al. 2020). Upon arrival, each EV follows the balking and reneging logic in Figure 2, joining the
queue or leaving based on its state-of-charge and perceived delay. Each HFCV, governed by the model in
Figure 3, refuels only if a hydrogen pile is immediately available. Charging and refueling operations are
executed based on the availability of infrastructure and resource sufficiency. EVs initiate charging based on
a utility-driven demand model, and HFCVs determine optimal refueling amounts analytically. Throughout
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the step, profits are tracked based on energy sales and costs from external electricity and hydrogen purchases.
Finally, the system updates the queue status and removes any EVs that exceed the waiting threshold. All
financial and operational metrics are recorded to reflect the outcomes of each timestep.

4 EXPERIMENTS

To evaluate the dynamic performance of the CS under realistic conditions, we develop a simulation
experiment using the Mesa (Project MESA 2023) framework in Python. Since we cannot simulate the
real-world in continuous time, the experiment is conducted under one day with 5-minute intervals. Each
agent and their actions will be considered during the whole 5-minute episode.

4.1 Primary Settings

Because this hydrogen-electricity integrated CS is currently not existing, we cannot get the actual data of
them. The temperature (¢ ) is obtained from Weather Underground (2024), and we use National Renewable
Energy Laboratory (2024) as the solar irradiation data (£2;) for the PV panel. And for the wind turbine,
we use the historical data of wind speed (V;) from Weather Underground (2024).

Other parameters related to the elements inside CS are the same as referred paper: the solar module
adopts 7 =0.9, n =0.15, y=0.0045, and an area of 300 m?; the wind turbine uses Ry = 500 kW,
Vei = 3 mph, V, = 13 mph, and V,,, = 25 mph. The electrolyzer operates with 17 = 0.6, k,,, = 1 /55 kg/kWh,
Rz =1200 kW, and oz = 0.05. The compressor consumes kj;, = 2 kWh/kg. The fuel cell uses ng = 0.65,
Knp = 35 kWh/kg, Ry = 50 kg/h, and oy = 0.05 (Chen et al. 2023; Atia and Yamada 2016; Elmasry et al.
2024).

Based on the assumption (Kurtz et al. 2020), we model the vehicle arrivals using a Poisson distribution,
calibrated to reflect average hourly arrival rates of 8 EVs and 8 HFCVs, which corresponds to expected
5-minute arrival rates of A, = A, = 6% -5 =0.667.

Each EV agent is assigned a battery capacity randomly chosen from {40, 80,120} kWh and a charging
speed from {8,10,12} kW. Initial state-of-charge values are drawn uniformly between 10% to 50% of the
full capacity (U.S. Department of Energy 2025). Each HFCV agent is assigned a hydrogen tank capacity
of 6 kg (TopSpeed Editorial Team 2023; BMW USA 2023; Hyfindr 2024), with a random initial hydrogen
level between 1-6 kg. We do not consider large long-haul freight vehicles in the current model to make
HFCVs comparable with EVs. Considering the common size of a small charge station, we set 4 electricity
charging spots and 2 hydrogen refueling spots as the baseline. The CS will serve arriving EVs and HFCV's
with their generated energy first, then purchase energy from the market to serve them with a lower profit.
The basic price of electricity in 5-minute comes from U.S. Energy Information Administration (2024), and
El-Taweel, Khani, and Farag (2018) provides an example data of hydrogen price data. Each EV has a given
threshold for the maximum waiting time in the queue, which is set as 30 minutes, and all parameters for
their utility function are from Table I in Lai et al. (2023).
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Figure 4 shows the hourly distribution of EV arrivals and services. Due to the limitation of available
electricity charging spots, there are at most 4 EVs starting charging at one time point. Comparing with
Figure 6, there are more time points that both 2 hydrogen spots are fully occupied than the electricity
spots. This is because EVs will take more than one time interval to get charged and make the available
time of electricity spots not overlap during the time. This can also be captured from Figure 5, which shows
a significant increasement on the queue length from 8 am to 10 am, which has the most EVs arriving
during that time in Figure 4. Figure 7 provides a cumulative view of the CS’s profit, split into electricity
and hydrogen components. Notably, electricity profit dominates early and mid-day hours, while hydrogen
profit contributes steadily.

