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ABSTRACT

Based on digital twins, simulation is often used in companies for the regular planning and control of
operational processes. However, when modeling the lead times of individual processes, mean values of
process times measured in advance are often used, which can lead to errors in the planning. This work
demonstrates how models of these time distributions can be created and updated within a digital twin
framework using machine learning. The lead times are used in simulation to create schedules. The approach
is validated using the online order workforce scheduling of a medium-sized company that assembles
individual packages of office materials for its customers.

1 INTRODUCTION

Decision support systems based on digital models such as digital shadows or digital twins (DTs) that
represent the current state of the shop floor are used more and more for production planning and control
(PPC) in companies (Kritzinger et al. 2018, Kuehner et al. 2021). Discrete-event simulation (DES) is often
used in such systems for three use cases (Pfeiffer et al. 2015): offline validation of production plans during
production planning, online anticipatory recognition of future deviations, and online evaluation of short-
term adaptations during production control.

An important basis for simulation is the lead time of individual processes on the shop floor. The process
lead time of a single process must be distinguished from order lead time which describes the overall lead
time of the whole order. The process lead times influence, e.g., the occupation of resources, and the
reliability of the delivery dates. Especially in the case of short-term production control, accurate lead times
are vital. While production planning could be performed with the aim of a robust schedule based on various
possible future scenarios, the short-term character of production control makes it necessary to focus on the
most probable scenario. Nevertheless, often little effort is put into an accurate lead time prediction. The
most approaches use unconditional probability distributions for the lead time prediction (Schwede and
Fischer 2024). Even though process lead times especially in manual processes vary and are affected by a
lot of conditions (e.g., order complexity, staff abilities, accessibility of material, day of the week, etc.) still
offline estimation of uniform or normal distributions is the standard method. As shown in the literature
review of Schwede and Fischer (2024), adding of conditions can improve the accuracy of the statements of
simulation based digital twins that are made.

Considering more complex lead time estimations some work has been done mainly in two areas: 1.
Order lead time estimation via machine learning (ML) has been used as an alternative to simulation-based
prediction in combination with optimization methods (Lingitz et al. 2018) or to evaluate deviations found
via online-simulation during production control (Gyulai et al. 2018b). 2. Process lead times have been
estimated using ML to improve production planning (Bender et al. 2022, Rizzuto et al. 2021, Miller and
Grumbach 2023, Yamashiro and Nonaka 2021).
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While the ML-based prediction of order lead times can be either used as a faster or additional method
to DES, in complex environments the level of detail of simulation-based prediction cannot be reached. ML-
based process lead time prediction on the other hand shows promising results and could be used to improve
the results of optimization methods (Yamashiro and Nonaka 2021) as well as the accuracy of the DES.

In this work, we will investigate the effect of ML-based lead time prediction in the context of manual
workplaces and a highly dynamic environment. Furthermore, we will present an approach to integrate lead
time model training in a DT framework. The contribution of this work is the integration of lead-time
prediction of manual work process into simulation-based digital twin. Especially we investigate the effect
of the improved prediction of single lead-times on the overall simulation accuracy and the underlining
optimization task. The application case is the online workforce scheduling of a medium-sized company that
assembles individual packages of office materials for its customers. The process lead time influences the
creation of the order sequence as well as the workforce schedule.

The rest of the work is structured as follows. In section 2 the relevant literature on lead time prediction
is summarized. In section 3 the application case is described and section 4 presents experiments and results
of using ML-based lead time prediction models. Section 5 summarizes the results with conclusions and
presents an outlook to future work.

2 RELATED WORK

Lead time prediction can be divided into two main areas: Order lead time prediction aims at predicting the
time between order release and product delivery while process lead time prediction aims at predicting the
time that is needed to perform a single process step. To solve the problem of order lead time prediction two
approaches can be found in the literature (Burggraf et al. 2020): the first approach is indirect and based on
a detailed knowledge of the processes in the factory. Single process times including waiting times are
combined with a schedule to calculate or simulate the order lead time. Predictions of process lead time can
be helpful in this area. The second approach is direct and aims at a prediction of the order lead time by
historical data using ML methods or based on specific heuristics (e.g., Little’s law).

