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ABSTRACT

Expected improvement (EI) is a common ranking and selection (R&S) method for selecting the optimal
system design from a finite set of alternatives. Ryzhov (2016) observed that, under normal sampling
distributions with known variances, the limiting budget allocation achieved by EI was closely related to the
theoretical optimum. However, when the variances are unknown, the behavior of EI was quite different,
giving rise to the question of whether the optimal allocation in this setting was totally distinct from the
known-variance case. This research solves that problem with a new analysis that can distinguish between
known and unknown variance, unlike previously existing theoretical frameworks. We derive a new optimal
budget allocation for this setting, and confirm that the limiting behavior of EI has a similar relationship to
this allocation as in the known-variance case.

1 INTRODUCTION

Ranking and selection (R&S) is an important problem in simulation-based optimization. Its goal is to
identify the optimal alternative of a complex system from a finite set of alternatives. The mean performance
of each alternative is unknown and can be estimated by samples collected from the simulation model of
the system under study. Based on these estimates, the optimal alternative can be selected. The quality of
the selected alternative depends on the number of samples allocated to each alternative. This has led to the
development of numerous R&S methods, which aim to determine the appropriate sample sizes for each
alternative to either guarantee or optimize the quality of the selected alternative (Hong et al. 2021; Hunter
and Nelson 2017; Xu et al. 2015). Apart from simulation, R&S has also been extensively studied in the
machine learning field under the name of best arm identification (BAI) (Jourdan et al. 2023; Yang et al.
2023; Kaufmann et al. 2016).

R&S methods can be classified into two types: fixed-confidence and fixed-budget. Fixed-confidence
methods pre-specify a level for the probability of correct selection (PCS) for the optimal alternative and
seek to guarantee this probability level using a sample budget as small as possible (Fan et al. 2025; Wang
et al. 2024; Zhong and Hong 2022), while fixed-budget methods fix the total sample budget that can
be used and aim to efficiently allocate the budget to the alternatives so as to maximize the PCS (Wang
and Zhou 2025; Agrawal et al. 2020; Gao and Chen 2016). We consider fixed-budget R&S in this
research. Based on the statistical framework adopted, fixed-budget R&S methods can be further divided
into two streams: frequentist methods and Bayesian methods (Kim and Nelson 2007; Branke et al. 2007).
Frequentist methods use simple statistics such as sample means and sample variances of the alternatives to
estimate system performance, guide sample allocation and select the optimal alternative (Chen and Ryzhov
2023; Xiao et al. 2023; Gao and Chen 2017). In contrast, Bayesian methods first utilize historical data or
human experiences to construct prior beliefs toward unknown values os the system and update the beliefs
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dynamically as more simulation samples are collected (Russo 2020; Peng et al. 2018; Chick et al. 2010).
The performance estimate for an alternative in Bayesian methods is often its posterior mean.

Expected improvement (EI) is a common Bayesian fixed-budget R&S method (Ryzhov 2016; Qin et al.
2017). In each iteration, EI uses the current best posterior mean as a benchmark, computes the expected
improvement of each alternative over the benchmark based on their posterior distributions, and samples the
alternative with the largest expected improvement. EI has a straightforward rationale and is widely used
not only in R&S but also in other applications, such as continuous black-box optimization (Frazier 2018).

Besides EI, the optimal computing budget allocation (OCBA) is another popular Bayesian fixed-budget
R&S method (Chen and Lee 2011). It adopts the Bayesian probability of fasle selection (PFS, equal to
1-PCS) as the quality measure, which quantifies the probability that the selected alternative is not the true
optimal one based on the posterior distributions. The method aims to develop a rule for sample allocation
that minimizes the Bayesian PFS. Deriving this rule often requires considering the asymptotic case (as
the sample budget goes to infinity) to obtain analytical results. Therefore, the OCBA allocation rule is
essentially the asymptotic optimal sample allocation. Ryzhov (2016) compared EI and OCBA and observed
that the limiting sampling ratios of any two suboptimal alternatives produced by EI are consistent with the
asymptotic optimal sample allocation derived by the OCBA method. This is an interesting result because
the EI and OCBA methods were developed based on fundamentally different rationales.

However, these two methods (as well as most other fixed-budget R&S methods in the literature) and the
aforementioned consistency in their sample allocation were obtained under normal sampling distributions
with known variances. Although the normality assumption is standard and reasonable for the samples of
simulation models, assuming that their variances are known is unrealistic and does not align with real-world
situations. The known-variance assumption underestimates the uncertainty of samples, which will cause
the derived sample allocation to be suboptimal.

In view of this issue, Ryzhov (2016) analyzed the EI algorithm when the sampling variances of the
alternatives are unknown, and found that the limiting sampling ratios become different from the known-
variance case. Since the sampling ratios of EI are closely related to the asymptotic optimal sample allocation
under known variances, Ryzhov (2016) inferred that this result likely extends to the unknown-variance
case, and further conjectured that the asymptotic optimal sample allocation under unknown variances
would differ from the known-variance case as well. It then raised an open question on how to find this
potentially different asymptotic optimal sample allocation under unknown variances (possibly using the
OCBA method), and whether the sampling ratios of EI under unknown variances match this allocation.

