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ABSTRACT

This work presents substantial improvements to Enhance, a recent approach for graph partitioning in
large-scale distributed microscopic traffic simulations, particularly in challenging load-balancing scenarios
within heterogeneous computing environments. With a thorough analysis of the diffusive and refinement
phases of the Enhance algorithm, we identified orthogonal opportunities for optimizations that markedly
improved the quality of the generated partitionings. We validated these improvements using synthetic
scenarios, achieving up to a 46.5% reduction in estimated runtime compared to the original algorithm and
providing sound reasoning and intuitions to explain the nature and magnitude of the improvements. Finally,
we show experimentally that the performance gains observed in the synthetic scenario partially translate
into performance gains in the real system.

1 INTRODUCTION

Agent-based microscopic traffic modeling can provide an in-depth analysis of vehicle dynamics by individ-
ually modeling each vehicle in the road network. This approach enables urban planners to make informed
decisions regarding infrastructure and policy (Zehe et al. 2015; Zehe et al. 2017; Meng et al. 2023).
However, simulating microscopic traffic at the city level is computationally demanding, and therefore,
distributed computing is used to scale up the simulations (Siguenza-Torres et al. 2024; Xu et al. 2017).

Deploying a simulation on a distributed system naturally raises the challenge of how to distribute the
load. A common approach is to divide the computational load by spatially segmenting the road network
into smaller sub-regions. Each sub-region and the agents therein are then processed by a dedicated process
while exchanging relevant information with the other processes (Potuzak 2022). The performance of
such distributed simulations is heavily influenced by how the road network is partitioned into sub-regions
(Potuzak 2022; Xu et al. 2014). In the case of time-stepped simulations, the overall pace matches
the slowest process in the simulation. Consequently, effective load balancing ensures that the workload
is evenly distributed among all the processes, preventing bottlenecks and improving performance. The
synchronization between different processes also introduces extra overhead, which can further slow down
the simulation. Consequently, good partitioning requires balancing the computational load and minimizing
communication costs. This challenge can be framed as a graph partitioning problem, with node weights
representing computational load and edge weights reflecting communication overheads (Potuzak 2022).
While the problem is NP-hard, several heuristic approaches exist to address it (Valejo et al. 2020).

An extra challenge is provided by the fact that real-world runtime environments are far from the ideal
homogeneous distributed cluster. Examples are cloud deployments, where, even within instances of the
same type, significant performance variability is observed (Uta et al. 2020). This reality justifies the
community’s interest in developing methods for executing distributed workloads that effectively cope with
resource heterogeneity (Musoles et al. 2019; Xu et al. 2015). In heterogeneous environments, load balancing
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is influenced by the varying node performance, where the simulation is deployed; this additional level of
complexity must be handled explicitly by heterogeneous performance-aware partitioning algorithms.

Furthermore, traffic simulations often exhibit variable load patterns (Xu et al. 2014), necessitating
runtime partition adjustments for optimal performance. The standard approach is to monitor the workload
and re-partition when significant changes occur. However, this can be problematic as partitioning algorithms
might produce vastly different partitions even with minor input changes, leading to high costs of redistributing
the simulation state (Xu et al. 2014; Schloegel et al. 2001). Re-partitioning algorithms, which modify
existing partitions rather than create new ones from scratch, can mitigate this issue (Schloegel et al. 2001).

The recently introduced Enhance algorithm addresses the challenges of distributed traffic simulation
by refining initial partitionings using predictive cost models to guide re-partitioning decisions (Siguenza-
Torres et al. 2024). Designed primarily for heterogeneous runtime environments, Enhance improves
simulation performance by adapting partitions to the computational capabilities of each node. However,
a key limitation of Enhance is its tendency to significantly increase communication costs, especially at
higher partition counts, which can offset the benefits of improved load balancing. To overcome this, we
introduce Enhance++, an enhanced version that generates higher-quality partitionings through several key
modifications: incorporating internal heavy-edge matching to improve coarsening quality (Sections 4.1
and 5.1), adopting an edge-centric heuristic for the diffusive phase (Sections 4.2 and 5.1), and utilizing
the global cost model as guiding function in the refinement phase (Sections 4.3 and 5.2).

