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ABSTRACT 

Based on digital twins, simulation is often used in companies for the regular planning and control of 
operational processes. However, when modeling the lead times of individual processes, mean values of 
process times measured in advance are often used, which can lead to errors in the planning. This work 
demonstrates how models of these time distributions can be created and updated within a digital twin 

framework using machine learning. The lead times are used in simulation to create schedules. The approach 
is validated using the online order workforce scheduling of a medium-sized company that assembles 
individual packages of office materials for its customers. 

1 INTRODUCTION 

Decision support systems based on digital models such as digital shadows or digital twins (DTs) that 
represent the current state of the shop floor are used more and more for production planning and control 

(PPC) in companies (Kritzinger et al. 2018, Kuehner et al. 2021). Discrete-event simulation (DES) is often 
used in such systems for three use cases (Pfeiffer et al. 2015): offline validation of production plans during 
production planning, online anticipatory recognition of future deviations, and online evaluation of short-
term adaptations during production control. 
 An important basis for simulation is the lead time of individual processes on the shop floor. The process 
lead time of a single process must be distinguished from order lead time which describes the overall lead 

time of the whole order. The process lead times influence, e.g., the occupation of resources, and the 
reliability of the delivery dates. Especially in the case of short-term production control, accurate lead times 
are vital. While production planning could be performed with the aim of a robust schedule based on various 
possible future scenarios, the short-term character of production control makes it necessary to focus on the 
most probable scenario. Nevertheless, often little effort is put into an accurate lead time prediction. The 
most approaches use unconditional probability distributions for the lead time prediction (Schwede and 

Fischer 2024). Even though process lead times especially in manual processes vary and are affected by a 
lot of conditions (e.g., order complexity, staff abilities, accessibility of material, day of the week, etc.) still 
offline estimation of uniform or normal distributions is the standard method. As shown in the literature 
review of Schwede and Fischer (2024), adding of conditions can improve the accuracy of the statements of 
simulation based digital twins that are made. 
 Considering more complex lead time estimations some work has been done mainly in two areas: 1. 

Order lead time estimation via machine learning (ML) has been used as an alternative to simulation-based 
prediction in combination with optimization methods (Lingitz et al. 2018) or to evaluate deviations found 
via online-simulation during production control (Gyulai et al. 2018b). 2. Process lead times have been 
estimated using ML to improve production planning (Bender et al. 2022, Rizzuto et al. 2021, Müller and 
Grumbach 2023, Yamashiro and Nonaka 2021). 
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 While the ML-based prediction of order lead times can be either used as a faster or additional method 
to DES, in complex environments the level of detail of simulation-based prediction cannot be reached. ML-
based process lead time prediction on the other hand shows promising results and could be used to improve 

the results of optimization methods (Yamashiro and Nonaka 2021) as well as the accuracy of the DES.  
 In this work, we will investigate the effect of ML-based lead time prediction in the context of manual 
workplaces and a highly dynamic environment. Furthermore, we will present an approach to integrate lead 
time model training in a DT framework. The contribution of this work is the integration of lead-time 
prediction of manual work process into simulation-based digital twin. Especially we investigate the effect 
of the improved prediction of single lead-times on the overall simulation accuracy and the underlining 

optimization task. The application case is the online workforce scheduling of a medium-sized company that 
assembles individual packages of office materials for its customers. The process lead time influences the 
creation of the order sequence as well as the workforce schedule. 
 The rest of the work is structured as follows. In section 2 the relevant literature on lead time prediction 
is summarized. In section 3 the application case is described and section 4 presents experiments and results 
of using ML-based lead time prediction models. Section 5 summarizes the results with conclusions and 

presents an outlook to future work. 