Direct lead time prediction has recently been based on ML methods using historical data to train a
function of the lead time depending on a wide set of parameters. These approaches tend to outperform
simple heuristics in performance and simulation-based prediction in speed. Especially because of the latter
aspect they are used in combination with optimization algorithms and serve as an evaluation function
(Lingitz et al. 2018) or as an additional measure to evaluate deviations found via online simulation during
production control (Gyulai et al. 2018b).

For process lead time prediction two approaches can also be distinguished: Estimations of well-known
simple probability distributions such as uniform, normal or other simple distributions and prediction of
unknown complex distributions via ML methods. While the first approach is widely used because of its
simplicity, it assumes that the hidden distributions of the data are known and simple. If this is not the case,
which is the fact for most cases of lead times in industry environments (Yamashiro and Nonaka 2021), this
first approach leads to poor results. As in order lead time prediction, ML-based approaches to predict
unknown more complex distributions have recently been presented in a wide range to improve the accuracy
of production planning and simulation (Bender et al. 2022, Rizzuto et al. 2021, Miller and Grumbach 2023,
Yamashiro and Nonaka 2021). In addition, if the distribution is too complex to learn with only one model,
the use of more than one model could help. Therefore, a separator could be used that divides the problem
into smaller sub-problems. As example, Smith and Dickinson (2022) considered it too complex to learn the
distribution for three different product types in one model. Consequently, they decided to divide the
problem into smaller subproblems and learn each product type with one model.

Concerning the methods applied a wide range of ML approaches is used: The literature review of
(Burggraf et al. 2020) stated that artificial neural networks (ANNS), linear or logistic regressions (LRs),
decision trees, random forests (RFs), support vector machines, and k-nearest neighbors are used within the
ML methods. Additionally, it could be stated that ANNs are used by far most frequently with 43 %,
followed by LRs with 30 %, and RFs in third place with 22 %. If more complex data is used, such as product
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data, it is stated that only ANNSs and RFs are used because these approaches are better at handling complex
data inputs. Few works compare different approaches with each other (Burggréf et al. 2020). Next to the
hands-on ML approaches, it is noticeable that automated ML (often referred to by the abbreviation
AutoML) solutions are more frequently used (Bender and Ovtcharova 2021, Bender et al. 2022, Sousa et
al. 2022). Even if there is still some work to be done to be regarded as a suitable alternative (Bender et al.
2022). For validation, the k-fold cross-validation method is used most frequently (Biazon de Oliveira et al.
2021, Sousa et al. 2022).

The transferability of models to other applications proves to be difficult because the input data and
other control rules used are different, even though explainability and transfer learning become more
important (Panigrahi et al. 2021). That is why a comparison with other approaches is only possible to a
limited extent. Additionally, comparing two approaches that use unsuitable accuracy measures (Hoffmann
et al. 2019) makes it difficult to benchmark with other applications. Common accuracy measures, such as
Root Mean Squared Error (RMSE) (e.g., Miller and Grumbach 2023, Rizzuto et al. 2021, Lingitz et al.
2018) or Normalized RMSE (NRMSE) (Gyulai et al. 2018a, Lingitz et al. 2018) and R? (Pfeiffer et al. 2016)
can be used.

3 APPLICATION CASE

The application case is an online order and workforce scheduling of a medium-sized company that
assembles individual packages of office materials for its customers. Customer orders arrive constantly and
have assigned priorities concerning the level of urgency. If material is not available, and this is known in
advance, the affected orders will have to wait. The orders are aimed to be completed at the time of shipping
which leads to the situation that an already planned order schedule must be adapted several times during
the day. Delivery reliability is an important key performance indicator. The company uses eight picking
stations that are connected by conveyor belts as can be seen in Figure 1.
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Figure 1:Material flow of the company connecting picking stations by conveyor belts.

The stations are situated inside the warehouse and picking is done by the workforce following a person-
to-good principle taking out the parts needed from the shelves near each station. Every station has a fixed
and disjoint subset of the 25,000 different picking materials assigned to it which are situated nearby. Orders
are only entered into the system when sufficient material stock is identified in the IT system. Therefore,
material availability is not considered a bottleneck in scheduling, although in real life it may happen that
some parts are not available and have to be reordered, resulting in longer lead times and the need to
reschedule.