This research provides an answer to this open question by establishing a systematic approach to analyze
fixed-budget R&S problems under unknown variances. The new approach is inspired by the basic framework
of OCBA and begins by characterizing the convergence rate function of the PFS. Based on this, a sample
allocation optimization model is developed, from which the asymptotic optimal sample allocation can be
derived. The result confirms that the asymptotic optimal sample allocation under known and unknown
variances are indeed different, which validates the conjecture of Ryzhov (2016). In addition, the sampling
ratios of EI under unknown variances are shown to align with this optimal allocation, so the consistency
in sample allocation between EI and OCBA remains in the unknown-variance case.

We would like to point out that the analysis in this paper is not a simple extension of the OCBA method in
the known-variance case (Chen and Lee 2011; Gao et al. 2017). First, the traditional large deviations-based
approach for deriving the convergence rate function of PFS (Glynn and Juneja 2004) cannot be applied to
the case of normal distributions with unknown variances. This is because the posterior distribution for the
mean of each alternative usually does not satisfy the conditions required for a standard large deviations
principle. To address this, we developed a new analysis method for derive the rate function of PFS. Second,
when sampling variances are unknown, the rate function of PFS no longer has a closed-form expression,
the optimization model in defining the rate function is no longer convex, and the corresponding optimal
solutions are no longer continuous with respect to the sample allocation. These factors introduce significant
challenges in finding the asymptotic optimal sample allocation. In particular, the commonly used solution
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approach of checking KKT conditions in the known-variance case is not applicable. In this research, we
developed new techniques tailored to solve this difficult optimization model.

The remainder of the paper is organized as follows. Section 2 formulates the R&S problem, introduces
the EI and OCBA methods and compares their limiting sample allocations. Section 3 shows the convergence
rate function of Bayesian PFS under unknown variances. Based on that, Section 4 builds a sample allocation
optimization model and derives the asymptotic optimal sample allocation. Section 5 concludes the paper.

2 PROBLEM FORMULATION

In a typical fixed-budget R&S problem, we aim to identify the optimal system design among k alternatives
{1, . . . ,k} using a total sample budget n. Let Yat denote the t-th simulation sample for alternative a, where
Yat follows a normal distribution with mean µa and variance σ2

a , a = 1, . . . ,k. To find the optimal alternative
a∗ ≜ argmaxa=1,...,k µa, we allocate Na samples to each alternative a with ∑

k
a=1 Na = n. The mean of each

alternative is estimated by samples and the alternative with the highest performance estimate is selected as
the optimal one.

When the variances σ2
a are unknown, we need to jointly learn (µa,σ

2
a ) for each alternative a. In a

Bayesian framework, (µa,σ
2
a ) is treated as a random vector, and a prior distribution is specified to represent

our initial beliefs about their true values. Once simulation samples for alternative a are observed, the prior
distribution can be updated using the Bayes’ rule to obtain the posterior distribution. The posterior mean
of µa serves as its point estimate, and the estimated optimal alternative â∗ is the one with the highest
posterior mean. It is also the selected alternative when the sample budget n is used up. Note that when the
variances σ2

a are known, only µa’s need to be learned.
A common measure to quantify the quality of â∗ is the Bayesian PFS, defined as

PFSn ≜ Pn(∪a̸=â∗{µâ∗ ≤ µa}), (1)

where Pn is the posterior probability distribution of (µ1,µ2, . . . ,µk). The probability PFSn represents how
confident we are about the selected alternative â∗ not being the true optimal one based on the posterior
distribution. Ideally, we hope to allocate the number of samples Na for each alternative a in a way that
minimizes PFSn. However, since PFSn rarely has an analytical form, directly optimizing it becomes
difficult. In the literature, there have been well-established R&S methods to approximately determine the
optimal sample allocations Na for a = 1, . . . ,k. In this work, we focus specifically on the EI and OCBA
methods.

The EI method sequentially allocates the sample budget. Consider stage s+1 where s samples have been
allocated to the k alternatives. Let µ̂s,a denote the posterior mean of alternative a and â∗s ≜ maxa=1,...,k µ̂s,a
denote the estimated optimal alternative at the end of stage s. The expected improvement of alternative a
at stage s+1 is defined as

Es,a ≜ Es,a(µa − µ̂s,â∗s )
+,

where Es,a is the expectation taken with respect to the posterior distribution of µa. Es,a measures the posterior
expected improvement of µa over the current best value µ̂s,â∗s , a = 1, . . . ,k. EI allocates the (s+1)st sample
to the alternative with the maximum value of Es,a. After the sample is observed, the posterior will be
updated and EI will move to stage s+2.

The OCBA method formulates the following optimization problem to allocate samples:

min
N1,...,Nk

PFSn s.t.
k

∑
a=1

Na = n, Na ≥ 0, a = 1, . . . ,k. (2)

Let pa ≜ Na/n denote the proportion of the total sample budget allocated to alternative a. We call
p⃗ = (p1, . . . , pk) a sample allocation. While directly minimizing PFSn in this formulation is difficult, the
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convergence rate function of PFSn is analytically tractable. As a result, an approximate version of the
optimization model (2) is often considered, where minimizing PFSn is replaced by maximizing its rate
function. Solving this approximate model yields the asymptotic optimal sample allocation. Based on this
allocation, selection algorithms (Chen and Ryzhov 2019; Li and Gao 2023) can be developed.