2 RELATED WORK 

Lead time prediction can be divided into two main areas: Order lead time prediction aims at predicting the 
time between order release and product delivery while process lead time prediction aims at predicting the 
time that is needed to perform a single process step. To solve the problem of order lead time prediction two 
approaches can be found in the literature (Burggräf et al. 2020): the first approach is indirect and based on 

a detailed knowledge of the processes in the factory. Single process times including waiting times are 
combined with a schedule to calculate or simulate the order lead time. Predictions of process lead time can 
be helpful in this area. The second approach is direct and aims at a prediction of the order lead time by 
historical data using ML methods or based on specific heuristics (e.g., Little’s law).  
 Direct lead time prediction has recently been based on ML methods using historical data to train a 
function of the lead time depending on a wide set of parameters.  These approaches tend to outperform 

simple heuristics in performance and simulation-based prediction in speed. Especially because of the latter 
aspect they are used in combination with optimization algorithms and serve as an evaluation function 
(Lingitz et al. 2018) or as an additional measure to evaluate deviations found via online simulation during 
production control (Gyulai et al. 2018b).  
 For process lead time prediction two approaches can also be distinguished: Estimations of well-known 
simple probability distributions such as uniform, normal or other simple distributions and prediction of 

unknown complex distributions via ML methods. While the first approach is widely used because of its 
simplicity, it assumes that the hidden distributions of the data are known and simple. If this is not the case, 
which is the fact for most cases of lead times in industry environments (Yamashiro and Nonaka 2021), this 
first approach leads to poor results. As in order lead time prediction, ML-based approaches to predict 
unknown more complex distributions have recently been presented in a wide range to improve the accuracy 
of production planning and simulation (Bender et al. 2022, Rizzuto et al. 2021, Müller and Grumbach 2023, 

Yamashiro and Nonaka 2021). In addition, if the distribution is too complex to learn with only one model, 
the use of more than one model could help. Therefore, a separator could be used that divides the problem 
into smaller sub-problems. As example, Smith and Dickinson (2022) considered it too complex to learn the 
distribution for three different product types in one model. Consequently, they decided to divide the 
problem into smaller subproblems and learn each product type with one model.  
 Concerning the methods applied a wide range of ML approaches is used: The literature review of 

(Burggräf et al. 2020) stated that artificial neural networks (ANNs), linear or logistic regressions (LRs), 
decision trees, random forests (RFs), support vector machines, and k-nearest neighbors are used within the 
ML methods. Additionally, it could be stated that ANNs are used by far most frequently with 43 %, 
followed by LRs with 30 %, and RFs in third place with 22 %. If more complex data is used, such as product 
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data, it is stated that only ANNs and RFs are used because these approaches are better at handling complex 
data inputs. Few works compare different approaches with each other (Burggräf et al. 2020). Next to the 
hands-on ML approaches, it is noticeable that automated ML (often referred to by the abbreviation 

AutoML) solutions are more frequently used (Bender and Ovtcharova 2021, Bender et al. 2022, Sousa et 
al. 2022). Even if there is still some work to be done to be regarded as a suitable alternative (Bender et al. 
2022). For validation, the k-fold cross-validation method is used most frequently (Biazon de Oliveira et al. 
2021, Sousa et al. 2022). 
 The transferability of models to other applications proves to be difficult because the input data and 
other control rules used are different, even though explainability and transfer learning become more 

important (Panigrahi et al. 2021). That is why a comparison with other approaches is only possible to a 
limited extent. Additionally, comparing two approaches that use unsuitable accuracy measures (Hoffmann 
et al. 2019) makes it difficult to benchmark with other applications. Common accuracy measures, such as 
Root Mean Squared Error (RMSE) (e.g., Müller and Grumbach 2023, Rizzuto et al. 2021, Lingitz et al. 
2018) or Normalized RMSE (NRMSE) (Gyulai et al. 2018a, Lingitz et al. 2018) and R2 (Pfeiffer et al. 2016) 
can be used. 

3 APPLICATION CASE 

The application case is an online order and workforce scheduling of a medium-sized company that 
assembles individual packages of office materials for its customers. Customer orders arrive constantly and 
have assigned priorities concerning the level of urgency. If material is not available, and this is known in 
advance, the affected orders will have to wait. The orders are aimed to be completed at the time of shipping 
which leads to the situation that an already planned order schedule must be adapted several times during 

the day. Delivery reliability is an important key performance indicator. The company uses eight picking 
stations that are connected by conveyor belts as can be seen in Figure 1.  

 

Figure 1:Material flow of the company connecting picking stations by conveyor belts. 

