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ABSTRACT

Automatically generating and executing simulation experiments promises to make running simulation
studies more efficient, less error-prone, and easier to document and replicate. However, during experiment
generation, background knowledge is required regarding which experiments using which inputs and outputs
are useful to the modeler. Therefore, we conducted an interview study to identify what types of experiments
modelers perform during simulation studies. From the interview results, we defined four general goals
for simulation experiments: exploration, confirmation, answering the research question, and presentation.
Based on the goals, we outline and demonstrate an approach for automatically generating experiments by
utilizing an explicit and thoroughly detailed conceptual model.

1 INTRODUCTION

Simulation experiments are essential to simulation studies. For example, validation experiments test if the
simulation model correctly represents the real-world system, calibration experiments optimize the simulation
model’s input parameters to reproduce real-world data accurately, and parameter scan experiments show how
the model’s behavior changes under different conditions. In short, simulation experiments are crucial for
ensuring that a simulation study is meaningful, accurate, and useful for decision-making and problem-solving.
Therefore, automated support for experimenting with simulation models by generating experiments and
exploiting explicit context information about the simulation study seems imperative for successful, efficient,
rigorous, and credible simulation studies (Uhrmacher et al. 2024). In addition, automatically generated
experiments provide a clear record of the experiment setups and results, allowing the provenance of the
simulation study to be automatically documented without additional effort.

However, to create helpful simulation experiments for modelers, we need to understand what kinds of
experiments are executed with which goals in non-automated simulation studies. To this end, we conducted
an interview study asking modelers when they execute what experiments with which goals. In these
interviews, we identified four distinctive goals that we used as a foundation for automated experiment
generation, i.e., exploration, confirmation, answering the research question, and presentation, drawing on
terminology from visual analytics (Schulz et al. 2013).

We make the background knowledge about the relationship between goals and experiment types explicit
and demonstrate how it can be utilized to automatically generate simulation experiments from scratch. Our
approach and prototypical implementation support modelers by recommending a list of experiments tailored
to the current goal and the context in which the model is built and analyzed. From the suggestions, modelers
can select the experiments they wish to run, and our prototype will automatically extract relevant context
information and populate templates to produce an executable experiment in a target specification language.
Context information about a simulation model includes the research questions, behavioral requirements,
and input and output definitions – all of which belong to the conceptual model (Robinson 2008). Thus far,
individual parts of the conceptual model have been used for experiment generation, e.g., formally specified
requirements for generating hypothesis tests (Peng et al. 2016; Yilmaz et al. 2016; Lorig 2019; Ruscheinski
et al. 2018) or input parameter tables for generating full factorial experiment designs (Ruscheinski et al.
2018). Here, we aim to exploit the entire conceptual model – not only to fully specify a simulation
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experiment (e.g., to correctly set initial values and time points for observation) but also to constrain the list
of suggested experiment types. For instance, validation experiments may only be suggested if a requirement
exists in the conceptual model that defines a validation data set to be reproduced or a temporal-logic formula
to be satisfied by the model.

The paper is structured as follows: First, Section 2 presents the design and results of our interview study.
This is followed by Section 3, which interprets the study results in goal-based phases for simulation studies.
Section 4 then introduces the experiment generator and how it exploits the contents of the conceptual model.
In Section 5, we apply our goal-based approach by automatically generating an exploratory experiment in
the context of a cell biological simulation study and discuss how existing experiment generators could
support the different phases. Finally, in Section 6, we discuss open questions and future research directions.

2 INTERVIEW STUDY

To get a realistic overview of the types of experiments and their goals in simulation studies, we conducted
qualitative interviews with modelers, asking what experiments they use in their simulation studies and why.
We decided to use semi-structured interviews to learn about modelers’ work processes, which requires asking
follow-up questions for clarity. We interviewed four modelers from the fields of epidemiology, biology,
and ecology. Because the modelers’ and our native language is German, we performed the interviews in
German. We argue that the relaxed atmosphere sets the tone for the modelers to also talk about intermediate
experiments and experiments that they might deem less important. In the following, we will summarize the
interview results in English.

In the interviews, we talked with the modelers about their general approach to designing simulation
models and conducting simulation studies. As the first step, we asked them to tell us what questions about
their simulation model they answered using model/experiment executions. These questions will be our
guide to why or with what goal modelers design and execute simulation experiments. Then, we asked
them to explain how they answered these questions. This relates to the types and roles of experiments
they used. Experiment types describe how to execute simulations, what inputs are used, and how the
results are calculated. For example, parameter scans are a type of experiment in which multiple model
executions are run with varying input parameter configurations, e.g., based on specific experiment designs.
Another example are optimization experiments, which minimize (or maximize) a goal function relating to
the simulation model’s output parameters by trying out different parameter configurations. In contrast, an
experiment’s role refers to its purpose in the simulation study, such as validation, calibration, or analysis.
As such, one role can be realized by different types of experiments, and one type of experiment can have
different roles during a simulation study. For example, validation experiments can have the type statistical
model checking if the simulation model is checked against a logical formula or the type parameter scan if
various parameter configurations are executed and the modeler visually assesses the output data.