4.2 Sensitivity Analysis

This section presents scenario-based sensitivity analyses to examine how key parameters affect the per-
formance of the hybrid CS. While not aiming for global optimality, these tests compare system behavior
across realistic configurations. All baseline parameters follow Section 4.1, with variations in electricity
purchase price, the number of service spots, and user behavior (e.g., wait threshold, delay sensitivity).
Each scenario is run over 24 hours with randomized arrivals, and results are averaged over 10 replications
for robustness.

4.2.1 Behavior Changes on the Price

We investigate how fluctuations in electricity prices impact EV charging decisions and overall station
dynamics. Since EVs rely on a utility function that accounts for electricity price, waiting time, and
remaining power, changes in electricity prices directly affect their choice to initiate charging, balk, and
renege.

To capture this behavior, we simulate multiple scenarios with adjusted electricity price ratios based on
the original price, denoted as p. The station performance and EV behavioral responses are assessed under
different price scaling factors ranging from 0.5p to 1.5p. The results summarize key indicators such as
total profit (IT), number of EVs served (N;), number of EVs arrived (N,), number of EVs fully charged
(Ny), average waiting time (7,,), average charging duration (7;), and total charging demand (Q). Table 1
presents a concise summary of system responses under different electricity price scenarios.

Table 1 shows the simulation results. As the electricity price rate increases from 0.5 to 1.5, the station’s
profit rises substantially, from $193.91 to $513.05. This increase indicates that, even though users reduce
their charging amounts at higher prices, the elevated unit revenue offsets the lower energy consumption
and maintains profitability.

However, this financial gain comes with a noticeable behavioral shift. The number of fully charged
EVs declines as the price increases, falling from an average of 129.3 vehicles at a price rate of 0.5 to just
88.3 at 1.5. This suggests that EV users become more conservative with their energy demand when prices
rise, likely due to the negative utility associated with high cost. Notably, even though the number of fully
charged EVs declines, the total number of EVs served remains stable across all price levels, with values
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Table 1: Sensitivity analysis of electricity price on station performance and EV behavior.

Price Rate II ($) Ny N, Ny T, (min) 7, (min) Q (kWh)

0.5 19391 186.6 1969 129.3 8.55 24.72 9541.95
0.6 22951 187.6 1969 1204 8.04 24.36 9464.64
0.7 25755 1872 1969 1134 7.68 23.94 9245.13
0.8 291.55 189.0 1969 111.8 7.47 23.61 9179.87
0.9 318.12 189.2 1969 109.8 7.29 23.45 9091.62
1.0 35793 189.3 1969 106.6 7.20 23.39 9094.04

1.1 395.15 189.7 1969 102.1 6.91 23.25 9063.32
1.2 42194 1902 1969 935 6.61 23.22 9098.17
1.3 449.41 190.6 1969 94.1 6.59 23.08 9044.21
1.4 481.87 190.8 1969 89.9 6.35 22.82 8941.67

1.5 513.05 191.8 1969 88.3 6.00 22.63 8919.59

ranging between 186 and 191. This indicates that users still participate in the system but opt for shorter
or partial charging sessions.

This behavior is further reflected in both the waiting and charging times. The average EV waiting
time decreases from 8.55 minutes to 6.00 minutes as price increases, while the average charging duration
declines from 24.72 minutes to 22.63 minutes. These trends suggest that partial charging not only shortens
service time per vehicle but also improves queuing dynamics, enabling faster system turnover. Despite the
decline in energy delivered—from 9541.95 kWh to 8919.59 kWh—the system maintains high throughput
and user engagement, validating the effectiveness of time-sensitive pricing in managing demand without
compromising service rates.

4.2.2 Optimal Spots in the CS

We investigate how different infrastructure configurations impact system performance under various vehicle
arrival rates. As vehicle flow intensifies, limitations in service capacity—particularly the number of electric
and hydrogen refueling spots—can lead to increased waiting time, lower service levels, and profit fluctuations.
To identify these constraints and assess the effect of station scaling, we simulate multiple combinations of
EV/HFECYV arrival rates (A, A;) and available charging/refueling spots (S,, Sj,).

For each configuration, we evaluate the resulting total profit (IT), number of EVs arrived (N,), served
(Ny), fully charged (Ny), average EV waiting time (7)), average charging duration (7;), and total EV
electricity demand (Q). We also track hydrogen vehicle arrivals and service counts. There is no queueing
process for HFCVs due to their fast refueling, so we have the number of HFCVs arrived (Nf,’), served (Nsh).
The results are shown in Table 2.