It is worth noting that the Bayesian PFS is different from the PFS defined in the frequentist framework
(Glynn and Juneja 2004; Gao et al. 2017; Chen and Ryzhov 2023). The frequentist PFS is defined as

PFS f req ≜ P f req(∪a̸=a∗{Ȳa∗ ≤ Ȳa})

where Ȳa is the sample mean of alternative a, a = 1, . . . ,k, and P f req is taken with respect to the distribution
of sample means (Ȳ1, . . . ,Ȳk). In the following, we present the existing theoretical results of EI and OCBA
under known and unknown variances respectively.

2.1 EI and OCBA under Known Variances

Consider the Bayesian framework where the prior of µa is normal for each alternative. When samples
of each alternative are normal with known variances, the posterior distribution of µa remains normal
(Ryzhov 2016). Under this setting, EI is consistent, i.e., it can correctly identify the optimal alternative a∗

asymptotically. The number of samples for a∗ from EI grows as n−O(logn), and the limiting sampling
ratios of any two suboptimal alternatives satisfy

pa

pa′
=

(µa′ −µa∗)
2/σ2

a′

(µa −µa∗)2/σ2
a
, a,a′ ̸= a∗. (3)

As n → ∞, it can be shown that PFSn converges to zero exponentially (Russo 2020) at the rate of

min
a̸=a∗

(µa −µa∗)
2

2(σ2
a /pa +σ2

a∗/pa∗)
. (4)

The OCBA method seeks to maximize this rate function, subject to the constraints ∑
k
a=1 pa = 1 and pa ≥ 0

for a = 1, . . . ,k, and the optimal solution (asymptotic optimal sample allocation) satisfies the following
conditions (Glynn and Juneja 2004):

(µa∗ −µa)
2

2(σ2
a∗/pa∗ +σ2

a /pa)
=

(µa∗ −µa′)
2

2(σ2
a∗/pa∗ +σ2

a′/pa′)
, a,a′ ̸= a∗, (5a)

p2
a∗/σ

2
a∗ = ∑

a̸=a∗
p2

a/σ
2
a . (5b)

Given the sample proportion pa∗ for the optimal alternative a∗, (5a) determine the relative allocation of
samples among the suboptimal alternatives. (5b) further establishes a balance between sample sizes allocated
to the optimal alternative and the set of suboptimal alternatives. Solving the system in (5) does not yield a
closed-form solution and therefore requires numerical methods. However, by assuming that the proportion
pa∗ of the budget allocated to alternative a∗ is significantly greater than that allocated to any suboptimal
alternative (i.e., pa∗ ≫ pa for all a ̸= a∗), an approximate solution to (5) can be derived as demonstrated
in Chen et al. (2000):

pa

pa′
=

(µa′ −µa∗)
2/σ2

a′

(µa −µa∗)2/σ2
a
, a,a′ ̸= a∗, (6a)

p2
a∗/σ

2
a∗ = ∑

a̸=a∗
p2

a/σ
2
a , (6b)

which is a closed-form sample allocation and can be easily computed. Note that the limiting sampling
ratios of EI in (3) are exactly the same as the part of the OCBA sample allocation in (6a) that governs the
relative allocation among suboptimal alternatives.
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2.2 EI under Unknown Variances

The values of variances σ2
a (or equivalently, precisions Λa (≜σ−2

a )) are rarely known in practice, a= 1, . . . ,k.
When the precisions Λa are treated as unknown, (µa,Λa) can be learned using the the conjugate Normal-
Gamma model. That is, when the prior of (µa,Λa) is a Normal-Gamma distribution, the posterior is
still Normal-Gamma. The relationship of the parameters in the prior and posterior distributions has been
reported in the literature (Ryzhov 2016) and is omitted here. The marginal posterior distribution of µa
follows a Student’s t distribution.

Under this model, Ryzhov (2016) showed that the EI algorithm remains consistent, and the optimal
alternative a∗ still receives n−O(logn) samples. However, the sampling ratios between any two suboptimal
alternatives deviate from the known-variance case. Specifically, the ratios are given by:

pa

pa′
=

log(1+(µa′ −µa∗)
2/σ2

a′)

log(1+(µa −µa∗)2/σ2
a )

, a,a′ ̸= a∗. (7)

Moreover, Ryzhov (2016) showed that the EI under unknown variances demonstrates superior empirical
performance to its known-variance version.

3 CONVERGENCE RATE OF BAYESIAN PFS

In this section, we derive the convergence rate function of PFSn under unknown variances. Some lemmas
will be introduced for better understanding of the main conclusion. Suppose the prior of (µa,Λa) is
Normal-Gamma with density denoted by g0,a(x,λ ), a = 1, . . . ,k. The priors of different alternatives are
independent. For notation simplicity, let D = R+×R. The prior density should be non-degenerate such
that ∫∫

D
g0,a(xa,λa)dxadλa = 1, a = 1, . . . ,k. (8)

After Na simulation samples (out of the sample budget n) have been collected for alternative a, its posterior
distribution is Normal-Gamma with density gn,a(xa,λa). The posterior mean of µa is denoted by µ̂n,a,
a = 1, . . . ,k, and the selected alternative is â∗ = argmaxa=1,...,k µ̂n,a.