The remainder of this paper is organized as follows. In Section 2, we summarize the state of the art.
In Section 3, we summarized the most essential concepts of Enhance. In Section 4, we described the
improvements done to the algorithm. In Section 5, we evaluate the proposed improvements over synthetic
experiments. In Section 6, we evaluate the improved algorithm on the real system, i.e., distributed CityMoS.
We make some final remarks and conclusions in Section 7.

2 RELATED WORK

The partitioning problem is commonly modeled as a weighted graph, where vertices represent computational
tasks and edges represent data dependencies. Vertex weights encode workload units, while edge weights
reflect data transfer costs. The objective is to find a partitioning P such that the sum of vertex weights is
balanced, and edge cut (i.e., the sum of the adjacent edges with vertices in different partitions) is minimized
(Karypis and Kumar 1998b). This ensures a balanced workload and reduced communication overhead,
improving simulation performance.

Graph partitioning is NP-hard (Valejo et al. 2020), so heuristic methods are typically used. Notable
examples include spectral clustering, which is based on the eigenvalues and eigenvectors of the graph
Laplacian to identify substructures within the graph (Nascimento and de Carvalho 2011), genetic algo-
rithms (Kim et al. 2011), and the widely adopted multilevel approach (Valejo et al. 2020). The latter
is among the most effective and extensively used strategies. It involves three main phases: coarsening
the graph, performing an initial partition on the smaller graph, and then refining it during uncoarsening
(Karypis and Kumar 1998b). Coarsening reduces the graph size by collapsing vertices while preserving
its structure, enabling efficient initial partitioning. METIS (Karypis and Kumar 1998b) is one of the most
popular multilevel partitioning tools.

The cities’ road networks can be naturally represented as graphs, for which the graph partitionings
have been commonly employed in distributed simulations (Potuzak 2022). For the case of agent-based
microscopic traffic simulations, the computational cost is often modeled as the number of agents on the
road, and the communication cost as the number of migrating agents (Xu et al. 2017; Xu et al. 2014;
Potuzak 2021). The work on Potuzak (2021) explores genetic algorithms and geographical information for
road network partitioning, while a graph-growing technique is used in (Xu et al. 2017).

In Xu et al. (2014), the authors present a dynamic re-partitioning approach using METIS to adapt
to changing simulation loads. This scratch-remap method generates new partitionings from the current
simulation state and then maps them to the most similar partitions in the previous configuration, aiming to
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minimize the cost of redistribution. An alternative to scratch-remap partitions is diffusive re-partitioning
algorithms. These algorithms take an imbalanced partitioning and move vertices across partitions to balance
them (Schloegel et al. 1997; Schloegel et al. 2001). Therefore, the modified partitioning is more similar to
the original one, which helps to reduce the re-partition cost for dynamic re-partitioning processes. Diffusive
re-partitioning can be combined with the multilevel approach (Schloegel et al. 1997). Multilevel diffusion
algorithms often have two phases: a diffusive phase focusing on re-balancing and a refinement phase in
which balance and the edge cut are considered (Schloegel et al. 2001).

Previous works often assume homogeneous resources. There has been interest in accounting for hetero-
geneity in the partitioning problem. For instance, in (Xu and Ammar 2004), heterogeneous communication
resources are considered in the partitioning process, using benchmarks to model communication costs.
Also, streaming partitioning algorithms (Stanton and Kliot 2012) have been extended to account for resource
heterogeneity. In Xu et al. (2015), a heterogeneous performance-aware streaming partitioning algorithm is
developed using a physical graph to model a runtime environment. In Zheng et al. (2016), an architecture-
aware partitioning algorithm (ARGO) was proposed to exploit modern high-speed networks, prioritizing
inter-node communication over intra-node communication. In Musoles et al. (2019), the authors extended
the streaming approach to hypergraphs, using calibrated communication cost models and multiple iteration
streams to improve partitioning.

3 CORE PRINCIPLES OF ENHANCE

This section presents Enhance’s formalism, algorithms, and core principles, which are necessary to understand
the improvements proposed in this work. Readers are encouraged to read the original study (Siguenza-Torres
et al. 2024) for a deeper understanding of Enhance.