A box is sent to the picking stations based on the materials listed in the picking order. Once at a picking
station, the box is stored in an intermediate buffer waiting for its turn. The box should be selected by the
picker based on the planned schedule, to ensure that urgent orders are delivered first. Based on a
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conventional picking system, the workforce manually picks up the goods from e.g., continuous racks and
stores them in the boxes at the picking station. Since it is manual work, the process lead time varies
depending on the materials to be picked because of different volumes, heights, distances and other material
properties (part/material data). In addition, the assigned workers that react differently to the circumstances
such as the last processes performed by the worker and the temperature today (workforce data and system
status). Moreover, the process lead times depend on information about the order, e.g., urgency, the target
guantity of the parts to be picked and the material already packed in the box is considered (order and
position data). Furthermore, the company has a certification for the inclusion of workers with disabilities
that may lead to further impact on the variance of process lead times. Once the box has passed all relevant
stations, the order is completed, and the box is stored in the outbound buffer. Aside from these picking
orders, there are also stocking orders to refill the storage places. The packages enter the station in the same
way, the only difference is that they have to be unpacked to the shelves rather than packed with material
from the shelves. Stocking is only performed in two of the stations.

As simulation, the multi-agent-based simulation (MAS) component of the Open Factory Twin (OFacT)
framework is used (Schwede and Freiter 2024). The MAS allows the decentralized solution of the two sub-
problems. On the one hand the sequence of picking and stocking orders to be released into the system has
to be determined. This is solved by the order release agent. On the other hand, the order sequence for each
picker has to be generated, which is executed by the worker resource agent. Since the number of pickers is
smaller than the number of picking stations, the decision includes switching from one picking station to
another. The overall goal is firstly to minimize the number of late order deliveries, secondly to minimize
the sum of minutes of orders being late thirdly to minimize the sum of order lead times of all orders. The
goals dominate each other in the way that the inferior goal is only taken into account for solution with equal
results for the superior goal. Additionally, the maximization of capacity utilization is of interest. Since
orders enter the system at any time and lead time deviation is high, the problem has to be solved as an
online-optimization problem. The decision of which order enters the system next is updated after each order
entry and the decision on which order to perform next is taken for each workforce when they have finished
the last one.

To investigate the impact of a more precise process lead time prediction, fast local heuristics are
designed based on expert knowledge. As input for both local heuristics, the remaining order lead times are
determined. These are calculated as the sum of all remaining process lead times. As the transport times
have a low variance, they are added as deterministic values based on the interim stops the order will take
on the conveyor belt. In contrast, the remaining process lead times for picking and stocking are predicted.

latest_release_date = remaining_time_to_delivery - remaining_order_lead_time (1)
remaining_time_to_delivery = planned_delivery_date — current_time
remaining_order_lead_time = sum(remaining_transport_times) +
sum(remaining_process_times)

e The order release sequence is generated by sorting the orders due to their urgency. To calculate
the latest release date (Eg. 1), the remaining time to delivery is subtracted by the determined
remaining order lead time (which in this case is the total order lead time, since the orders have not
been released). The orders are then sorted according to the latest release date in ascending order.
Every time an order should be released to the system, the order with the earliest release date is
chosen. To ensure that the system has a constant workload, only after an order leaves the system,
another one is allowed to enter the system (continuous work in progress).

e The work order sequence for each picker is generated in the same manner. For all orders that
can be performed by the picker (all orders in the buffer at the current and all free picking stations)
the sequence of orders due to their urgency is calculated as described above. Only in this case
solemnly the remaining processes are considered for the sum of the remaining order lead time.
The most urgent orders are used for each work order assignment to an employee (function
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assign_order_positions). In addition, to avoid station overflows, stations with buffers reaching a
level near the capacity limit are prioritized. To prevent the workforce from switching constantly
between the stations, the workforce will continue to process the orders until the intermediate
buffer of the station is empty. But even if the picking station is not empty, the workforce can
switch to another station if at least five processes are completed at the station and the current
station is not prioritized (function check_b_allowed).

function assign order positions(aw, ab) returns a list of assigned order
positions
Input: aw, currently available workers,
ab, all buffers with a waiting order queue
Local variables: sb, sorted buffers
b, a single buffer
uop, most urgent order process at a buffer
aop, assigned order positions

# sort buffers: buffer >= 1limit first, rest sorted by most urgent

orders

sb = sort buffer (ab)

aop = []

for b in sb: # most urgent first
aw = []

# get available workers and their distance to buffer
for w in aw:
w_allowed = check b allowed(w, b)
if w allowed:
# determine the distance from w to b
aw.append((w, get distance(w, b)))