 The stations are situated inside the warehouse and picking is done by the workforce following a person-
to-good principle taking out the parts needed from the shelves near each station. Every station has a fixed 
and disjoint subset of the 25,000 different picking materials assigned to it which are situated nearby. Orders 

are only entered into the system when sufficient material stock is identified in the IT system. Therefore, 
material availability is not considered a bottleneck in scheduling, although in real life it may happen that 
some parts are not available and have to be reordered, resulting in longer lead times and the need to 
reschedule. 
 A box is sent to the picking stations based on the materials listed in the picking order. Once at a picking 
station, the box is stored in an intermediate buffer waiting for its turn. The box should be selected by the 

picker based on the planned schedule, to ensure that urgent orders are delivered first. Based on a 

2991



Schwede and Freiter 
 

 

conventional picking system, the workforce manually picks up the goods from e.g., continuous racks and 
stores them in the boxes at the picking station. Since it is manual work, the process lead time varies 
depending on the materials to be picked because of different volumes, heights, distances and other material 

properties (part/material data). In addition, the assigned workers that react differently to the circumstances 
such as the last processes performed by the worker and the temperature today (workforce data and system 
status). Moreover, the process lead times depend on information about the order, e.g., urgency, the target 
quantity of the parts to be picked and the material already packed in the box is considered (order and 
position data). Furthermore, the company has a certification for the inclusion of workers with disabilities 
that may lead to further impact on the variance of process lead times. Once the box has passed all relevant 

stations, the order is completed, and the box is stored in the outbound buffer. Aside from these picking 
orders, there are also stocking orders to refill the storage places. The packages enter the station in the same 
way, the only difference is that they have to be unpacked to the shelves rather than packed with material 
from the shelves. Stocking is only performed in two of the stations. 

As simulation, the multi-agent-based simulation (MAS) component of the Open Factory Twin (OFacT) 
framework is used (Schwede and Freiter 2024). The MAS allows the decentralized solution of the two sub-

problems. On the one hand the sequence of picking and stocking orders to be released into the system has 
to be determined. This is solved by the order release agent. On the other hand, the order sequence for each 
picker has to be generated, which is executed by the worker resource agent. Since the number of pickers is 
smaller than the number of picking stations, the decision includes switching from one picking station to 
another. The overall goal is firstly to minimize the number of late order deliveries, secondly to minimize 
the sum of minutes of orders being late thirdly to minimize the sum of order lead times of all orders. The 

goals dominate each other in the way that the inferior goal is only taken into account for solution with equal 
results for the superior goal. Additionally, the maximization of capacity utilization is of interest. Since 
orders enter the system at any time and lead time deviation is high, the problem has to be solved as an 
online-optimization problem. The decision of which order enters the system next is updated after each order 
entry and the decision on which order to perform next is taken for each workforce when they have finished 
the last one.  

 To investigate the impact of a more precise process lead time prediction, fast local heuristics are 
designed based on expert knowledge. As input for both local heuristics, the remaining order lead times are 
determined. These are calculated as the sum of all remaining process lead times. As the transport times 
have a low variance, they are added as deterministic values based on the interim stops the order will take 
on the conveyor belt. In contrast, the remaining process lead times for picking and stocking are predicted.  
 

𝑙𝑎𝑡𝑒𝑠𝑡_𝑟𝑒𝑙𝑒𝑎𝑠𝑒_𝑑𝑎𝑡𝑒 = 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑡𝑖𝑚𝑒_𝑡𝑜_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 –  𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑜𝑟𝑑𝑒𝑟_𝑙𝑒𝑎𝑑_𝑡𝑖𝑚𝑒  (1) 
𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑡𝑖𝑚𝑒_𝑡𝑜_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 =  𝑝𝑙𝑎𝑛𝑛𝑒𝑑_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦_𝑑𝑎𝑡𝑒 –  𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑖𝑚𝑒 
𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑜𝑟𝑑𝑒𝑟_𝑙𝑒𝑎𝑑_𝑡𝑖𝑚𝑒 =  𝑠𝑢𝑚(𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑡𝑖𝑚𝑒𝑠) +
 𝑠𝑢𝑚(𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑡𝑖𝑚𝑒𝑠)    
 

• The order release sequence is generated by sorting the orders due to their urgency. To calculate 

the latest release date (Eq. 1), the remaining time to delivery is subtracted by the determined 

remaining order lead time (which in this case is the total order lead time, since the orders have not 

been released). The orders are then sorted according to the latest release date in ascending order. 

Every time an order should be released to the system, the order with the earliest release date is 

chosen. To ensure that the system has a constant workload, only after an order leaves the system, 

another one is allowed to enter the system (continuous work in progress).   