We first establish the graph formalism for this work. Let G = (V,E) denote an undirected graph with
vertices V and edges E. Each vertex v ∈ V corresponds to one road in the road network, and an edge
e = {v1,v2} ∈ E exists if and only if the roads represented by v1 and v2 are connected. We define the
vertex partitioning of G as disjoint subsets (i.e., partitions) of vertices P = {V1, . . . ,VN}, where N denotes
the number of partitions.

We call an edge e = {v1,v2} a cut edge if the endpoints are in different partitions (i.e., v1 ∈Vi∧ v2 ∈
Vj ∧ i ̸= j). We denote the endpoints of a cut edge as neighbor vertices. For convenience, we let Ec(P)
denote the set of cut edges for a given partitioning P: Ec(P) = {e ∈ E|e is cut edge}.

For a partitioning P and a vertex v ∈Vi, we let the partitioning Pv→ j,1≤ j≤ N, denote the partitioning
with vertex v re-assigned to partition Vj (and removed from its original partition Vi):

Pv→ j =
{

Vi \ v,Vj ∪{v}
}
∪

⋃
h,h̸=i,h̸= j

{Vh}. (1)

Also, we define a function to obtain the partition index of a vertex for a partitioning Part(v)= i, for v∈Vi.

3.1 Cost Models

Enhance leverages the concept of Cost Models, functions that predict computation and communication
costs using relevant performance features. Vertices hold features related to computational cost, while edges
hold those related to communication. This approach effectively decouples the graph weights from cost
estimation, breaking a common assumption in the literature (Hendrickson and Kolda 2000). Consequently,
each vertex v is attached to a feature vector fv; each edge e is attached to a feature vector fe.

To predict the computational cost of a particular partition Vi, the features are combined by a specified
aggregation function, which results in the partition feature f v

i = Aggv( fv|v ∈Vi). The objective of the
computational cost model is to take the aggregated featured vector and predict the computation cost
measured in wall-clock time CompCosti ( f v

i ).
One of the advantages of adding the cost model layer is that under the same features, we can predict

the computational effort for different runtime environments. With heterogeneous nodes, the separation of
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features and cost allows to predict the computational effort for each node (or node type) simply by changing
the CompCosti to match the node where the partition Vi is deployed.

Similarly, we define a communication cost model that transforms edge features into the communication
cost. Only cut edges contribute to the communication cost; therefore, the aggregation acts under these edges
f e
glob = Agge(e|e ∈ Ec(P)). The communication cost model is defined as CommCost

(
f e
glob

)
. Combining

these models, the Total Predicted Cost (TPC) is defined as the function that, given a partitioning P, will
predict the total cost in wall-clock time:

TPC(P) = max
1≤i≤N

CompCosti ( f v
i )+CommCost

(
f e
glob

)
. (2)

We use TPC(P) as the objective function to minimize during the partitioning process. Given sufficiently
accurate cost models, this approach aims to directly reduce the total wall-clock time of the simulation.

3.2 Heuristic for Finding Modification Actions

The core component of Enhance is the heuristic deciding how to modify the current partitioning P shown in
Algorithm 1. For a given vertex v, the algorithm finds the partition (considering the neighbor partitions and
Part(v) as options) to which v should be assigned to minimize cost. The cost is computed by the function
ComputeCost, and different cost models can be used, as elaborated in Section 3.3. The neighboring
partitions are evaluated in (deterministically seeded) random order. The final output is the action that
minimizes the cost according to the provided model.

All vertices are processed in random order during an iteration, inspired by streaming partitioning from
Xu et al. (2015), Stanton and Kliot (2012), the heuristic is applied only to neighboring vertices. Multiple
iterations are performed, improving the partitioning until a specified termination criterion, as in Musoles
et al. (2019). In Enhance, this criterion follows a diminishing returns approach: If an iteration yields no
further improvement in partition quality, the stream terminates.