# choose the next process based on the minimal latest release date
uop = get urgent process (b)
# choose the nearest worker
aop.append((uop, argmin(awl[:, 171))
return aop

function check b allowed(w, br) returns bool value that states if the
worker can work at the buffer
Input: w, worker,
br, buffer requested
Local variables: bc, current buffer of the worker

if not has necesarry skill br(w, br):
return False

bc = get bc w(w)

if check bc gqueue empty(bc, w):
return True

if check w executed five pos at bc(w) and not bc reach limit:
return True
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# skill to work at the current buffer

if not check necessary skill bc(w, bc):
return True

return False

It is ensured that two workers do not work at one picking station at the same time, which would lead to
low-capacity utilization.

4 RESULTS

In this section the results are presented. In subsection 4.1 different methods to perform the process lead
time prediction will be compared. The evaluation is based on the prediction loss of single process lead times
of a test set. In subsection 4.2 the most promising prediction models are compared to the standard method
of an estimation of a normal distribution. The models predict the lead time values used in the heuristics
while for the evaluation in the simulation the real process lead times are applied (Figure 2). While only
static data is used for the order release sequence due to unavailability of dynamics, they are considered in
the next order heuristic. In this approach, it will be investigated to what extent the accuracy of the digital
twin can be improved. As digital twin framework, the Open Factory Twin (OFacT) is used that allows a
simple exchange of process time models and allows the usage of ML based process time models (Schwede
and Freiter 2024). It is assumed that lead time predictions with higher precisions lead to a higher delivery
reliability, since the order release sequence as well as the work order sequence are optimized based on the
local heuristics described earlier. This is assumed since the urgency of each order can be predicted with a
higher precision, meaning that more urgent orders can be prioritized in advance, leading to higher delivery
reliabilities.
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Figure 2: DT using the models to predict lead times.
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From the 13 weeks of data available from the company, 12 weeks (training set) were used to train the
lead time prediction models while the last week (test set) was used for evaluation.

4.1 Process Lead Time Prediction

To choose the right model for process lead time prediction the Cross Industry Standard Process for Data
Mining (CRISP-DM) was applied (Chapman et al. 2000). The dataset consists of 13886 picking and 3592
stocking orders. Features were clustered into six groups (see Table 1).

Table 1: Feature Categorization.

Data Class | Feature from company dataset Feature from DT
Order | 2 of 23 (e.g., shipping method, urgent) | 2 (order total volume so far, order total
weight so far)

Process and | 4 of 17 (e.g., target quantity, whole -
Position | volume, whole weight)
Material | 19 of 25 (e.g., product group name, -

SKU height, SKU quantity, distance)

Resource | 1 of 2 (e.g., picking station) -

Workforce | 1 of 1 (e.g., workforce) 4 (e.g., last processes performed, last
position of the same order)
System Status | 4 of 4 (e.g., weekday, daytime, 4 (e.g., work-in-progress, order releases
temperature today) (last five minutes), workers available)

To select relevant features, the importance values were derived from a RF trained with default values
(sklearn v.1.3.0, with 100 estimator trees). An extract of the 15 features with the highest importance values
that were included as input into the prediction model is depicted in Figure 3. With the importance values
could be shown that “distance to storage place” has the highest importance on the process lead time
followed by “target quantity”, “total volume”, and “total weight”. Also noticeable, features of all data

b

classes can be found in the most important values.

aisle
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Figure 3: Importance Values (extract of the 15 highest values).

Based on the 82 features 41 (Stocking: 37) were selected for the prediction. From the company’s data
31 features were taken directly, and 10 were generated based on the DT. Since there are eight picking
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stations and two stocking stations the question arises of how many stations per prediction model are used
(e.g., one per station, or one for all stations). To determine the number, the process lead time distributions
of all processes were compared (Figure 4) to perform a preselection, and then the performance of the most
promising combinations was measured.
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Figure 4: Lead time distribution per station.

We used four models covering the following processes: Picking BF, Picking HIKLN, Picking Z, and
Stocking.

As ANNs were the models most used in literature, we decided to train four ANNs — one for each of the
defined subproblems. The PyTorch library was used for the training and execution of the ANNs (Paszke et
al. 2019). An exhaustive hyperparameter search was performed using Optuna (Akiba et al. 2019). The best-
performing parameters with performance measure RMSE, 1,500 epochs, and k-fold cross-validation can be
found in the Table 2. For the actual application, the epochs are increased to 3,000, leading to even better
results.