For the most part, the interviewed modelers used experiments to answer similar questions. The most
prominent questions were: Does the model run (without errors)? Does the model roughly behave as expected
(after the recent edit)? Is the run time feasible? Can I simplify the model? Can the model reproduce
lab data or data from another model? To answer these questions, most modelers individually described
using combinations of simple runs, parameter scans, and visualizations of the resulting simulation data. In
contrast to the parameter scan, we understand a simple run to mean that the simulation model is executed
with a single configuration of input parameters while one or a set of outputs is observed (the execution can
include multiple replications for stochastic models). When assessing whether the simulation model behaves
roughly as expected, the modelers reported using simple runs or parameter scans to obtain simulation data
that they then visualize to form an opinion based on their expertise. Similarly, they compare the visualized
results of simple runs to the plots of data obtained from a reference model or lab data to find out if their
model can reproduce said data or if their previous model version behaves similarly enough to their new
simplified model.
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Figure 1: The experiments discussed in the interviews with modelers grouped by their general goals on a
timeline and milestones of simulation studies.

Some modelers explicitly discussed using optimization experiments to calibrate their simulation models
to real-world data. Others explained that in their domain, there is not enough fitting data available that
they could use to calibrate their models. Instead, they use all available data for validating their modeled
(sub-)processes. Also, one modeler said they run experiments explicitly designed to present their findings.
They explained that their results, to be plotted and published, represent only a subset of trajectories from a
larger parameter scan. So, it may be challenging for reviewers and readers to locate and reproduce the
exact trajectories used from the original parameter scan. Therefore, they design and run additional, targeted
experiments specifically configured for the plots and data to be presented in the publication.

The answers of the interviewed modelers differed for the experiments regarding the research question.
In most interviews, the modelers remarked that these questions and the experiments to answer them depend
on the nature of the research question itself. If the research question is about examining how a specific
intervention affects the simulated process, then a so-called what-if analysis would be conducted consisting
of a parameter scan (if the different scenarios can be reflected by changing input variables) or simple runs
of, respectively, altered model versions that are compared (if different scenarios mean changing the model
structure). For example, the research question could also be about examining what parameters a certain
model output is sensitive to. This type of research question would be answered using a sensitivity analysis.
These are only some examples of experiment types linked to the research question given by the interviewees.
As the type of experiment depends on the research question, other types of experiments are also possible in
this phase.

As the next step, we presented the modelers with a timeline marked by the following milestones: 1.
“early version of simulation model”, 2. “simulation model implements all intended processes and entities”,
3. “simulation model fulfills all requirements”, and 4. “research question is answered”. We requested the
modelers to put the experiments discussed in the previous questions on this timeline, showing when they
performed them in their simulation studies. Based on where in the timeline modelers placed the experiments
and based on the experiments’ questions, we found that experiments with similar questions can be grouped
under four general goals (see Figure 1). All modelers considered experiments that explore the model’s
approximate behavior to be relevant from milestone 1 through milestone 3. These experiments answer
questions like Does the model run (without errors)?, Does the model roughly behave as expected (after
the recent edit)?, Can the model roughly replicate a reference model?, Is the run time feasible? and Can
I simplify the model?. As a next general goal, we summarize experiments used for confirming that the
simulation model reflects the modeled system close enough – by comparing its outputs to real-world or
simulation data – which were also placed between milestones 1 and 3. Experiments used to answer research
questions were located between milestones 3 and 4, and experiments designed to single out trajectories to
present their results in publications were placed after milestone 4. In the following, we will go into more
detail about how these general goals relate to the experiments associated with them.

3 EXPERIMENT GOALS AND ASSOCIATED EXPERIMENT TYPES

Based on the general goals identified in the interview study above, we define four phases of simulation
studies and associate them with the experiment roles and types discussed by the interviewed modelers. The
phases based on the experiment goals are: 1. Exploration phase, 2. Confirmation phase, 3. Answering
research question phase, and 4. Presentation phase (see Figure 2). In the following, we will describe the
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Figure 2: Goals of simulation experiments and their roles (black) and types (green, below) based on our
interviews. The exploration and presentation phases include all experiments discussed in the interviews.
For the confirmation and answering research question phases, we only included experiments that were
discussed in detail.

properties defining these phases before going into more detail on how they can be utilized to generate
simulation experiments in later sections.

