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ABSTRACT

Driven by applications in telecommunication networks, we explore the simulation task of estimating rare
event probabilities for tandem queues in their steady state. Existing literature has recognized that importance
sampling methods can be inefficient, due to the exploding variance of the path-dependent likelihood functions.
To mitigate this, we introduce a new importance sampling approach that utilizes a marginal likelihood ratio
on the stationary distribution, effectively avoiding the issue of excessive variance. In addition, we design
a machine learning algorithm to estimate this marginal likelihood ratio using importance sampling data.
Numerical experiments indicate that our algorithm outperforms the classic importance sampling methods.

1 INTRODUCTION

In computing and telecommunication industries, service level agreements (SLA) in commercial contracts
are aimed to ensure that the promised quality of service (QoS) is met under a given network design, see
Cisco (2025) for an example of commercial SLA. A commonly used QoS performance metric in SLA
takes the form of a guarantee on the tail probability of certain queueing function of the network in steady
state (Milner and Olsen 2008), i.e.,

P(X∞ > γ)≤ p,

where the random variable X∞ could be the steady-state total number of jobs in the system or a job’s sojourn
time, and p is a small number. Intuitively, this type of SLA aims to maintain the network congestion within
an acceptable threshold with a high probability in the long run. Since obtaining an analytic expression for
the stationary distribution is often not feasible for general stochastic network models, the industry generally
relies on simulation techniques to numerically compute the probability P(X∞ > γ), thereby assessing the
SLA.

Since the value of p is typically very small, like p = 10−5 (Harchol-Balter 2021), calculating the
probability P(X∞ > γ) essentially becomes a problem of rare event simulation. A common approach to
improve the efficiency of rare event simulation is by importance sampling (IS). Nonetheless, estimating
the stationary distribution X∞ adds an additional level of complexity to the design of the IS algorithms.
Earlier studies (Glasserman and Kou 1995; De Boer 2006) have demonstrated that, for such simulation
tasks, finding an importance distribution that could effectively reduce the variance is quite challenging,
even in the very basic case of two-station tandem queueing network.

In this paper, we highlight that these challenges largely originate from the path-dependent characteristics
of the classic IS algorithms, which use the regenerative structures of queueing processes to deal with the
stationary distribution. To tackle this issue, we introduce a novel IS algorithm, demonstrated through
the two-station tandem queueing network example. This algorithm applies IS directly on the "marginal"
stationary distribution of individual samples in the state space, rather than on the regenerative cycle sample
paths. Given that the marginal likelihood ratio of stationary distributions is in general unknown for queueing
networks, we use the off-policy evaluation method from reinforcement learning literature to approximate
the stationary likelihood ratio from simulation data. Broadly speaking, our approach integrates traditional
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IS with machine learning techniques. The numerical findings indicate that our algorithm outperforms the
traditional regenerative IS method, achieving lower mean squared errors. Furthermore, the advantage of
our algorithm is relatively robust with respect to the choice of importance distribution.

The rest of the paper is organized as follows. We provide a brief literature review on related topics
in Section 2. In Section 3, we introduce the estimation objective in the tandem queues and discuss the
drawbacks of the state-of-the-art IS method. In Section 4, we first explain the key components in algorithm
design and then present the complete algorithm. Numerical results are reported in Section 5. Section 6
concludes the paper with insights into future research directions.

2 RELATED WORKS

The rare event simulation in queueing systems, like the response time violations, is typically addressed by
IS methods, see Blanchet and Mandjes (2009) and the references therein. Parekh and Walrand (1989) is
probably one of the first to propose IS methods with state-independent choices of importance distributions
for single-station and tandem queues. Glasserman and Kou (1995) and De Boer (2006) further analyze
the variance reduction performance of the Parekh-Walrand method, and prove that the state-independent
IS method in certain tandem queues is not asymptotically optimal. As a result, there has been a growing
body of research related to designing IS methods with state-dependent choices of importance distributions
for queueing systems, including single-class G/G/1 queue (Blanchet et al. 2007), single-class Jackson
network (Dupuis and Wang 2009), two-class M/M/1 queue (Setayeshgar and Wang 2011), and multi-class
open/closed network (Dupuis and Wang 2007). In these works, the importance distributions are generally
derived from large deviation principles as well as differential game approaches, which depend heavily on
the specific system dynamics and are difficult to solve.