The event of false selection is fundamentally determined by the outcomes of k−1 pairwise comparisons
between the selected alternative â∗ and each of the remaining alternatives. In the following lemma, we reduce
the convergence rate of PFSn to the convergence rates of the Bayesian probabilities of false comparison
associated with these k−1 pairwise comparisons.
Lemma 1 Suppose pa > 0 for all a = 1, ...,k. The convergence rate function of PFSn is

lim
n→∞

1
n

logPFSn = max
i̸=i∗

lim
n→∞

1
n

logPn(µa∗ ≤ µa).

The rationale of Lemma 1 is as follows. Since pa > 0, Na → ∞ as n → ∞, and the Law of Large
Numbers ensures that the posterior mean µ̂n,a converges to the true mean µa as n → ∞ for all a = 1, . . . ,k.
This convergence implies that the selected alternative â∗n = a∗ when n is large enough. For such sufficiently
large n, it follows directly that:

max
a̸=a∗

Pn(µa∗ ≤ µa)≤ PFSn ≤ ∑
a̸=a∗

Pn(µa∗ ≤ µa)≤ (k−1)max
a̸=a∗

Pn(µa∗ ≤ µa).

Then, using a similar analysis as in Glynn and Juneja (2004), we can establish the proof of Lemma 1.
Let l(y;x,λ ) denote the density function of a normal distribution with mean x and precision λ . Let

Ȳa ≜ N−1
a ∑

Na
t=1Yat and σ̂2

a ≜ N−1
a ∑

Na
t=1(Yat −Ȳa)

2 denote the MLE of µa and σ2
a based on simulation samples
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Yat , t = 1, . . . ,Na, for alternative a where Na = pan. Define a likelihood ratio function as

mn,a(xa,λa)≜
Na

∏
t=1

l(Yat ;xa,λa)

l(Yat ;Ȳa, σ̂
−2
a )

.

According to the Bayes’ rule, for any suboptimal alternative a ̸= a∗,

Pn(µa∗ ≤ µa) =
∫∫∫∫

D2
I(xa∗ ≤ xa)gn,a(xa,λa)gn,a∗(xa∗ ,λa∗)dxadλadxa∗dλa∗

=

∫∫∫∫
D2 I(xa∗ ≤ xa)g0,a(xa,λa)mn,a(xa,λa)g0,a∗(xa∗ ,λa∗)mn,a∗(xa∗ ,λa∗)dxadλadxa∗dλa∗∫∫∫∫

D2 g0,a(x′a,λ ′
a)mn,a(x′a,λ ′

a)g0,a∗(x′a∗ ,λ
′
a∗)mn,a∗(x′a∗ ,λ

′
a∗)dx′adλ ′

adx′a∗dλ ′
a∗

, (9)

where the posterior density function of gn,a(xa,λa) is obtained by

gn,a(xa,λa) =
g0,a(xa,λa)∏

Na
t=1 l(Yat ;xa,λa)∫∫

D g0,a(x′a,λ ′
a)∏

Na
t=1 l(Yat ;x′a,λ ′

a)dx′adλ ′
a
=

g0,a(xa,λa)mn,a(xa,λa)∫∫
D g0,a(x′a,λ ′

a)mn,a(x′a,λ ′
a)dx′adλ ′

a
.

In the formulation above, we used the likelihood ratio function mn,a(xa,λa) instead of the likelihood function
∏

Na
t=1 l(Yat ;xa,λa) to facilitate the discussion on the convergence rate. Let

Ia ≜
∫∫∫∫

D2
I(xa∗ ≤ xa)g0,a(xa,λa)mn,a(xa,λa)g0,a∗(xa∗ ,λa∗)mn,a∗(xa∗ ,λa∗)dxadλadxa∗dλa∗ ,

Ia∗ ≜
∫∫∫∫

D2
g0,a(xa,λa)mn,a(xa,λa)g0,a∗(xa∗ ,λa∗)mn,a∗(xa∗ ,λa∗)dxadλadxa∗dλa∗ .

Then Pn(µa∗ ≤ µa) = Ia/Ia∗ by (9).
We seek to find lower and upper bounds on Ia and Ia∗ so that Pn(µa∗ ≤ µa) can be bounded. Then,

using Lemma 1, the convergence rate function of PFSn can be obtained from the bounds on Ia/Ia∗ .
To do it, we consider two maximization problems as follows for alternative a ̸= a∗:

max
(xa,λa,xa∗ ,λa∗ )∈D2

mn,a(xa,λa)mn,a∗(xa∗ ,λa∗), (10)

max
(xa,λa,xa∗ ,λa∗ )∈D2

mn,a(xa,λa)mn,a∗(xa∗ ,λa∗) s.t. xa∗ ≤ xa. (11)

Let v⃗a∗ and v⃗a denote the optimal solutions to (10) and (11), respectively. If we can find the optimal values
of (10) and (11) and derive lower and upper bounds on their objective values in the neighborhood of the
optimal solutions v⃗a∗ and v⃗a, then, bounds on Ia∗ and Ia will be easily obtained by integration over the
neighborhood of v⃗a∗ and v⃗a respectively.