• The work order sequence for each picker is generated in the same manner. For all orders that 

can be performed by the picker (all orders in the buffer at the current and all free picking stations) 

the sequence of orders due to their urgency is calculated as described above. Only in this case 

solemnly the remaining processes are considered for the sum of the remaining order lead time. 

The most urgent orders are used for each work order assignment to an employee (function 
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assign_order_positions). In addition, to avoid station overflows, stations with buffers reaching a 

level near the capacity limit are prioritized. To prevent the workforce from switching constantly 

between the stations, the workforce will continue to process the orders until the intermediate 

buffer of the station is empty. But even if the picking station is not empty, the workforce can 

switch to another station if at least five processes are completed at the station and the current 

station is not prioritized (function check_b_allowed). 
 
function assign_order_positions(aw, ab) returns a list of assigned order 

positions 

 Input: aw, currently available workers,  

     ab, all buffers with a waiting order queue 

 Local variables: sb, sorted buffers 

         b, a single buffer 

       uop, most urgent order process at a buffer 

       aop, assigned order positions 

 

 # sort buffers: buffer >= limit first, rest sorted by most urgent 

orders 

 sb = sort_buffer (ab) 

 aop = [] 

 for b in sb: # most urgent first 

  aw = [] 

  # get available workers and their distance to buffer 

  for w in aw: 

  w_allowed = check_b_allowed(w, b) 

  if w_allowed: 

   # determine the distance from w to b 

   aw.append((w, get_distance(w, b))) 

  

  # choose the next process based on the minimal latest release date  

  uop = get_urgent_process(b) 

    # choose the nearest worker 

  aop.append((uop, argmin(aw[:, 1])) 

 return aop 

 

function check_b_allowed(w, br) returns bool value that states if the 

worker can work at the buffer 

 Input: w, worker,  

 br, buffer requested  

 Local variables: bc, current buffer of the worker 

 

 if not has_necesarry_skill_br(w, br): 

  return False 

 bc = get_bc_w(w) 

 if check_bc_queue_empty(bc, w): 

  return True 

 if check_w_executed_five_pos_at_bc(w) and not bc_reach_limit: 

  return True 
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# skill to work at the current buffer 

 if not check_necessary_skill_bc(w, bc): 

  return True 

return False 

It is ensured that two workers do not work at one picking station at the same time, which would lead to 
low-capacity utilization. 

4 RESULTS 

In this section the results are presented. In subsection 4.1 different methods to perform the process lead 
time prediction will be compared. The evaluation is based on the prediction loss of single process lead times 
of a test set. In subsection 4.2 the most promising prediction models are compared to the standard method 
of an estimation of a normal distribution. The models predict the lead time values used in the heuristics 
while for the evaluation in the simulation the real process lead times are applied (Figure 2). While only 

static data is used for the order release sequence due to unavailability of dynamics, they are considered in 
the next order heuristic. In this approach, it will be investigated to what extent the accuracy of the digital 
twin can be improved. As digital twin framework, the Open Factory Twin (OFacT) is used that allows a 
simple exchange of process time models and allows the usage of ML based process time models (Schwede 
and Freiter 2024). It is assumed that lead time predictions with higher precisions lead to a higher delivery 
reliability, since the order release sequence as well as the work order sequence are optimized based on the 

local heuristics described earlier. This is assumed since the urgency of each order can be predicted with a 
higher precision, meaning that more urgent orders can be prioritized in advance, leading to higher delivery 
reliabilities. 

 

Figure 2: DT using the models to predict lead times. 
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 From the 13 weeks of data available from the company, 12 weeks (training set) were used to train the 
lead time prediction models while the last week (test set) was used for evaluation. 

4.1 Process Lead Time Prediction 

To choose the right model for process lead time prediction the Cross Industry Standard Process for Data 
Mining (CRISP-DM) was applied (Chapman et al. 2000). The dataset consists of 13886 picking and 3592 
stocking orders. Features were clustered into six groups (see Table 1).  

Table 1: Feature Categorization. 