Another stream of related literature lives in the off-policy estimation of long-horizon average reward
in the field of reinforcement learning (RL), see Xie et al. (2019), Uehara et al. (2022), and the references
therein. The Most common set of off-policy estimation methods is derived from IS estimators. The
likelihood weights are based on the product of the importance ratios of many steps in a trajectory (Liu
et al. 2020), and thus variances in individual steps can accumulate multiplicatively. Liu et al. (2018) shows
that applying importance weighting on the state space rather than the trajectory space can substantially
reduce estimation variance. Another set of off-policy estimation methods first fits a parametric model to
learn the environment dynamics using data collected under the behavior policy, and then use this model to
simulate trajectories under the evaluation policy, see Fonteneau et al. (2013) and Chow et al. (2015). Kallus
and Uehara (2022) proposes an estimation method that learns the environment dynamics and stationary
likelihood ratios simultaneously, and shows that their estimator remains efficient with long time horizon.
Most off-policy estimation methods are focused on average reward, while our goal is to evaluate the tail
probability.

3 PROBLEM SETUP

In the remaining part of the paper, we will illustrate the development of our proposed IS algorithm and
evaluate its performance using a two-station tandem queueing network as our primary example. We
emphasize here that extending our algorithm to other Markovian queueing networks is straightforward.

𝜇1 𝜇2
𝜆

Station 1 Station 2

Figure 1: Structure of a two-station tandem queueing network.
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3.1 Model & Objective

We consider a two-station tandem queueing network, whose structure is shown in Figure 1. Each job arrives
according to a Poisson process with rate λ ∈ R+. Each station i ∈ {1,2} has one single server which has
i.i.d. exponential service times with rate µi ∈ R+. Since our objective is to evaluate the QoS at steady
state, we assume that the queueing network is stable by setting the arrival rate below the service rate in
each station, i.e.,

λ < µ1, λ < µ2. (1)

We also assume that the server in station 1 has a larger service rate, i.e., µ1 > µ2, since finding a reliable
importance distribution in this scenario is quite challenging as shown in Glasserman and Kou (1995) and
De Boer (2006). Jobs are served in a first-come-first-serve manner. The arrival process and service times
are assumed to be mutually independent. The system is empty initially.

To evaluate this queueing system’s service level performance, we particularly focus on the total number
of jobs in the entire network. In particular, the queueing dynamic with respect to the number X i

t of jobs
in station i at time t could be written as

X1
t = At −D1

t ,

X2
t = D1

t −D2
t ,

where At is the Poisson arrival process and Di
t is the number of jobs leaving station i up to time t.

The process {(X1
t ,X

2
t )} forms a continuous time Markov chain (CTMC). Under the stability assumption

(1), this CTMC admits a unique stationary distribution π . Let X = (X1,X2) be a random vector following
the distribution π . Our objective is to estimate a classic QoS metric in queue systems: the steady-state
queue length overflow probability (Whitt 1993),

pγ ≡ P(X1 +X2 ≥ γ).

The event {X1+X2 ≥ γ} becomes increasingly rare as the threshold γ grows large, necessitating an efficient
estimation algorithm. Before formally introducing our algorithm, we first review the state-of-the-art IS
method for stationary queue length overflow probabilities in tandem queueing networks.

3.2 Regenerative Importance Sampling Method

The state-of-the-art IS estimation for stationary tail probabilities relies on a regenerative simulation, see
Asmussen and Glynn (2007) and Guang et al. (2022). For simplicity, we work with the uniformized
discrete time Markov chains (DTMC) derived from the original tandem queueing network. We slightly
abuse the notation by letting {(X1

t ,X
2
t )} represent the state of this uniformized DTMC. The transition kernel

(probability) P of this uniformized DTMC is summarized in the following equation,

P(Xt+1 | Xt) =


λ/(λ +µ1 +µ2), if X1

t+1 = X1
t +1, X2

t+1 = X2
t ,

µ1/(λ +µ1 +µ2), if X1
t+1 = X1

t −1, X2
t+1 = X2

t +1,
µ2/(λ +µ1 +µ2), if X1

t+1 = X1
t , X2

t+1 = X2
t −1,

1−∑x̸=Xt P(Xt+1 = x | Xt), if Xt+1 = Xt .