In the case of (10), this process is relatively straightforward because the problem simplifies to the
maximum likelihood estimation of the parameters (µa,Λa) and (µa∗ ,Λa∗). However, for problem (11), we
must address the additional constraint xa∗ ≤ xa, which introduces further complexity to the solution process.
Lemma 2 Let ε̄ > 0 denote a small enough constant. For alternative a ̸= a∗ and ε with 0 < ε ≤ ε̄ , when
n is large enough such that |Ȳa′ −µa′ | ≤ ε and |σ̂2

a′ −σ2
a′ | ≤ ε , a′ = a,a∗, the optimal value of (11) equals

exp
(
−nmin

xa

( pa

2
log

(
1+(Ȳa − xa)

2/σ̂
2
a
)
+

pa∗

2
log

(
1+(Ȳa∗ − xa)

2/σ̂
2
a∗
)))

.

Lemma 2 shows that the optimization over (xa,λa,xa∗ ,λa∗) under the constraint xa∗ ≤ xa can be reduced
to an one-dimensional optimization over xa.

For ε with 0 < ε ≤ ε̄ , define the neighborhood around the optimal solutions v⃗a and v⃗a∗ as

Bn,a = {(xa,λa,xa∗ ,λa∗) ∈ D2 : ∥(xa,λa,xa∗ ,λa∗)− v⃗a∥∞ ≤ ε and xa∗ ≤ xa},
Bn,a∗ = {(xa,λa,xa∗ ,λa∗) ∈ D2 : ∥(xa,λa,xa∗ ,λa∗)− v⃗a∗∥∞ ≤ ε}.
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Lemma 3 For alternative a ̸= a∗ and 0 < ε ≤ ε̄ , when n is large enough such that |Ȳa′ −µa′ | ≤ ε and |σ̂2
a′ −

σ2
a′ | ≤ ε , a′ = a,a∗, there exists a constant bR independent of n and ε such that for any (xa,λa,xa∗ ,λa∗)∈ Bn,a,

we have exp(−n(Ra(pa, pa∗)+bRε))≤ mn,a(xa,λa)mn,a∗(xa∗ ,λa∗)≤ exp(−n(Ra(pa, pa∗)−bRε))where

Ra(pa, pa∗)≜ min
xa

( pa

2
log

(
1+(µa − xa)

2/σ
2
a
)
+

pa∗

2
log

(
1+(µa∗ − xa)

2/σ
2
a∗
))

. (12)

For any (xa,λa,xa∗ ,λa∗) ∈ Bn,a∗ , we have exp(−nbRε)≤ mn,a(xa,λa)mn,a∗(xa∗ ,λa∗)≤ 1.
Lemma 3 provides lower and upper bounds on the objective value of (11) in the regions Bn,a and Bn,a∗ .

It can be proved by investigating the uniform continuity of the objective function of (11) in the logarithmic
scale.

Now we can characterize the rate function of Pn(µa∗ ≤ µa). Let c denote the constant such that
g0,a(xa,λa)g0,a∗(xa∗ ,λa∗)≥ c > 0 for any (xa,λa,xa∗ ,λa∗) ∈ Bn,a and a = 1, . . . ,k. For alternative a ̸= a∗,

Ia ≥ c
∫∫∫∫

Bn,a

mn,a(xa,λa)mn,a∗(xa∗ ,λa∗)dxadλadxa∗dλa∗

≥ cSize(Bn,a) min
(xa,λa,xa∗ ,λa∗ )∈Bn,a

mn,a(xa,λa)mn,a∗(xa∗ ,λa∗)≥ cSize(Bn,a)exp(−n(Ra(pa, pa∗)+bRε)), (13)

where Size(Bn,a) denotes the volume of Bn,a and the last inequality holds by Lemma 3. On the other hand,

Ia ≤ max
(xa,λa,xa∗ ,λa∗ )∈Bn,a

mn,a(xa,λa)mn,a∗(xa∗ ,λa∗)
∫∫∫∫

D2
g0,a(xa,λa)g0,a∗(xa∗ ,λa∗)dxadλadxa∗dλa∗

≤exp(−n(Ra(pa, pa∗)−bRε)) (14)

where the last inequality holds by Lemma 3 and (8). Similarly, we have

cSize(Bn,a∗)exp(−nbRε)≤ Ia∗ ≤ 1. (15)

Substituting the lower and upper bounds of (13)-(15) into (9),

cSize(Bn,a)exp(−nRa(pa, pa∗)−nbRε)≤ Ia/Ia∗ ≤ exp(−nRa(pa, pa∗)+2nbRε)/(cSize(Bn,a∗)).

By letting n → ∞ and ε → 0, we obtain

lim
n→∞

1
n

logPn(µa∗ ≤ µa) = lim
n→∞

1
n

log
Ia

Ia∗
=−Ra(pa, pa∗).

Using this equation and Lemma 1, we can derive the rate function of PFSn.
Theorem 1 The rate function of PFSn is

− lim
n→∞

1
n

logPFSn = min
a̸=a∗

Ra(pa, pa∗).

Theorem 1 shows that the Bayesian PFS converges exponentially at the rate of mina̸=a∗ Ra(pa, pa∗).
We remark that since log(1+ x)< x for any x > 0,

min
a̸=a∗

Ra(pa, pa∗)< min
a̸=a∗

min
xa

(
pa

2
(µa − xa)

2

σ2
a

+
pa∗

2
(µa∗ − xa)

2

σ2
a∗

)
= min

a̸=a∗

(µa −µa∗)
2

2(σ2
a /pa +σ2

a∗/pa∗)
,

where the right-hand side is the rate function (4) under known variances. This suggests that given the same
allocation, the convergence rate under unknown variances is slower than that under known variances.