Table 2: Hyperparameter Optimization.

Parameter name | Parameter value Parameter Parameter value
name
Mini-batch size | {32, 64, 96, 128} Optimizer Adam, NAdam
Architecture type | {Pyramid, Neurons per {16, 32, 48, 64, 96, 112, 128, 144,
Rectangle} Layer 160, 192, 224, 256, 512}
Layers | {3, 4, 5} Learning rate le-5 - 1e-30,000169]
Loss | {MSE, L1 (MAE), | Activation {ReLU, Mish, Softplus}
Huber} function
Batch | {False; True} Dropout {False; True}
Normalization
Dropout (input) | 0.4-0.9 Dropout 0.2-0.6
(hidden)
Weight decay | {False; True} Weight decay | [1e-5, le-3]
value
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Finally, we compared the standard normal distribution (ND) determined for each picking station
separately with the ANN-based prediction (ML) on a dataset with and without numerical outlier (using an
interquartile range of 1.5). The outliers are difficult to predict by the models since the specific circumstances
are not covered by the data (e.g., stock out of materials, shirt term breaks). Based on the results represented
in Table 3, the analysis of the RMSE reveals a decrease of about 19 % with numerical outliers and about
35 % without numerical outliers in comparison to the ND-based process lead time prediction. Looking at
the behavior of the RMSE when including the numerical outliers, the error in the ML approach is more than
twice as large. Especially for short-term planning and control, where larger relative deviations cannot be
compensated, the results are promising.

Table 3: Model Evaluation with Test Dataset.

Measure Type | Model | Without numerical outliers | With numerical outliers
RMSE | ND 19.473 34.694
RMSE | ML 12.524 28.204
NRMSE | ND 1.712 2.183
NRMSE | ML 0.812 1.224

To get a visual insight into the improvements, the process lead times of 50 positions (extract of the
dataset) are plotted in Figure 5. The green dots represent the real process lead times as a reference base.
Next to them, the red dots represent samples from the ND and the blue dots represent the predictions of the
ML-based approach. As expected, the ML-based prediction approach shows significantly better consistency
with the real process lead time values. In contrast, the samples from the ND approach look rather random.
However, as outliers are excluded during training, they cannot be represented appropriately in both
approaches. This is also seen as the essential reason why the positive deviations are higher.

| \\//\\//\v /\/\//\\_ ,/\hl__/\,/\‘;-\ N ,\JNA

£ O
= =

PLTND ins
(]
S

Deviation in s
[

Deviation in s
r

Data Points

Figure 5: PLT Deviations from Real Values (a) ND Sampling and (b) ML-based Prediction.
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4.2 Benefits of ML-based Prediction

In this subsection the effect of the more precise process lead time prediction on the online local heuristics
optimization task. The indicators used for the comparison are average capacity utilization of the workforce
(aCUW), average order lead time (aOLT), an average of remaining order lead time after end-of-production
(aROLT), the sum of orders delayed (sOD), the sum of process lead time (sPLT), the sum of order positions
processed (sPP) and the sum of orders processed (SOP). In the experiments, one week is simulated. Table
4 shows the results. The results show that the order delays were significantly reduced from 8.6 to 5 days,
which is almost the half. This is further confirmed by the increase in aROLT. The increase in aROLT is
measured instead of the sum of minutes of orders being late since the last system part (quality inspection
and packing) is not considered in the simulation model but needs to be visited before the actual delivery.
The aOLT could also be decreased slightly. In addition, the capacity utilization of the workforce remains
equal, which also explains the equal sPLT, sPP, and sOP values.

Table 4: Results of ML-based prediction.

Model | aCUW SPLT sPP | sOP |aOLT aROLT sOD
[%] [h:mm] [h:mm] [h:mm] [d:hh]

ND | 88.23 37:55 4,085 | 1,188 | 6:35 11:51 8:14

ML | 88.18 38:00 4,099 | 1,205 | 6:30 13:47 4:23

The results show that the ML-based lead time prediction improve optimization performed by the local
heuristics. Since all of the mentioned goals of the optimization (minimize number of late order deliveries,
sum of minutes of orders being late, sum of order lead times of all orders, and maximize capacity utilization)
are directly or indirectly depended on the order lead time and the order lead time is used as main input
parameter for the local heuristics, the increase of the input parameter precision lead to better output
precision. Consequently, the higher precision of the order lead time in the planning phase leads to more
optimal prioritization of the work orders. Therefore, the order lead times decreases as well as the delivery
reliability increases slightly.