This uniformized DTMC shares the same stationary distribution π as the original tandem queueing
network (Ross 2014). The dynamics of this DTMC {(X1

t ,X
2
t )} can be viewed as a regenerative process,

where the system regenerates whenever a job finds the system is empty upon departure. Let α denote the
cycle length in units of time for a regenerative cycle. By the renewal reward theorem (Crane and Lemoine
1977), the stationary tail probability can be expressed as

P(X1 +X2 ≥ γ) =
E
[
∑

α
t=1 1{X1

t +X2
t ≥ γ}

]
E[α]

, (2)
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where the numerator is the expected number of the target events observed in a regenerative cycle, and the
denominator is the the expected length of a regenerative cycle. Thus, estimating this probability reduces
to separately estimating the denominator and the numerator.

We first describe the IS estimation of the numerator in (2) using data from an alternative system. In
each regenerative cycle, the alternative system first follows the dynamic of the uniformized DTMC derived
from a modified tandem queueing network with exponential arrival rate λ̃ and exponential service rates
µ̃i. This modified system is intentionally unstable with

λ̃ ≥ µ̃1 or λ̃ ≥ µ̃2,

so that the target event {X1
t +X2

t ≥ γ} can be observed frequently. Once the total number of jobs in the
system reaches γ at time τ̃ , the dynamic of the system is switched back to the uniformized DTMC derived
from the original tandem queueing network. Let X̃ i

t denote the number of jobs in station i at time t in the
alternative system, and α̃ be the regenerative cycle length. Then, we have the following equality,

E

[
α

∑
t=1

1{X1
t +X2

t ≥ γ}

]
= E

[(
α̃

∑
t=1

1{X̃1
t + X̃2

t ≥ γ}

)
·

(
τ̃

∏
t=1

P(X̃t | X̃t−1)

Q(X̃t | X̃t−1)

)]
,

where P and Q are the transition kernels of the uniformized DTMC derived from the original and alternative
queueing networks.

Since the denominator in (2) does not involve a rare event, it is directly estimated using data from the
original system. Let us independently generate m1 and m2 regenerative cycles of data from the alternative
and original systems respectively. Using an extra subscript i to denote the ith cycle, the state-of-the-art IS
estimator is given by

P̂(X1 +X2 ≥ γ) =
m−1

1 ∑
m1
i=1

[(
∑

α̃i
t=1 1{X̃1

t,i + X̃2
t,i ≥ γ}

)
·
(

∏
τ̃i
t=1

P(X̃t,i|X̃t−1,i)

Q(X̃t,i|X̃t−1,i)

)]
m−1

2 ∑
m2
i=1 αi

.

The performance of this IS estimator hinges on the choice of parameters (λ̃ , µ̃1, µ̃2) for the alternative
system. De Boer (2006) proves that letting (λ̃ , µ̃1, µ̃2) = (µ2,µ1,λ ) is the only possible choice so that the
IS estimator can use the orderwisely smallest amount of data to achieve the same level of variance, which
is the so-called asymptotically efficient estimator. However, as implied in Glasserman and Kou (1995), this
IS estimator with any choice of parameters (λ̃ , µ̃1, µ̃2) is not asymptotically efficient when the original
system parameters satisfy

µ2(µ1 +µ2)

(λ +µ1)2 > 1. (3)

The IS estimator suffers from the excessive variance introduced by the path-dependent likelihood ratio

∏
τ̃i
t=1

P(X̃t,i|X̃t−1,i)

Q(X̃t,i|X̃t−1,i)
. The main reason is that there are a wide range of sample paths in a regenerative cycle

that can reach the target event {X1
t +X2

t ≥ γ}, see Figure 2, and using a certain alternative system with
parameters (λ̃ , µ̃1, µ̃2) may not reduce the variance contributed by the path-dependent likelihood ratio on
every sample path. For instance, using the alternative system with parameters (λ̃ , µ̃1, µ̃2) = (µ2,µ1,λ )
could reduce the variance contributed by the path-dependent likelihood ratio on the blue path in Figure 2,
however, the likelihood ratio on the red path will then introduce an explosive amount of variance to the
IS estimator (Glasserman and Kou 1995). This limitation motivates us to propose a robust IS method that
can achieve variance reduction with a wider choice of alternative systems.
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𝑿𝟏 + 𝑿𝟐 = 𝜸

Figure 2: Two representative sample paths reaching the target event {X1 +X2 ≥ γ} from the empty state.