3.3 Diffusion and Refinement

Like prior multilevel diffusive re-partitioning algorithms, Enhance works in two phases: the diffusive phase
and the refinement phase (Schloegel et al. 2001; Schloegel et al. 1997). In the diffusive phase, the emphasis
is on moving vertices across partitions to balance the total computation cost even if it results in a higher
communication cost (Schloegel et al. 1997). During the refinement phase, the partitioning is modified to
consider computation and communication costs. The diffusive phase in Enhance is performed by making
a stream using the local (i.e., only considering the subset I of all partitions) Predicted Computational Cost
(PPC) as the CostModel in Algorithm 1, defined as:

PCC(P, I) =max
i∈I

(CompCosti ( f v
i )) . (3)

When communication costs are ignored, the vertices can be freely moved from heavily loaded partitions
to those with lighter loads. Additionally, focusing on local cost rather than global cost allows for adjustments
that yield immediate local benefits, even if they do not directly optimize the overall cost. This approach
enables incremental improvements within the system as local adjustments progressively accumulate to
produce global cost reductions over time.

The partitioning resulting from the diffusive phase is further improved during the refinement phase,
aiming to reduce the total costs. This implies striking a trade-off between the computation and the
communication costs, as a single action can impact these two aspects differently. For instance, moving a
vertex may decrease computation but increase communication costs. To account for the total cost during
the refinement phase, the local TPC is used as a cost model:

TPC(P, I) = PCC(P, I)+CommCost
(

f e
glob

)
. (4)
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Figure 1: Summary of the overall Enhance algorithm.
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(c) Balanced Sub-optimal partitioning.

Figure 2: Example graph and partitionings.

Figure 1 illustrates the overall workflow of the Enhance algorithm. The process begins with a multilevel
coarsening of the original graph, where the graph is progressively reduced by collapsing groups of vertices
into single aggregated vertices. As depicted in the figure, the vertices enclosed within the colored ellipses
are merged to form a single vertex at the next coarser level marked with the same color. Afterward, the
initial partitioning is mapped to the coarsest level. The diffusive phase takes place only on this level of the
graph. After that, the refinement is applied from the coarsest level up to the original graph.

4 ENHANCING ENHANCE

A key limitation of Enhance is that the communication cost of the generated partitioning is higher than the
original, which limits its usability in cases with a large N. The main contribution of this work is to enhance
Enhance by finding orthogonal optimizations for the diffusive and refinement phases, which exhibit unique
behaviors and needs. These are explained in detail in the Sections 4.2 and 4.3. Based on these, we propose
improvements for each of these phases and validate them with an experimental evaluation.

4.1 Internal Coarsening

The original Enhance algorithm uses Heavy Edge Matching (HEM) (Karypis and Kumar 1998a) for graph
coarsening, a greedy method that prioritizes collapsing the heaviest edges to reduce edge cuts during
coarse-level partitioning (Karypis and Kumar 1998b). This matching could occur even between vertices
from different partitions, thus altering the original partitioning when mapped into a coarsest level. In this
work, we evaluate the effect of Internal Coarsening (IC), which restricts matching to vertices within the
same partition, thereby preserving the initial structure throughout the coarsening process (Schloegel et al.
1997). We assess the impact of this modification in Section 5.1.

4.2 Diffusion Nature Analysis

Analysis of the diffusion process revealed that it may result in an increased edge cut (i.e., communication
cost) of the resulting graph. This outcome was not unexpected, as communication cost is not considered in
the diffusion process. However, the implementation of the diffusion process in Enhance may also increase
the edge cut unnecessarily, posing additional challenges to the subsequent refinement phases.
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As an example, consider the graph in Figure 2. For the sake of simplicity, we assume one unit of
processing load per vertex and one unit of communication load per edge: ∀v∈V : fv = 1 and ∀e∈E : fe = 1.
In this case, the computational cost is CompCosti = |Vi| and the communication cost is CommCost = |Ec|.
Consider the initial partitioning shown in Figure 2a with computational costs of CompCostl = 2 and
CompCostr = 4 for the left and right partition, respectively. In this initial partitioning, only two actions
lower the computational cost: moving vertex 2 to the left partition and moving vertex 5 to the left partition.
Since communication cost is not considered during the diffusion phase, either of these actions results in
a perfectly balanced partitioning, depicted in Figures 2c and 2b, respectively. Crucially, when applying
the vertex-centric diffusion process from Enhance (Algorithm 1) with vertices traversed in random order,
both actions have the same probability (1/2) of being applied, depending on which vertex is explored
first. However, one action (moving vertex 2 to the left partition, as depicted in 2c) results in a partitioning
that has a larger edge cut, yielding higher total cost, and hence, posing a potentially higher burden on the
subsequent refinement phase to correct this sub-optimal decision.