With Theorem 1, we turn to consider the following optimization problem

max
p⃗

min
a̸=a∗

Ra(pa, pa∗), s.t.
k

∑
a=1

pa = 1, 0 < pa < 1, a = 1, . . . ,k, (16)

which finds the sample allocation that drives PFSn to converge to zero at the fastest possible rate. The
approach to solving this optimization problem is discussed in detail in the next section.
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4 ASYMPTOTIC OPTIMAL SAMPLE ALLOCATION UNDER UNKNOWN VARIANCES

In the known-variance case, maximizing the rate function of PFSn leads to a well-defined analytical convex
optimization problem. However, when the variances are unknown, in the corresponding optimization model
(16), the term Ra(pa, pa∗) does not have a closed form, which significantly increases the complexity of
the problem and makes it difficult to solve.

The reason causing this difficulty is that the optimization problem (12) in defining Ra(pa, pa∗) is
non-convex such that the optimal solution to (12) is not analytical. We use an example to illustrate this
effect. Consider two alternatives a and a∗ and set µa = 0, µa∗ = 5, and σ2

a = σ2
a∗ = 1. Figure 1 plots the

objective function of (12) when (pa, pa∗) is (0.19,0.20), (0.20,0.20) and (0.21,0.20), respectively. We
have three main observations from Figure 1.

1. The objective function is non-convex and has multiple local optimal solutions.
2. When (pa, pa∗) = (0.20,0.20), the objective function has two local optimal solutions, approximately

0.209 and 4.791, both of which are also globally optimal.
3. As pa increases from 0.19 to 0.21 while holding pa∗ constant, the global optimal solution to (12)

decreases significantly from 4.803 to 0.197.

−1.000 4.803 6.000
xa

0.30

0.35

0.40

0.45
Objective function in a(0.19, 0.20)

−1.000 4.7910.209 6.000
xa

0.30

0.35

0.40

0.45
Objective function in a(0.20, 0.20)

−1.000 0.197 6.000
xa

0.30

0.35

0.40

0.45
Objective function in a(0.21, 0.20)

Figure 1: Objective function of (12) under various values of (pa, pa∗).

For (pa, pa∗) and (p′a, p′a∗) with pa/pa∗ = p′a/p′a∗ , their corresponding optimal solutions to (12) are
the same. We can regard the global optimal solutions to (12) as functions of the sampling ratio pa/pa∗ .
Let x1

a(pa/pa∗) and x2
a(pa/pa∗) denote the smallest and largest (global) optimal solution to (12). The two

solutions can either coincide (e.g., for (pa, pa∗) = (0.19,0.20) and (pa, pa∗) = (0.21,0.20) in Figure 1) or
differ (e.g., for (pa, pa∗) = (0.20,0.20) in Figure 1). In practice, these two solutions can be calculated
based on the first-order condition to (12). Lemma 4 shows some basic properties of these two solutions
with respect to the sampling ratio pa/pa∗ that are important for the subsequent discussion.
Lemma 4 The optimal solutions x1

a(pa/pa∗) and x2
a(pa/pa∗) to (12) have the following properties.

1. If pa/pa∗ < p′a/p′a∗ , then x1
a(pa/pa∗)> x2

a(p′a/p′a∗).
2. Both x1

a(pa/pa∗) and x2
a(pa/pa∗) are in [µa,µa∗ ].

3. As pa/pa∗ → 0, both x1
a(pa/pa∗) and x2

a(pa/pa∗) converge to µa∗ .
4. As pa/pa∗ → ∞, both x1

a(pa/pa∗) and x2
a(pa/pa∗) converge to µa.

Property 1 of Lemma 4, combined with the fact that x2
a(pa/pa∗) ≥ x1

a(pa/pa∗), establishes that both
x1

a(pa/pa∗) and x2
a(pa/pa∗) are strictly decreasing functions of the sampling ratio pa/pa∗ . Properties 2-4 of

Lemma 4 demonstrate that these two solutions decrease monotonically from µa∗ to µa as pa/pa∗ increases
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from zero to infinity. However, as illustrated in Figure 1, the decreases in x1
a(pa/pa∗) and x2

a(pa/pa∗) are
not continuous with respect to pa/pa∗ . We may find that x1

a(pa/pa∗) and x2
a(pa/pa∗) have a jump at some

values of pa/pa∗ where x1
a(pa/pa∗) < x2

a(pa/pa∗), e.g., when (pa, pa∗) = (0.20,0.20) in Figure 1. The
discontinuity of x1

a(pa/pa∗) and x2
a(pa/pa∗) implies that the partial derivative of these two solutions with

respect to pa or pa∗ may not exist. This discontinuity prohibits the use of KKT conditions, a standard
solution technique, to finding the asymptotic optimal sample allocation.

Below, we develop a method to solve (16) without the use of the KKT conditions. It consists of two
steps.