4 IMPORTANCE SAMPLING WITH MARGINAL STATIONARY DISTRIBUTION

Inspired by Liu et al. (2018), we intend to apply the IS method directly on the “marginal” stationary
distribution of each sample data. Specifically, let us consider an alternative two-station tandem queueing
network with exponential arrival rate λ̃ and exponential service rates µ̃i, where the parameters satisfy the
stability condition

λ̃ < µ̃1, λ̃ < µ̃2.

This queueing network has a stationary distribution π̃ . Let X̃ = (X̃1, X̃2) be a random vector following the
distribution π̃ . The steady-state queue length overflow probability for the original queueing network can
then be expressed as

P(X1 +X2 ≥ γ) = ∑
x1,x2

1{x1 + x2 ≥ γ} ·π(x1,x2),

= ∑
x1,x2

1{x1 + x2 ≥ γ}π(x1,x2)

π̃(x1,x2)
· π̃(x1,x2),

= EX̃∼π̃

[
1{X̃1 + X̃2 ≥ γ}π(X̃)

π̃(X̃)

]
.

It is noted that 1{X̃1 + X̃2 ≥ γ}π(X̃)
π̃(X̃)

is a promising choice of the IS estimator, as it avoids the excessive
variance introduced by the likelihood ratio that depends on the whole sample path. However, a critical
challenge occurs: the stationary distributions π and π̃ are typically unknown for complex queueing networks.
Therefore, a vital step in our proposed algorithm is to learn the stationary likelihood ratio π/π̃ , which is
illustrated in detail in the follow section.

4.1 Learning Stationary Likelihood Ratio π/π̃

Let P and Q be the transition kernels of DTMC derived from the original and alternative tandem queueing
networks. Suppose X and X̃ are sampled from π and π̃ , respectively, and X̃ ′ is sampled from Q(· | X̃),
which also follows the distribution π̃ . By the definition of Markov chain’s transition kernel and stationary
distribution, we can derive the following equality for the expectation of f (X) for any function f :

EX∼π [ f (X)] = E
[

f (X̃ ′) · π(X̃
′)

π̃(X̃ ′)

]
= E

[
f (X̃ ′) · π(X̃)

π̃(X̃)
· P(X̃ ′|X̃)

Q(X̃ ′|X̃)

]
.

This observation can be leveraged to obtain the following key property of the stationary likelihood ratio
π/π̃ .

514



Zhao, and Chen

Proposition 1 (Liu et al. 2018) A function w(x) equals π(x)/π̃(x) (up to a constant factor) if and only if
it satisfies

E[ f (X̃ ′)∆(w; X̃ , X̃ ′)] = 0, for any function f ,

with ∆(w; X̃ , X̃ ′)≡ w(X̃) · P(X̃ ′ | X̃)

Q(X̃ ′ | X̃)
−w(X̃ ′).

(4)

Following the approach in Liu et al. (2018), we can estimate π/π̃ by solving the following min-max
problem:

min
w̸=0

L(w)≡max
f∈F

E[ f (X̃ ′)∆(w; X̃ , X̃ ′)]2,

where the condition w ̸= 0 is added to avoid the trivial solution w ≡ 0, and F is a set of test functions
that should be rich enough to identify w. Let H be a reproducing kernel Hilbert space (RKHS) of
functions with a positive definite kernel k(r, r̄). A good choice of F is the unit ball of the RKHS H , i.e.,
F ≡ { f ∈H : || f ||H ≤ 1}, as it yields a closed form representation of the loss function L(w):

L(w) = E[∆(w; X̃a, X̃ ′a)∆(w; X̃b, X̃ ′b)k(X̃
′
a, X̃

′
b)].

Here, (X̃a, X̃ ′a) and (X̃b, X̃ ′b) are independent transition pairs, where X̃i and X̃ ′i follow π̃ and Q(· | X̃i)
respectively, for i ∈ {a,b}. See Berlinet and Thomas-Agnan (2011) for additional background on RKHS.