Table 2 explores how the CS responds to varying vehicle arrival rates and spot allocations. At low
arrival rates (e.g., 4 EVs and 4 HFCVs per hour), expanding the number of electric and hydrogen spots
from 2 to 8 does not significantly improve performance. In fact, the total profit slightly decreases when
EV infrastructure is overbuilt under low demand scenarios. For instance, profit peaks at $201.74 when
4 EV spots are available but drops to $185.37 with 8 EV spots under the same arrival rate, indicating
underutilization of resources.

As arrival rates increase to 6, 8, 10, and 12 vehicles per hour, infrastructure capacity becomes a critical
bottleneck. When only 2 EV spots are available, high congestion leads to lower service levels. At an
arrival rate of 12, the station serves just 122.1 of 282.3 EVs, with only 56.2 vehicles fully charged. In
contrast, increasing EV spots to 6 or 8 significantly improves service coverage and charging outcomes. For
example, with 6 EV spots, the system serves 294.4 EVs and fully charges 164.7 of them, while average
waiting time drops from 25.04 minutes (2 spots) to 6.43 minutes.

Interestingly, while the number of served EVs continues to grow with more spots, profit gains begin
to plateau. Maximum profitability is observed with 6 EV spots and 3 hydrogen spots, yielding $542.71.
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Table 2: Sensitivity analysis on arrival rate and service capacity configuration.

A A S. S, II(®) N, N, Ny T, (min) T, (min) Q (kWh) N N
4 4 2 1 17541 981 881 507 9.71 2332 419433 1022 86.6
4 4 4 2 20174 988 988  66.6 0.71 2460 504156  96.0  95.0
4 4 6 3 19149 973 973 664 0.01 2453 4928.69 928 927
4 4 8 4 18537 938 93.8 656 0.00 2486  4853.61 96.6 96.6
6 6 2 1 211.67 140.0 1080 549 1636 2298  5081.30 1486 1164
6 6 4 2 27936 146.1 144.6 90.5 2.87 2406 716521 140.6 135.7
6 6 6 3 28558 1450 1449 977 0.22 2450 734377 1450 1440
6 6 8 4 27842 143.1 1431 982 0.01 2446 719572 141.1 1409
8 8 2 1 22688 191.5 1174 554  21.04 2272 547485 187.1 1362
8 8 4 2 35701 1982 190.1 109.6 7.17 2336  9120.85 189.7 179.3
8 8 6 3 37035 1926 1923 1286 0.97 2453 9777.10 190.5 189.3
8 8 8 4 36642 191.6 191.6 1322 0.05 24.81 9855.38 1989 198.8
10 10 2 1 231.64 2469 1205 543 2424 2259  5607.67 239.0 162.6
10 10 4 2 39815 2299 2115 1134 1091 23.15 1007422 2389 221.1
10 10 6 3 45245 2449 2430 1502 2.80 23.84  11938.76 2393 236.1
10 10 8 4 43073 2364 2363 1584 0.39 2433  11900.51 2413 241.1
12 12 2 1 231.27 2823 1221 562  25.04 2246  5622.08 2889 1799
12 12 4 2 43249 2832 2327 1139 16.89 2277  10851.64 279.1 249.0
12 12 6 3 54271 2995 2944 164.7 6.43 2343  14164.09 2822 2746
12 12 8 4 50552 2861 2855 188.7 1.09 2424  14291.18 282.0 281.0

Expanding to 8 spots results in slightly reduced profit ($505.52), suggesting that additional capacity beyond
the saturation point does not yield proportional returns and may lead to inefficiencies.

The behavior of HFCVs is comparatively less sensitive to infrastructure changes. Even with just one
hydrogen refueling spot, a significant portion of vehicles are served due to short refueling times and the
absence of a queue. However, adding more hydrogen spots improves the consistency and reliability of
service under high arrival rates.

This experiment illustrates that infrastructure should be scaled proportionally to demand. Specifically,
the rate of A, : S, should be between 1 and 2, and A, : S;, should be between 0.5 and 1. While under-
provisioning limits system effectiveness, over-provisioning offers diminishing returns. Identifying the
optimal number of spots under different demand is key to maximizing both profit and efficiency.