First, we fix the sample proportion pa∗ for the optimal alternative a∗ where 0 < pa∗ < 1. Consider the
following more restrictive problem than (16):

max
pa,a̸=a∗

min
a̸=a∗

Ra(pa, pa∗), s.t. ∑
a̸=a∗

pa = 1− pa∗ , 0 < pa < 1, a ̸= a∗. (17)

The decision variables of (17) are the sample proportions pa of the k−1 suboptimal alternatives, a ̸= a∗.
Increasing the sample proportion pa for the suboptimal alternative a while keeping pa∗ fixed results

in a larger value of Ra(pa, pa∗). However, due to the sample budget constraint ∑a̸=a∗ pa = 1− pa∗ , if we
increase pa for alternative a, we must decrease pa′ for some other suboptimal alternative a′, which will
lead to a smaller value of Ra′(pa′ , pa∗). Therefore, problem (17) involves balancing the sample proportions
among suboptimal alternatives to maximize the minimum Ra(pa, pa∗). This problem is investigated in the
following theorem.
Theorem 2 The optimal solution (denoted by p◦a(pa∗), a ̸= a∗) to (17) is unique and satisfies

Ra(p◦a(pa∗), pa∗) = Ra′(p◦a′(pa∗), pa∗), ∀a,a′ ̸= a∗.

As discussed in Section 3, Ra(pa, pa∗) is the rate function of the posterior probability Pn(µa∗ ≤ µa)
of alternative a∗ being inferior to a. Theorem 2 shows that the sample proportions among suboptimal
alternatives should be allocated such that the values of the rate functions of Pn(µa∗ ≤ µa), a ̸= a∗, are equal.
Theorem 2 further implies that the optimal allocation to (16) must be in the set of allocations

S ≜ { p⃗ = (p1, . . . , pk) : 0 < pa∗ < 1 and pa = p◦a(pa∗),∀a ̸= a∗}.

Because of the uniqueness of p◦a(pa∗), a ̸= a∗, each possible value of the sample proportion pa∗ corresponds
to one allocation in S .

Second, we find the value of pa∗ whose corresponding allocation in S leads to the optimal convergence
rate for (16). For notation simplicity, for each a ̸= a∗, define

U 1
a (pa∗)≜ log(1+(µa∗ − x1

a(p◦a(pa∗)/pa∗))
2/σ

2
a∗), V 1

a (pa∗)≜ log(1+(µa − x1
a(p◦a(pa∗)/pa∗))

2/σ
2
a ),

U 2
a (pa∗)≜ log(1+(µa∗ − x2

a(p◦a(pa∗)/pa∗))
2/σ

2
a∗), V 2

a (pa∗)≜ log(1+(µa − x2
a(p◦a(pa∗)/pa∗))

2/σ
2
a ).

Let p∗a∗ be the value of pa∗ that satisfies

∑
a̸=a∗

U 1
a (p∗a∗)/V

1
a (p∗a∗)≥ 1, ∑

a̸=a∗
U 2

a (p∗a∗)/V
2

a (p∗a∗)≤ 1. (18)

Note that p∗a∗ exists and is unique. In the following, we will demonstrate that p∗a∗ is the optimal value for
pa∗ .

Let p⃗∗ = (p∗1, . . . , p∗k) denote the corresponding allocation in S given p∗a∗ . That is, p∗a ≜ p◦a(p∗a∗), a ̸= a∗.
Lemma 5 below provides a way to compare the convergence rates associated with an arbitrary allocation
p⃗ in S and the optimal allocation p⃗∗. This lemma can be derived based on Lemma 4.
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Lemma 5 For any pa∗ with 0 < pa∗ < 1 and any suboptimal alternative a ̸= a∗, we have

2Ra(p◦a(pa∗), pa∗)< 2Ra(p∗a, p∗a∗)+(pa∗ − p∗a∗)U
1

a (p∗a∗)+(p◦a(pa∗)− p∗a)V
1

a (p∗a∗), (19)

2Ra(p◦a(pa∗), pa∗)< 2Ra(p∗a, p∗a∗)+(pa∗ − p∗a∗)U
2

a (p∗a∗)+(p◦a(pa∗)− p∗a)V
2

a (p∗a∗). (20)

An immediate implication from (19) of Lemma 5 is that if there exists pa∗ with 0 < pa∗ < p∗a∗ such
that Ra(p◦a(pa∗), pa∗)≥ Ra(p∗a, p∗a∗) for some alternative a ̸= a∗, then the following inequality must hold

p◦a(pa∗)− p∗a > (p∗a∗ − pa∗)U
1

a (p∗a∗)/V
1

a (p∗a∗), (21)

because if it does not, we will obtain Ra(p◦a(pa∗), pa∗) < Ra(p∗a, p∗a∗) by (19) of Lemma 5. Taking the
summation over a ̸= a∗ in (21) yields

∑
a̸=a∗

p◦a(pa∗)− ∑
a̸=a∗

p∗a > (p∗a∗ − pa∗) ∑
a̸=a∗

U 1
a (p∗a∗)

V 1
a (p∗a∗)

≥ p∗a∗ − pa∗ ,

where the last inequality holds by (18). The above equation leads to the contradiction that ∑a̸=a∗ p◦a(pa∗)+
pa∗ > ∑a ̸=a∗ p∗a + p∗a∗ = 1 because ∑a̸=a∗ p◦a(pa∗)+ pa∗ should equal to one.