5 OUTLOOK AND DISCUSSION

In this work, we argued the importance of ML for the quality of planning and control in the context of DTs
especially using simulation for decision support. We investigated this hypothesis in an industry case of
using process lead time prediction for online scheduling of orders and workforce in the context of individual
packaging of an office material supplier. The results are promising, first have shown that the ML based
prediction has a 35 % smaller error without considering the outliers, but even with considering the outliers,
the error could be reduced by 19 %. The better predictions can also lead to better accuracy of the simulation
results especially considering the reduction of late customer orders almost 50 % using ML-based prediction
instead of normal distributions (simple probability distribution).

In next steps different industry scenarios and more extensive time lines will be considered increase
robustness of the results. In the scope of this work, we could only motivate the aspect of regularly updating
the ML models within the DT with new data. Future research will focus on investigating the effects
especially when major changes on the factory level have been applied in the real world. Here an interesting
issue will be to constantly evaluate if the model still represents the real world data and if not to decide
whether the model has to be updated or poor data qualities and outliers are the cause of the deviation.
Especially outliers, as discussed above, can be tricky to handle. A possible approach would be to feedback
the outliers to the company and eventually install further data capturing events to cover these exceptional
situations and make them learnable for the models. Further work will also focus on extending the ML
approach to the other process models to enhance prediction quality as well as to reduce manual modelling
efforts. Another step will include learning the decision heuristics themselves, that are used on the shop floor
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from the data. These are capsulated within the simulation in agent behaviors which again facilitates the
integration of ML approaches. There are two possible ways to learn the agent’s behavior: The first one will
be to train a classification model (e.g. a decision tree) with one class for each of the different possible
decision to take. In this case the decision would be which order to process next (from the queue of the
current work station or the one of the next stations). A challenging task here is to generalize the fixed
number of classes in a way that the can represent the highly variable situations. Reinforcement Leaning is
another way to learn an agent’s behavior using the simulation as environment. Even tough here the goal
would be to learn an optimal strategy rather than to copy the one applied by the workers.

REFERENCES

Akiba, T., S. Sano, T. Yanase, T. Ohta, and M. Koyama. 2019. “Optuna: A Next-generation Hyperparameter Optimization
Framework”. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
August 4"-8™ Anchorage, USA, 2623-2631.

Bender, J. and J. Ovtcharova. 2021. “Prototyping Machine-Learning-Supported Lead Time Prediction Using AutoML”. Procedia
Computer Science 180: 649-655.

Bender, J., M. Trat, and J. Ovtcharova. 2022. “Benchmarking AutoML-Supported Lead Time Prediction”. Procedia Computer
Science 200:482-494.

Biazon de Oliveira, M., G. Zucchi, M. Lippi, D. Cordeiro, N. Da Rosa Silva, and M. lori. 2021. “Lead Time Forecasting with
Machine Learning Techniques for a Pharmaceutical Supply Chain”. In Proceedings of the 23rd International Conference on
Enterprise Information Systems - Volume 1, April 261-28", Online Streaming, 634-641.

Burggraf, P., J. Wagner, B. Koke, and F. Steinberg. 2020. “Approaches for the Prediction of Lead Times in an Engineer to Order
Environment - A Systematic Review”. IEEE Access 8:142434-142445,

Chapman P, J. Clinton, R. Kerber, T. Khabaza, T. Reinartz, C. Shearer, and R. Wirth. 2000. “CRISP-DM 1.0 Step-by-step Data
Mining Guide”. SPSS Inc.

Gyulai, D., A. Pfeiffer, G. Nick, V. Gallina, W. Sihn, and L. Monostori. 2018a. “Lead Time Prediction in a Flow-shop Environment
with Analytical and Machine Learning Approaches”. IFAC PapersOnLine 51(11):1029-1034.

Gyulai, D., A. Pfeiffer, J. Bergmann, and V. Gallina. 2018b. “Online Lead Time Prediction Supporting Situation-aware Production
Control”. Procedia CIRP 78: 190-195.

Hoffmann, F., T. Bertram, R. Mikut, M. Reischl, and O. Nelles. 2019. “Benchmarking in Classification and Regression”. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery 9(5):e1318.