Data Class Feature from company dataset Feature from DT 

Order 2 of 23 (e.g., shipping method, urgent) 2 (order total volume so far, order total 
weight so far) 

Process and 
Position 

4 of 17 (e.g., target quantity, whole 
volume, whole weight) 

- 

Material 19 of 25 (e.g., product group name, 
SKU height, SKU quantity, distance) 

- 

Resource 1 of 2 (e.g., picking station) - 

Workforce 1 of 1 (e.g., workforce) 4 (e.g., last processes performed, last 
position of the same order) 

System Status 4 of 4 (e.g., weekday, daytime, 
temperature today) 

4 (e.g., work-in-progress, order releases 
(last five minutes), workers available) 

 
 To select relevant features, the importance values were derived from a RF trained with default values 
(sklearn v.1.3.0, with 100 estimator trees). An extract of the 15 features with the highest importance values 
that were included as input into the prediction model is depicted in Figure 3. With the importance values 
could be shown that “distance to storage place” has the highest importance on the process lead time 
followed by “target quantity”, “total volume”, and “total weight”. Also noticeable, features of all data 

classes can be found in the most important values. 

 

Figure 3: Importance Values (extract of the 15 highest values). 

 Based on the 82 features 41 (Stocking: 37) were selected for the prediction. From the company’s data 
31 features were taken directly, and 10 were generated based on the DT. Since there are eight picking 
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stations and two stocking stations the question arises of how many stations per prediction model are used 
(e.g., one per station, or one for all stations). To determine the number, the process lead time distributions 
of all processes were compared (Figure 4) to perform a preselection, and then the performance of the most 

promising combinations was measured. 

 

Figure 4: Lead time distribution per station. 

 We used four models covering the following processes: Picking BF, Picking HIKLN, Picking Z, and 
Stocking.   
 As ANNs were the models most used in literature, we decided to train four ANNs – one for each of the 
defined subproblems. The PyTorch library was used for the training and execution of the ANNs (Paszke et 
al. 2019). An exhaustive hyperparameter search was performed using Optuna (Akiba et al. 2019). The best-

performing parameters with performance measure RMSE, 1,500 epochs, and k-fold cross-validation can be 
found in the Table 2. For the actual application, the epochs are increased to 3,000, leading to even better 
results. 

Table 2: Hyperparameter Optimization.  

Parameter name Parameter value Parameter 

name 

Parameter value 

Mini-batch size {32, 64, 96, 128} Optimizer Adam, NAdam 

Architecture type {Pyramid, 
Rectangle} 

Neurons per 
Layer 

{16, 32, 48, 64, 96, 112, 128, 144, 
160, 192, 224, 256, 512} 

Layers {3, 4, 5} Learning rate 1e-5 - 1e-3 [0,000169] 

Loss {MSE, L1 (MAE), 
Huber} 

Activation 
function 

{ReLU, Mish, Softplus} 

Batch 
Normalization 

{False; True} Dropout {False; True} 

Dropout (input) 0.4 – 0.9 Dropout 
(hidden) 

0.2 – 0.6 

Weight decay {False; True} Weight decay 
value 

[1e-5, 1e-3] 
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 Finally, we compared the standard normal distribution (ND) determined for each picking station 
separately with the ANN-based prediction (ML) on a dataset with and without numerical outlier (using an 
interquartile range of 1.5). The outliers are difficult to predict by the models since the specific circumstances 

are not covered by the data (e.g., stock out of materials, shirt term breaks). Based on the results represented 
in Table 3, the analysis of the RMSE reveals a decrease of about 19 % with numerical outliers and about 
35 % without numerical outliers in comparison to the ND-based process lead time prediction. Looking at 
the behavior of the RMSE when including the numerical outliers, the error in the ML approach is more than 
twice as large. Especially for short-term planning and control, where larger relative deviations cannot be 
compensated, the results are promising.  

Table 3: Model Evaluation with Test Dataset. 

Measure Type Model Without numerical outliers With numerical outliers 

RMSE ND 19.473 34.694 

RMSE ML 12.524 28.204 

NRMSE ND 1.712 2.183 

NRMSE ML 0.812 1.224 

 
 To get a visual insight into the improvements, the process lead times of 50 positions (extract of the 
dataset) are plotted in Figure 5. The green dots represent the real process lead times as a reference base. 
Next to them, the red dots represent samples from the ND and the blue dots represent the predictions of the 
ML-based approach. As expected, the ML-based prediction approach shows significantly better consistency 
with the real process lead time values. In contrast, the samples from the ND approach look rather random. 