Similarly, if there exists pa∗ with p∗a∗ < pa∗ < 1 such that Ra(p◦a(pa∗), pa∗) ≥ Ra(p∗a, p∗a∗) for some
alternative a ̸= a∗, then the following inequality must hold

p∗a − p◦a(pa∗)< (pa∗ − p∗a∗)U
2

a (p∗a∗)/V
2

a (p∗a∗). (22)

Taking the summation over a ̸= a∗ in (22) yields ∑a̸=a∗ p∗a −∑a̸=a∗ p◦a(pa∗)< pa∗ − p∗a∗ , which leads to the
contradiction that ∑a̸=a∗ p◦a(pa∗)+ pa∗ > 1 again. Therefore, for any pa∗ with pa∗ ̸= p∗a∗ , its corresponding
convergence rate of PFSn is slower than that of p∗a∗ , making p∗a∗ the optimal solution for pa∗ . Based on
Theorem 2 and the optimality of p∗a∗ , it can be concluded that that p⃗∗ is optimal for problem (16), i.e., it
is the asymptotic optimal sample allocation for fixed-budget R&S under unknown variances.
Theorem 3 The optimal allocation p⃗∗ = (p∗1, . . . , p∗k) to (16) is unique and satisfies

Ra(p∗a, p∗a∗) = Ra′(p∗a′ , p∗a∗), ∀a,a′ ̸= a∗, (23a)

∑
a̸=a∗

U 1
a (p∗a∗)/V

1
a (p∗a∗)≥ 1, ∑

a̸=a∗
U 2

a (p∗a∗)/V
2

a (p∗a∗)≤ 1. (23b)

It can be seen that conditions (23) that determine the asymptotic optimal sample allocation under
unknown variances and those under known variances (5) are indeed different. That is, the conjecture of
Ryzhov (2016) is correct. Conditions (23) also consist of two equations, which play similar roles to the two
equations in (5). Specifically, (23a) controls the sample proportion allocated to each suboptimal alternative
given that of the optimal alternative a∗, while (23b) balances the sample sizes allocated to the optimal
alternative a∗ and the set of suboptimal alternatives. However, (23) is more complex than (5) because
of the lack of analytical forms of the rate function Ra(pa, pa∗) and the optimal solutions x1

a(pa/pa∗) and
x2

a(pa/pa∗) to (12).
We provide a brief discussion on how to calculate the optimal sample allocation p⃗∗ given the mean and

variance of each alternative. First, for any 0 < pa∗ < 1, we can balance the sample proportions pa, a ̸= a∗,
to obtain the optimal solution p◦a(pa∗), a ̸= a∗, in Theorem 2 based on the monotonicity of Ra(pa, pa∗) in
pa. Second, we can find the optimal value p∗a∗ for pa∗ based on the fact that both ∑a̸=a∗ U

1
a (pa∗)/V 1

a (pa∗)

and ∑a̸=a∗ U
2

a (pa∗)/V 2
a (pa∗) are monotonically decreasing as pa∗ increases. The detailed introduction and

analysis of the algorithm to calculate this optimal allocation and the numerical comparison are left to future
study.
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We can also simplify (23a) in the same way as (6) simplifies (5), by assuming p∗a∗ ≫ p∗a for all a ̸= a∗.
Since x1

a(pa/pa∗) and x2
a(pa/pa∗) converge to µa∗ as pa/pa∗ decreases to 0 by Lemma 4, we can approximate

x1
a(p∗a/p∗a∗) or x2

a(p∗a/p∗a∗) by µa∗ when p∗a/p∗a∗ is small enough such that

Ra(p∗a, p∗a∗) =min
xa

( p∗a
2

log
(

1+(µa − xa)
2/σ

2
a

)
+

p∗a∗
2

log
(

1+(µa∗ − xa)
2/σ

2
a∗

))
≈ p∗a

2
log(1+(µa −µa∗)

2/σ
2
a ).

Then (23a) can be approximated by

p∗a
p∗a′

=
log(1+(µa′ −µa∗)

2/σ2
a′)

log(1+(µa −µa∗)2/σ2
a )

, ∀a,a′ ̸= a∗. (24)

Note that the sampling ratios of any two suboptimal alternatives in (24) are exactly the same as the lmiting
sampling ratios (7) produced by the EI algorithm under unknown variances. In other words, just like in
the known-variance case, the limiting sampling ratios of any two suboptimal alternatives of EI also nearly
match the asymptotic optimal sample allocation.

5 CONCLUSION

This paper considers the fixed-budget R&S problem under unknown variances. In real applications,
the sampling variances of system alternatives are often unknown, introducing additional uncertainty that
most existing fixed-budget R&S methods fail to address. Therefore, it is important to develop effective
methods and sample allocation rules tailored to the unknown-variance setting. In this research, we propose a
systematic approach to derive the asymptotic optimal sample allocation under normal sampling distributions
with unknown variances. We analyze the convergence rate function of PFS, formulate a sample budget
optimization model and solve it to identify the optimal sample allocation. Our method overcomes the
significant challenges posed by the non-convexity of the underlying optimization problem and the lack of
analytical expressions for the rate function of PFS.

The results of our analysis confirm the conjecture made in Ryzhov (2016) that the asymptotic optimal
sample allocation under unknown variances is different from that under known variances. In addition, we
show that the limiting sampling ratios of any two suboptimal alternatives produced by the EI algorithm
nearly match the asymptotic optimal sample allocation in the unknown-variance case.
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