4.2 A Machine Learning Based Importance Sampling Algorithm

According to Proposition 1, a function w is proportional to the stationary likelihood ratio π/π̃ if and only if
the loss function L(w) = 0. Following this idea, we parameterize w(x) = wθ (x) as a neural network. This
neural network is then trained by minimizing the loss function L(wθ ) using a stochastic gradient method
such as Adam.

In practice, we design a robust loss function L(w) for a better performance of our algorithm, namely,

L(w) = E
[
E[∆(w; X̃a, X̃ ′a)∆(w; X̃b, X̃ ′b)k(X̃

′
a, X̃

′
b) | k = ki]

]
+

α

2
(E[w(X̃a)]−1)2.

where (X̃a, X̃ ′a) and (X̃b, X̃ ′b) are independent transition pairs, X̃i and X̃ ′i follow π̃ and Q(· | X̃i) respectively,
for i ∈ {a,b}, and the regularization parameter α > 0. In detail, we enlarge the set of test function by
assuming that the test function has an equal possibility to lay in a range of different reproducing kernel
Hilbert spaces with kernel functions ki. The extra regularization term is added in L(w) to prevent the neural
network wθ from converging to the trivial estimation wθ ≡ 0.

In conclusion, we summarize our Machine Learning based steady state Importance Sampling algorithm
(MLIS) in Algorithm 1.
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Algorithm 1 Machine Learning Based Importance Sampling (MLIS)

Input: Simulation data D = {Xt}T
t=1 of the uniformized DTMC derived from the alternative system. Kernel

function set {ki(x,y)}. Regularization parameter α . Learning rate ε . Batch size bD and bk.
Initiate the density ratio w(r) = wθ (r) to be a neural network parameterized by θ .

for iteration = 1,2, ...,N do
Randomly choose a batch MD of size bD from the data D , i.e., M ⊂ {1, ...,T −1}.
Randomly choose a batch Mk of size bk from the kernel function set {ki(x,y)}.
Compute the sample average loss function

L̂(wθ ) =
1

b2
Dbk

∑
i, j∈MD

∑
u∈Mk

∆(wθ ;Xi,Xi+1)∆(wθ ;X j,X j+1)ku(Xi+1,X j+1)

+
α

2

(
1

bD
∑

i∈MD

wθ (Xi)−1

)2

.

Update the parameter θ by θ ← θ − ε∇θ L̂(wθ ).
end for

Output: Estimate the tail probability of the original system by

P̂MLIS(X1 +X2 ≥ γ) =
∑

T
t=1 wθ (Xt) ·1{X1

t +X2
t ≥ γ}

∑
T
t=1 wθ (Xt)

.

5 NUMERICAL EXPERIMENTS

In this section, we would compare the performance of our method MLIS summaried in Algorithm 1
with different benchmark methods for a two-station tandem queueing network with parameters (λ ,µ1,µ2)
satisfying the inequality in (3). It is well known that the queue length overflow probability at steady state
for a tandem queueing network has an explicit expression, i.e.,

P(X1 +X2 ≥ γ) =
(1−ρ1)ρ

γ+1
2 − (1−ρ2)ρ

γ+1
1

ρ2−ρ1
, (5)

where the load parameter ρi = λ/µi for i ∈ {1,2}.

5.1 Benchmarks and Performance Metrics

The first benchmark method is the marginal importance sampling method (MIS). Let us consider an
alternative two-station tandem queueing network with exponential arrival rate λ̃ and exponential service
rates µ̃i, where the parameters satisfy the stability condition λ̃ < µ̃2 ≤ µ̃1 and queueing network has a
stationary distribution π̃ . Let us generate a sample path {X̃t} of the uniformized DTMC derived from this
alternative system, then the MIS estimator is computed by the following equation, i.e.,

P̂MIS(X1 +X2 ≥ γ) =
∑

T
t=1

π

π̃
(X̃t) ·1{X̃1

t + X̃2
t ≥ γ}

∑
T
t=1

π

π̃
(X̃t)

.

The key distinction between MIS estimator and our MLIS estimator is that MIS directly uses the stationary
likelihood ratio π/π̃ , whereas MLIS learns this ratio via a neural network. While MIS is expected to
outperform our algorithm, we hope the performance gap, that is the price of learning the stationary likelihood
ratio π/π̃ , would be small.