However, performing the diffusion process in an edge-centric rather than vertex-centric manner reduces
this effect. The edge-centric algorithm is shown in Algorithm 2. It resembles the Kernighan–Lin (KL)
heuristic, guided by cost models (Kernighan and Lin 1970). For each cut edge v,v′, three choices are
evaluated: 1) keep both vertices in their original partitions, 2) move v′ into Part(v), and 3) move v into
Part(v′). When exploring modifications in an edge-centric rather than vertex-centric way, the likelihood
of actions increasing the edge cut is reduced.

Algorithm 1 Vertex centric heuristic for v.
1: ChooseAction(G,P,v,ComputeCost):
2: I←{P(v′)|v = v′ ∨ v′ ∈ adj(v)}
3: minCost← ∞

4: for each k in I in random order do
5: cost←ComputeCost(Pv→k)
6: if cost < minCost then
7: minCost← cost
8: index← k
9: end if

10: end for
11: Output: Pv→index

Algorithm 2 Edge centric heuristic for cut edge e.
1: ChooseAction(G,P,e,ComputeCost):
2: {v,v′}← e
3: i← Part(v), j← Part(v′), minCost← ∞

4: for each choice in {P,Pv→ j,Pv′→i} in random order do
5: cost←ComputeCost(choice)
6: if cost < minCost then
7: minCost← cost
8: selectedP← choice
9: end if

10: end for
11: Output: selectedP

For illustration, again consider the graph in Figure 2a with three cut-edges: {1,2}, {1,5}, and {4,5} in
the initial partitioning. When evaluating these cut edges in random order, each has the same probability of
being first processed, and the possible actions that reduce the imbalance of the partitioning (moving 2 and
moving 5 to the left partition) are identical to the vertex-centric diffusion. However, the overall probability
of moving vertex 5 is higher than moving vertex 2. While each cut-edge has the same probability of being
evaluated first, vertex 5 is contained in two cut-edges ({1,5} and {4,5}), and exploring either of these first
results in vertex 5 being moved to the left partition. On the other hand, vertex 2 is only moved to the left
partition if the cut-edge {1,2} is explored first. Hence, vertex 5 has a probability of 2/3 being moved,
while vertex 2 has a probability of 1/3 being moved.

At a high level, the effect of the edge-centric diffusion illustrated above relies on moving vertices
adjacent to more cut edges with higher probability than moving vertices adjacent to fewer cut edges. We
evaluate the impact of the edge-centric heuristic in Section 5.1 using the following iteration variants.

• Random Vertex Traversal (RVT): All the vertices are traversed in random order using the original
vertex-centric heuristic. This is the iterator that was used in the original Enhance algorithm.

• Random Edge Traversal (RET): All the edges are traversed in random order. This iterator allows
us to compare the vertex and edge heuristics.
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• Random Initial Cut Edge Traversal (RICE): Edges are also traversed in random order, but only cut
edges at the beginning of the streaming (excluding edges becoming cut edges during the streaming)
are traversed. This confines partitioning modifications to the initial frontier in each streaming.

4.3 Refinement Nature Analysis

A limitation of the original Enhance refinement phase is its reliance on a local total cost model (Equation 4),
which can lead to decisions that inadvertently increase the TPC. While locality is beneficial during
diffusion, enabling gradual global improvements through local gains, it may backfire during refinement,
where computation and communication costs interact more intricately. For illustration, consider the graph
depicted in Figure 3a as an example, where the first number in the vertex label corresponds to the index
and the second number directly corresponds to the units of work. Evidently, the simulation bottleneck is
the partition on the right, resulting in max(CompCosti) = 8. Additionally, each cut edge represents a unit
of communication cost, thus CommCost = 2. Consequently, the partitioning has a total cost of TPC = 10.

1|1 2|3

3|2

4|2

5|8

(a) Initial Optimal partitioning.