Kuehner, K. J., R. Scheer, and S. Strassburger. 2021. “Digital Twin: Finding Common Ground — A Meta-Review”. Procedia CIRP
104:1227-1232.

Lingitz, L., V. Gallina, F. Ansari, D. Gyulai, A. Pfeiffer, W. Sihn, and L. Monostori. 2018. “Lead Time Prediction using Machine
Learning Algorithms: A Case Study by a Semiconductor Manufacturer”. Procedia CIRP 72:1051-1056.

Panigrahi, S., A. Nanda, and T. Swarnkar. 2021. “A Survey on Transfer Learning”. In Proceedings of ICICC 2019. December 20™",
Bhubaneswar, India, 781-789.

Miiller, A. and F. Grumbach. 2023. “Predicting Processing Times in High Mix Low Volume Job Shops”. In Proceedings of the
16th International Doctoral Students Workshop on Logistics, Supply Chain and Production Management, June 20%,
Magdeburg, Deutschland, 89-95.

Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan et al. 2019. “PyTorch: An Imperative Style, High-Performance
Deep Learning Library”. In Proceedings of the 33rd International Conference on Neural Information Processing Systems,
December 8"-14t% Vancouver, Canada, 8026-8037.

Pfeiffer, A., D. Gyulai, B. K&déar, and L. Monostori. 2016. “Manufacturing Lead Time Estimation with the Combination of
Simulation and Statistical Learning Methods”. Procedia CIRP 41:75-80.

Rizzuto, A., D. Govi, F. Schipani, and A. Lazzeri. 2021. “Lead Time Estimation of a Drilling Factory with Machine and Deep
Learning Algorithms: A Case Study”. Proceedings of the 2nd International Conference on Innovative Intelligent Industrial
Production and Logistics, October 251-27t, 84-92,

Schwede, C. and D. Fischer. 2024. “Learning Simulation-based Digital Twins for Discrete Material Flow Systems: A Review”. In
2024 Winter Simulation Conference (WSC), 3070-3081 https://doi.org/10.1109/WSC63780.2024.10838729.

Schwede, C. and A. Freiter. 2024. “OpenFactoryTwin (OFacT): Initial Release (0.1.0)”. Zenodo
https://doi.org/10.5281/zenodo.13734527, accessed 11™ April 2025.

Smith, J. K. and C. Dickinson. 2022. “Discrete-event Simulation and Machine Learning for Prototype Composites Manufacture
Lead Time Prediction”. In 2022 Winter Simulation Conference (WSC), 1695-1706
https://doi.org/10.1109/WSC57314.2022.10015322.

Sousa, A., L. Ferreira, R. Ribeiro, J. Xavier, A. Pilastri, and P. Cortez. 2022. “Production Time Prediction for Contract
Manufacturing Industries Using Automated Machine Learning”. In 18th IFIP WG 12.5 International Conference Proceedings
Part 11, AIAl 2022, June 17%-20%, Hersonissos, Greece, 262—273.

2999


https://doi.org/10.5281/zenodo.13734527

Schwede and Freiter

Yamashiro, H. and H. Nonaka. 2021. “Estimation of Processing Time Using Machine Learning and Real Factory Data for
Optimization of Parallel Machine Scheduling Problem”. Operations Research Perspectives 8:100196.

AUTHOR BIOGRAPHIES

CHRISTIAN SCHWEDE is Professor for Big Data Analysis at the University of Applied Science and Arts Bielefeld. He is
member of the Center for Applied Data Science and Board member of the Institute for Data Science Solutions. Additionally he is
a senior scientist at Fraunhofer ISST in Dortmund resposible for Al in Logistics. His reseach area is the application of data- and
model-driven methods to optimize logistics and production. He is specialized in automotive logistics and agent-based dezentralized
production systems. His email address is christian.schwede@hsbi.de.

ADRIAN FREITER is a researcher at the Fraunhofer ISST in Dortmund in the Dept. Industrial Manufacturing. His research
area is the improvement of simulation-based digital twins through AI/ML applications, reducing the manual effort in the model
creation process and improving their prediction accuracy, with the aim of making them more interesting for the broad
manufacturing domain. His email address is adrian.freiter@isst.fraunhofer.de.

3000


mailto:christian.schwede@hsbi.de

	249-con201s3-file1