516



Zhao, and Chen

The other benchmark method is the regenerative importance sampling method (RIS) discussed in Section
3.2, where the RIS estimator is computed by the following equation, i.e.,

P̂RIS(X1 +X2 ≥ γ) =
m−1

1 ∑
m1
i=1

[(
∑

α̃i
t=1 1{X̃1

t,i + X̃2
t,i ≥ γ}

)
·
(

∏
τ̃i
t=1

P(X̃t,i|X̃t−1,i)

Q(X̃t,i|X̃t−1,i)

)]
m−1

2 ∑
m2
i=1 αi

.

Specifically, the numerator is computed by m1 regenerative cycles of data from the alternative system with
parameters (λ̃ , µ̃1, µ̃2) = (µ2,µ1,λ ), and the denominator is computed by m2 regenerative cycles of data
from the original system. For a fair comparison, we let the number of data sample generated for computing
a RIS estimator be equal to (or very closed to) that generated for computing an MIS estimator, namely

m1

∑
i=1

α̃i +
m2

∑
i=1

αi ≈ T.

The mean squared error (MSE) for each IS method is estimated based on 500 independent rounds of
simulation, that is

MSEγ =
1

500

500

∑
i=1

(
P̂a,i(X1 +X2 ≥ γ)−P(X1 +X2 ≥ γ)

)2
,

where P̂a,i(X1+X2 ≥ γ) is the IS estimator for some method a in the i-th round of simulation. We evaluate
the performance of different IS methods in term of their relative mean squared errors (rMSE), namely

rMSEγ =

√
MSEγ

P(X1 +X2 ≥ γ)
.

5.2 Implementation Details for MLIS

We hereby reveal the implementation details for our method MLIS. Our algorithm uses sample data of the
uniformized DTMC derived from the alternative tandem queueing network with parameters (λ̃ , µ̃1, µ̃2),
which satisfy the stability condition λ̃ < µ̃2 ≤ µ̃1.

The performance of our algorithm is evaluated with different choices of alternative systems. For
each alternative system, a fully connected neural network wθ is constructed to approximate the stationary
likelihood ratio π/π̃ of queue length distributions in the original and alternative systems. Each neural
network consists of two hidden layers, each with 1,024 neurons activated by the ReLU function, and the
output layer is activated by the softplus function, i.e., softplus(x) = log(1+exp(x)), to ensure a nonnegative
result. The learning rate ε is set to 10−5.

Four types of kernel functions are used to construct the loss function for training the neural network.
Namely, for σ > 0 and x,y ∈ Rn,

Gaussian: kGS(x,y) = exp
(
−∥x−y∥2

2σ2

)
,

Laplacian: kLP(x,y) = exp
(
−∥x−y∥

σ

)
,

Inverse multiquadratic: kIM(x,y) =
(

1+
||x−y||2

σ2

)−1/2

,

Linear: kLN(x,y) = xT y.

The parameter σ is chosen to be the median of Euclidean distances computed using a batch of sample
data. We set the data batch size bD = 3,000, kernel batch size bk = 4.
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5.3 Performance Comparison

The simulation is implemented in Python and runs on a 2021 version MacBook Pro with an 8-core Apple
M1 pro chip. The threshold parameter γ is set to be large so that the target event, as we can compute
its probability by (5), is indeed a rare event. The numerical results and computation times are reported
in Table 1. It is clear that our algorithm MLIS with different choices of alternative systems all achieve
lower relative MSE than the state-of-the-art RIS method. MLIS maintains a low level of relative MSE even
when the target event {X1 +X2 ≥ γ} becomes rarer. Conversely, the relative MSE for the state-of-the-art
RIS method increases dramatically. This result is consistent with our previous discussion in Section 3.2
since a wider range of sample paths in a regenerative cycle can reach the target event when the threshold
parameter γ increases. Moreover, MLIS with different choices of alternative systems maintains relative
MSE within the same order of magnitude as the MIS method, which indicates that our algorithm estimates
the true stationary likelihood ratio π/π̃ accurately.

Table 1: Performance of different IS estimation methods in a two-station tandem queueing network with
parameter (λ ,µ1,µ2) = (1/10,23/50,11/25). The relative MSE is estimated based on 500 independent
rounds of simulation. Time horizon T = 100,000.