However, as outliers are excluded during training, they cannot be represented appropriately in both 
approaches. This is also seen as the essential reason why the positive deviations are higher. 

  

Figure 5: PLT Deviations from Real Values (a) ND Sampling and (b) ML-based Prediction. 
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4.2 Benefits of ML-based Prediction 

In this subsection the effect of the more precise process lead time prediction on the online local heuristics 

optimization task. The indicators used for the comparison are average capacity utilization of the workforce 

(aCUW), average order lead time (aOLT), an average of remaining order lead time after end-of-production 

(aROLT), the sum of orders delayed (sOD), the sum of process lead time (sPLT), the sum of order positions 

processed (sPP) and the sum of orders processed (sOP). In the experiments, one week is simulated. Table 

4 shows the results. The results show that the order delays were significantly reduced from 8.6 to 5 days, 

which is almost the half. This is further confirmed by the increase in aROLT. The increase in aROLT is 

measured instead of the sum of minutes of orders being late since the last system part (quality inspection 

and packing) is not considered in the simulation model but needs to be visited before the actual delivery. 

The aOLT could also be decreased slightly. In addition, the capacity utilization of the workforce remains 

equal, which also explains the equal sPLT, sPP, and sOP values. 

Table 4: Results of ML-based prediction. 

Model aCUW 
[%] 

sPLT 
[h:mm] 

sPP sOP  aOLT 
[h:mm] 

aROLT 
[h:mm] 

sOD 
[d:hh] 

ND 88.23 37:55 4,085 1,188 6:35 11:51 8:14 

ML 88.18 38:00 4,099 1,205 6:30 13:47 4:23 
 

The results show that the ML-based lead time prediction improve optimization performed by the local 

heuristics. Since all of the mentioned goals of the optimization (minimize number of late order deliveries, 

sum of minutes of orders being late, sum of order lead times of all orders, and maximize capacity utilization) 

are directly or indirectly depended on the order lead time and the order lead time is used as main input 

parameter for the local heuristics, the increase of the input parameter precision lead to better output 

precision. Consequently, the higher precision of the order lead time in the planning phase leads to more 

optimal prioritization of the work orders. Therefore, the order lead times decreases as well as the delivery 

reliability increases slightly. 

5 OUTLOOK AND DISCUSSION 

In this work, we argued the importance of ML for the quality of planning and control in the context of DTs 
especially using simulation for decision support. We investigated this hypothesis in an industry case of 
using process lead time prediction for online scheduling of orders and workforce in the context of individual 

packaging of an office material supplier. The results are promising, first have shown that the ML based 
prediction has a 35 % smaller error without considering the outliers, but even with considering the outliers, 
the error could be reduced by 19 %. The better predictions can also lead to better accuracy of the simulation 
results especially considering the reduction of late customer orders almost 50 % using ML-based prediction 
instead of normal distributions (simple probability distribution). 
 In next steps different industry scenarios and more extensive time lines will be considered increase 

robustness of the results. In the scope of this work, we could only motivate the aspect of regularly updating 
the ML models within the DT with new data. Future research will focus on investigating the effects 
especially when major changes on the factory level have been applied in the real world. Here an interesting 
issue will be to constantly evaluate if the model still represents the real world data and if not to decide 
whether the model has to be updated or poor data qualities and outliers are the cause of the deviation. 
Especially outliers, as discussed above, can be tricky to handle. A possible approach would be to feedback 

the outliers to the company and eventually install further data capturing events to cover these exceptional 
situations and make them learnable for the models. Further work will also focus on extending the ML 
approach to the other process models to enhance prediction quality as well as to reduce manual modelling 
efforts. Another step will include learning the decision heuristics themselves, that are used on the shop floor 
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from the data. These are capsulated within the simulation in agent behaviors which again facilitates the 
integration of ML approaches. There are two possible ways to learn the agent’s behavior: The first one will 
be to train a classification model (e.g. a decision tree) with one class for each of the different possible 

decision to take. In this case the decision would be which order to process next (from the queue of the 
current work station or the one of the next stations). A challenging task here is to generalize the fixed 
number of classes in a way that the can represent the highly variable situations. Reinforcement Leaning is 
another way to learn an agent’s behavior using the simulation as environment. Even tough here the goal 
would be to learn an optimal strategy rather than to copy the one applied by the workers.  
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