1|1 2|3

3|2

4|2

5|8

(b) Sub-Optimal partitioning.

Figure 3: Example graph with three partitions.

Applying a vertex-centric heuristic with local cost (i.e., see 4) on vertex two would move the vertex to
the left partition (i.e., I = {left,center}), resulting in a decrease of local cost, but an increase of global cost.
This occurs because the local cost heuristic ignores the computation cost for non-neighboring partitions,
such as the right partition. Consequently, it would assume a TPC(P, I) = 7+ 2 = 9 for the partitioning
depicted in Figure 3a, and a local cost of TPC(P, I) = 4+3 = 7 for the partitioning in Figure 3b. Globally,
however, the total TPC increases to 11 because the right partition remains the computational bottleneck,
and the additional communication cost resulting from this greedy decision further increases the overall
cost. In contrast, using the global TPC model (see 2) ensures all decisions align with minimizing the
actual objective, leading to higher-quality partitions. Section 5.2 presents experimental evidence of the
improvements this change brings.

5 SYNTHETIC EVALUATIONS

Before evaluating the partitioning in actual simulations, we first evaluated the behavior of the diffusive and
refinement phases with synthetic scenarios. We assign simple numerical workloads to the nodes and edges
of different graphs and apply METIS and Enhance to generate and refine partitions. This study enables us to
evaluate the impact of the improvements to Enhance under controlled conditions and excluding the impact
of potential limitations of the cost model used. Additionally, the synthetic evaluation allows considering
(hypothetical) homogeneous and heterogeneous hardware configurations without the need for actual access
to such deployments. We conducted the evaluation with the following graphs: Shenzhen: Simplified
road network of Shenzhen, generated with the tool (Meng et al. 2022) consisting of 85,204 vertices and
117,788 edges. Each vertex is a road, and each edge connects roads. This graph is used to test partitioning
large-scale traffic simulations. RoadNet-PA: Road network of Pennsylvania with 1,088,092 vertices and
1,541,898 edges (Leskovec et al. 2009). Each vertex corresponds to an intersection or endpoint, and each
edge corresponds to a road connecting them. Grid: This is a uniform grid road network with 90 by 90
intersections and bidirectional roads with 3 lanes each generated using SUMO’s netgenerate. The
graph representation contains 159,120 vertices and 254,160 edges.

We assume one unit of processing load per vertex and one unit of communication load per edge for
these graphs (i.e, ∀v ∈ V : fv = 1 and ∀e ∈ E : fe = 1). The computational cost is defined as the load
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(a) Metrics for Diffusion with δ = 1.
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(b) Metrics for Diffusion with δ = 16.
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(c) Metrics for Refinement with δ = 1.
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(d) Metrics for Refinement with δ = 16.

Figure 4: Normalized cost breakdown for the diffusion (a) and (b), as well as refinement (c) and (d) phases
for a homogeneous (left-hand side) and heterogeneous (right-hand side) case.

divided by a performance constant: CompCosti = |Vi|/Ci, where Ci reflects the relative speed of node i. A
higher Ci indicates a faster machine, reducing cost, while a lower Ci corresponds to slower performance and
higher cost. Communication cost is scaled as CommCost( fe) = β fe, with β = 0.01 for Shenzhen and Grid,
and 0.1 for RoadNet-PA. These values result in communication costs between 10–20% of the total cost for
N = 256 (with this partition size the original Enhance struggled to outperform the original partitioning).
We simulate heterogeneity via δ , the number of unique Ci values. For δ = 1, all nodes are equal (Ci = 1).
For δ > 1, Ci values are linearly spaced in [1,2], e.g., for δ = 4: C1 = 1, C2 = 1.3̄, C3 = 1.6̄, C4 = 2. This
models a heterogeneous cluster with varying node speeds.

5.1 Diffusive Phase Analysis

Figure 4 summarizes the average results of applying Enhance with 30 random seeds to re-partition the same
initial METIS partitionings. On the left-hand side of the figure, we present the breakdown of computation
and communication costs. Each group of columns shows the result for the three different graphs in a
particular configuration. These costs are normalized by the total initial cost of the METIS partitioning,
which is also shown in the first group of columns as a reference. The right-hand side displays the vertex
migration ratio, with 0 indicating no changes and 1 meaning all vertices were reassigned.