Target Probability Method λ̃ µ̃1 µ̃2 rMSE
Running

Time (s)

P(X1 +X2 ≥ 16)

= 4.891×10−10

MLIS
3/11 4/11 4/11

0.325 611

MIS 0.153 417

MLIS
5/17 6/17 6/17

0.278 598

MIS 0.168 432

MLIS
7/23 8/23 8/23

0.191 603

MIS 0.145 409

RIS 11/25 23/50 1/10 0.573 698

P(X1 +X2 ≥ 18)

= 2.712×10−11

MLIS
3/11 4/11 4/11

0.311 609

MIS 0.195 441

MLIS
5/17 6/17 6/17

0.236 612

MIS 0.187 428

MLIS
7/23 8/23 8/23

0.227 607

MIS 0.158 425

RIS 11/25 23/50 1/10 1.859 701

P(X1 +X2 ≥ 20)

= 1.489×10−12

MLIS
3/11 4/11 4/11

0.467 597

MIS 0.259 437

MLIS
5/17 6/17 6/17

0.464 603

MIS 0.202 431

MLIS
7/23 8/23 8/23

0.453 610

MIS 0.171 447

RIS 11/25 23/50 1/10 3.241 702
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5.4 Influence of Kernel Functions

In this section, we evaluate the performance of our method MLIS with a total of 15 different combinatorial
choices of the four commonly used kernel functions mentioned in Section 5.2. We set the data batch size
bD = 3,000 and the kernel batch size bk to equal the number of selected kernels in each experiment.

The numerical results and training times are reported in Table 2. A key observation is that the linear
kernel plays an important role in improving the performance of our algorithm, and any set of kernel
functions without linear kernel cannot help our algorithm learn the correct stationary likelihood ratio π/π̃ .
Moreover, although using more kernels can only marginally reduce our estimator’s relative mean squared
error, it significantly improves the efficiency of learning the likelihood ratio.

Table 2: Performance of MLIS with different choices of kernel sets in a two-station tandem queueing
network with parameter (λ ,µ1,µ2) = (1/10,23/50,11/25). The alternative tandem queueing network is
chosen with parameter (λ̃ , µ̃1, µ̃2) = (7/23,8/23,8/23). The relative MSE is estimated based on 500
independent rounds of simulation. Time horizon T = 100,000.

Chosen Kernels
rMSE for Estimating

P(X1 +X2 ≥ 16)

rMSE for Estimating

P(X1 +X2 ≥ 18)

rMSE for Estimating

P(X1 +X2 ≥ 20)

Training

Time (s)

kLN 1.235 2.811 5.678 2314

kLN , kGS 0.254 0.288 0.777 2502

kLN , kLP 0.324 0.253 0.677 2030

kLN , kIM 0.226 0.327 0.773 1901

kLN , kGS, kLP 0.265 0.295 0.825 1561

kLN , kGS, kIM 0.245 0.337 0.904 1493

kLN , kLP, kIM 0.247 0.342 0.562 1447

kLN , kGS, kLP, kIM 0.191 0.227 0.453 982

MIS 0.145 0.158 0.171 -

6 CONCLUSION

In this paper, we propose a novel algorithm to estimate the tail probability of the stationary distribution
of queuing networks, combining importance sampling with machine learning techniques. In detail, our
algorithm applies importance sampling directly on the stationary distributions, to avoid the excessive
variance encountered by the classic path-dependent method, and leverages machine learning techniques
to approximate the likelihood ratio corresponding to the stationary distributions. Numerical experiments
demonstrate that our algorithm, across a reasonable wide range of importance distributions, consistently
outperforms the benchmark methods.

There are several interesting directions for future exploration. First, despite the numerical findings
showing that our algorithm’s performance is stable across a reasonably wide range of importance distributions,
it remains worthwhile to determine, through either analytical or numerical means, the optimal set of
importance distributions to further reduce the variance. Moreover, our numerical results suggest that the
linear kernel has a significant impact on enhancing our algorithm’s performance. We hypothesize that the
linear kernel effectively captures the tail structure of the true stationary likelihood ratio π/π̃ , but a formal
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mathematical justification remains necessary. One interesting direction of future study is to derive theoretic
performance guarantees, e.g. variance bound or convergence rate, and their dependence on the chosen
kernels. Another valuable direction, from the practical aspect, is to extend MLIS across a wide range of
queueing networks, especially to large scale systems.
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