4.2.3 Time Sensitivity and Waiting Behavior

In this experiment, we evaluate how EV charging behavior responds to changes in queue tolerance and delay
sensitivity. Specifically, we explore two behavioral parameters: the maximum waiting time threshold (7,),
which determines whether an EV will renege, and the time penalty factor (o), which weighs waiting time
more heavily in the utility function. These parameters reflect individual user preferences and operational
policies that affect system efficiency and vehicle retention.

To analyze their effects, we simulate various combinations of 7,, ranging from 15 to 60 minutes, and &
ranging from 0.2 to 0.8. System performance is assessed using key indicators including total station profit
(IT), number of EVs arrived (N,), served (Ny), fully charged (Ny), average waiting time (7,,), charging
duration (7;), and total electricity demand (Q). Table 3 presents the results of this sensitivity analysis.

Table 3 shows that both the waiting threshold and time sensitivity significantly affect system performance.
Shorter thresholds (e.g., 15 minutes) reduce average wait times but also lower profits and service rates—for
example, with a time factor of 1, profit drops from $366.87 to $338.62 and EVs served from 192.7 to
173.7 as the threshold tightens. This indicates that stricter time-based balking or reneging behaviors reduce
service coverage and overall revenue.
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Table 3: Sensitivity analysis of wait threshold and time penalty factor on EV behavior.

Ty (min) o II($) N N Ny T, (min) T. (min) Q (kWh)

15 02 34424 1734 1969 1069  3.89 2422 870248
30 02 36694 1882 1969 109.0  7.52 23.82  9260.52
45 02 366.11 191.6 1969 1065 883 23.53  9259.19
60 02 369.63 1924 1969 1063  9.96 23.55  9335.72
15 04 33862 1737 1969 1065 383 2400  8590.29
30 04 35721 189.1 1969 1080  6.89 2341 909322
45 04 36441 1930 1969 1059  7.81 2332 9264.74
60 04 366.87 1927 1969 1050  8.83 23.50 934096

15 06 341.07 1752 1969 1055 379 2376 8567.55
30 06 361.89 189.8 1969 1043 7.8 23.28  9083.79
45 0.6 36049 1923 1969 1060  8.14 2324 9200.55
60 0.6 363.51 193.1 1969 1087  8.07 2321 917317

© 15 08 34115 1751 1969 1035 376 2381  8610.78
30 0.8 35833 189.8 1969 1025  7.00 23.27  9080.40
45 0.8 370.82 1929 1969 1009 851 2348 9389.76

60 0.8 360.07 1933 1969 105.5 8.25 23.11 9158.10

Higher time sensitivity (larger time factor) makes users more averse to queues, leading to shorter waits
but smaller total charges. At a 15-minute threshold, increasing the time factor from 0.5 to 2 reduces profit
($344.24 to $341.15) and fully charged EVs (106.9 to 103.5), despite a similar number served. Users tend
to accept shorter or partial charging sessions.

The best outcome occurs with a 45-minute threshold and time factor of 2, yielding the highest profit
($370.82) by balancing user patience and service efficiency. Although average charge duration stays around
23-24 minutes, higher time sensitivity consistently reduces energy intake. This confirms that users adapt
their charging behavior not only based on electricity price but also on perceived waiting burden.

5 CONCLUSION AND FURTHER RESEARCH

This study introduces a simulation-based framework to evaluate the performance of hydrogen-electricity
integrated CS under dynamic conditions. By modeling EV and HFCV interactions with real-time pricing
and queues, it captures user-infrastructure dynamics. Results show that electricity pricing strongly affects
user behavior—higher prices reduce per-session demand but increase profit. Infrastructure sizing also
matters: both over- and under-capacity lead to inefficiencies. User behavior parameters like wait thresholds
and delay sensitivity significantly influence throughput and revenue.

The proposed framework offers practical insights for sustainable infrastructure planning and CS opera-
tions. Future extensions may include stochastic renewable supply, multi-day simulations, grid trading, and
policy-driven cost-benefit analysis. Reinforcement learning could also be applied for adaptive pricing and
dispatch strategies. A key limitation is the simplified user behavior modeling: EVs follow deterministic
balking/reneging rules, and HFCVs make binary decisions without queuing. User heterogeneity is limited
to technical specs. Future work will incorporate probabilistic decisions, diverse utility functions, and
learning-based behaviors to better reflect real-world dynamics.
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