The top row shows results after the diffusion phase for homogeneous (δ = 1) and heterogeneous
(δ = 16) settings. In this phase, we tested the three aforementioned iterators in Section 4.2: RVT, RET, and
RICE as well as the effect of using Internal Coarsening (IC), as described in Section 4.1. As Section 3.3
explains, only computational cost is considered during the diffusive phase. Thus, the main objective here
is to reduce computational cost. This effect is evident in the figures, particularly in the heterogeneous case,
where migrating work from slower to faster nodes yields a significant reduction in this component. For
instance, in the RoadNet-PA graph, the computational cost drops from 0.79 to 0.54 across all the iterators.
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Table 1: Geometrical mean evolution of the metrics with the introduced improvements.

Normalized TPC Moved Vertices Ratio Description

1.0 0.0 Original METIS baseline
1.126 0.234 Enhance: Local RVT diffusion - Local RVT refinement
1.034 0.181 Local RICE diffusion - Local RVT refinement
0.987 0.091 Internal coarsening - Local RICE diffusion - Local RVT refinement
0.824 0.085 Enhance++: Internal coarsening - Local RICE diffusion - Global RVT refinement

Nevertheless, the communication cost can increase significantly during this phase. For example, in
the case of the RVT iterator used in the original Enhance, the communication cost increases from 0.21 to
0.77. This is significantly reduced with the edge-centric iterators, as discussed in Section 4.2. By operating
on edges instead of vertices, these iterators increase the likelihood of moving highly connected vertices
together without directly considering communication cost. This results in a lower communication overhead;
for instance, both RET and RICE achieve a communication cost of 0.57. This pattern holds consistently
across all three graphs evaluated in this study.

IC further reduces communication costs and vertex movement, particularly in homogeneous cases
where METIS already produced balanced loads. For instance, in Shenzhen, RICE moves 0.09 of vertices,
while RICE IC moves only 0.008, with similar computational costs (∼0.65). By preserving the original
partitioning structure during coarsening, the diffusion phase only needs to relocate a small fraction of
vertices to achieve balance.

In conclusion, both the edge-centric iterators and the IC strategy improve the overall quality of the
diffusion phase. No statistically significant difference was observed between the RET with IC and RICE
with IC variants; therefore, we proceed with only the RICE variant in subsequent experiments.

5.2 Refinement Phase Analysis

The second row of Figure 4 shows the refinement phase results, applied after RICE diffusion and using
IC. These figures include the initial METIS partitioning as a reference in the first group of columns, the
original end-to-end Enhance results in the second group, and the post-diffusion state in the third group.

As explained in Section 3.3, the objective of the refinement phase is to directly minimize the TPC by
balancing communication and computation costs. Originally, the Enhance algorithm employed the Local
TPC (LTPC), as defined in 4. However, this model does not consistently lead to improved re-partition
quality. For example, in the RoadNet-PA graph with δ = 16, the TPC increases after refinement from 1.10
(post-diffusion) to 1.22, 1.16, and 1.16 using the RVT, RET, and RICE LTPC iterators, respectively. This is
contrary to the goal of the refinement phase. We address this by using the global TPC (Equation 2) during
refinement, leading to significant improvements. In the same example, TPC drops from 1.10 to 0.76 far
outperforming the original Enhance (TPC = 1.43), a 46.5% reduction.

The improvements achieved by the enhanced version of Enhance are consistent across all configurations.
However, in homogeneous cases like RoadNet-PA and Grid, gains over METIS are small due to its already
effective balancing. Since no significant differences were found among TPC iterator variants, we use the
RVT TPC variant in subsequent experiments.

5.3 Summary of Enhance++

This section presents an end-to-end evaluation of each improvement made to the original Enhance algorithm.
As in the previous section, we generate partitions of size N = 256 using the three synthetic graphs under
two heterogeneity settings: δ = 1 (homogeneous) and δ = 16 (heterogeneous), with 30 different random
seeds for each configuration. We report the geometric mean of normalized TPC and moved vertex ratio,
commonly used in benchmarking normalized metrics. As shown in Table 1, at this partition size, the
original Enhance algorithm increased the total predicted cost reducing the performance. Each improvement
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from Sections 5.1 and 5.2 consistently reduced TPC from 1.126 to 0.824 and the moved vertex ratio from
0.234 to 0.085. We refer to the improved version as Enhance++.

6 CITYMOS EVALUATIONS

To evaluate the impact of the improvements in a real distributed simulation, we used Distributed CityMoS
(Siguenza-Torres et al. 2024) on a heterogeneous cluster composed of two machine types, fast and slow.
Each fast machine is equipped with two Intel(R) Xeon(R) E5-2697 v4 processors with 18C/36T, and each
slow machine is equipped with two Intel(R) Xeon(R) E5-2680 v3 processors with 12C/24T. All machines
are connected by a 10 Gbps network.

We consider homogeneous and heterogeneous setups:

• Homogeneous: only slow machines, one process per CPU, 16 simulator threads per CPU;
• Heterogeneous δ = 4: to emulate a higher degree of hardware heterogeneity, we vary the number

of threads available to each node in the simulation. Specifically, the simulation assigns resources
in a round-robin fashion: a slow CPU with 16 threads, a fast CPU with 16 threads, a slow CPU
with 8 threads, and a fast CPU with 8 threads.

The cost models used for the algorithm were the same as in (Siguenza-Torres et al. 2024). The compu-
tational cost is modeled as a linear combination of Vehicle Count and Average Active Lanes with coefficients
calibrated for each combination of machine type and number of simulator threads. Communication cost is
similarly modeled as a linear function of the Number of Migrations and a calibrated coefficient.

We use a grid road network to run the simulations, also used in Section 5. The traffic scenario consists
of a single traffic wave with 350,000 concurrent agents at peak, each with a randomly selected origin
and destination. Before partitioning experiments, we ran the simulation once to generate vertex and edge
feature vectors (e.g., average number of agents per road, average number of migrations), which were used
to derive weights for METIS.

We generated 10 re-partitionings using different random seeds for both Enhance and Enhance++ and
evaluated their impact by running CityMoS with the original METIS partitioning as well as with the
newly generated re-partitionings. Figure 5 reports the average wall-clock time of the simulation under two
deployment configurations.

In the homogeneous configuration, the performance remained consistent across all partitionings, demon-
strating that Enhance++ does not degrade performance when the initial METIS partitioning is already
well-balanced. In contrast, in the heterogeneous configuration, both Enhance and Enhance++ resulted in
noticeable improvements over the baseline METIS partitioning.

The largest improvement was observed for N = 6: the total simulation time was reduced by 4.3%
using Enhance and by 12.5% using Enhance++. In the case of N = 4, the reductions were 2.5% and
10.0%, respectively. The aforementioned results are statistically significant with p = 0.05. For N = 8, the
improvements in wall-clock time were not statistically significant, although Enhance++ still produced lower
and more consistent wall-clock time, as reflected by its reduced standard deviation. These results suggest
that while METIS performs adequately under homogeneous conditions, re-partitioning with Enhance++ is
more effective in heterogeneous environments.

7 CONCLUSIONS

Multilevel graph partitioning remains a foundational and widely used technique in large-scale systems. A
key finding of this work is that even when enhanced with domain-specific cost models, the effectiveness
of such approaches is highly sensitive to what might appear as minor implementation choices. Crucial
factors such as the nature of the cost model (e.g., local versus global, TPC versus PCC) and the processing
perspective (vertex versus edge centric) significantly impact the final outcome. Our study reveals that
these factors influence the diffusive and refinement phases in fundamentally different ways, an insight that
enabled us to design orthogonal, phase-specific optimizations and ultimately develop Enhance++.
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Figure 5: Average total cost of running CityMoS.

Through comprehensive experiments on both synthetic graphs and a distributed traffic simulator,
we demonstrated that Enhance++ consistently produces higher-quality partitionings. Although graph
partitioning is an inherently hard problem, this work illustrates that substantial gains are still achievable
through empirically driven enhancements. Enhance++ advances the state of heuristic partitioning by
revealing and exploiting subtle yet impactful design choices, paving the way for more effective and
practical distributed systems.
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