1. Exploration Phase After editing the simulation model, modelers test whether their changes have
roughly the intended result without unwanted effects on other simulated processes. Suppose executing the
model shows behavior different than expected; in this case, the modeler will return to editing the simulation
model and then test it again.

Because this first testing is highly iterative, the executions must finish fast to minimize waiting time
between consecutive model edits. The model’s behavior does not have to be tested for all edge cases and in
detail, as rough results suffice to identify unexpected behavior.

We called this phase exploration phase, named after the visualization goal with the same name (Schulz
et al. 2013). In visualization, exploratory analyses aim to discover patterns, trends, hypotheses, and insights
within a data set. Users interactively explore large, complex data sets. In modeling and simulation, the
modeler interactively explores their simulation model to get a sense of its behavior. They discover trends and
patterns in the simulation output, which helps to refine hypotheses and generate new insights for refining
the model (or executing further simulation experiments).

Experiments in the exploration phase play the roles of validation (face validation and cross-validation)
and analysis (sensitivity analysis). Prominently, the experiment types simple runs and parameter scans are
used for face validation (see section 2). A face validation means that experts for the modeled system (which
often are the modelers themselves) assess if the model’s “input-output relationships are reasonable” (Sargent
2010). So, modelers execute a simple run or parameter scan and then look at the visualized results. If
the modeler suspects specific problems, they execute specific runs or more constrained parameter scans.
Another application for simple runs in the exploration phase is measuring the approximate run time of
model executions. If a simulation run takes too long, the modeler might choose to simplify the model.
Alternatively, they might choose to work with a smaller (sub)model until they need more detailed analyses.
Some modelers also reported conducting experiments with the role sensitivity analysis in the exploration
phase. These may be realized as an actual sensitivity analysis (e.g., using the methods of Morris or
Sobol (Pianosi et al. 2016)) or as a parameter scan with face validation.
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2. Confirmation Phase After modelers finish a first check exploring their model’s behavior and
believe that their model does (coarsely) what they intend, they continue to examine their model (version) in
more detail. In the confirmation phase, simulation experiments are executed with the roles of calibration
(can the model be parameterized to fit the data or otherwise described expectations) and validation (does the
model corroborate observations made, as a time series or otherwise). Central in this phase is information
about input parameters (specific values or their range), the initial model state, and data about the expected
output (e.g., as time series or logical formulas) defining various requirements on the simulation model and
its behavior. This information is typically part of the conceptual model (Robinson 2008; Wilsdorf et al.
2020). In visualization, a confirmatory analysis aims to test the hypotheses or insights uncovered during
exploration. In simulation studies, the requirements defined in the conceptual models are usually tested to
be either confirmed or disproved. Some of these requirements can also be defined based on insights from
the exploration phase. In the case of unsuccessful validation, further refinements of the simulation models
may be required. It should be noted that calibration experiments might also be used to refute a simulation
model as being valid, e.g., if a simulation model cannot be fitted to various data with plausible parameter
values (Haack et al. 2020). Independent of this, validation requires independent data or information sources
(not used during calibration) to test the simulation model against.

Of the several methods for model validation discussed in the literature (Leye et al. 2009; Sargent 2010),
the interviewed modelers named validating the simulation model against data or a logical formula and
cross-validation with other simulation models. In the latter case, comparing a model’s new version to a
previous one can tell the modeler if a simplification between the previous model version has any impact on
the output, depending on the model’s input configuration.

Confirmatory methods include statistical tests, simulation-based model checking, and corroboration with
additional data sets (Leye et al. 2009). Some modelers explained that requirements from the conceptual
model could refer to different aspects of model behaviors (e.g., whether its input uncertainty is required to
be low), which would indicate specific analysis methods (e.g., Bayesian uncertainty quantification). We
did not include these experiments in Figure 2, because we did not discuss them in detail. However, we
understand that the list of experiments in this phase is incomplete. Similar to the exploration phase, most
participating modelers emphasized the importance of suitable visualization support for analyzing the results
(or the process) of their confirmatory analysis.

3. Answering Research Question Phase Once the simulation model meets all requirements defined
in the conceptual model, the simulation model can be used to address the research question in the answering
research question phase. All experiments discussed in the interviews associated with this phase have the role
analysis. The experiment types conducted during this phase vary depending on the nature of the research
question. A research question can be open (like “What happens if we raise the number of wolves in the
initial model state?”) or closed (like “Does a higher number of wolves in the model’s initial state lead to
the prey dying out?”).

Experiments investigating closed research questions can appear very similar to experiments from the
confirmation phase, as they use the same experimental methods. Also, the hypothesis in a closed research
question can be either confirmed or denied. However, experiments in the answering research question phase
do not have to verify that this hypothesis is true. In the confirmation phase, in contrast, the experiment’s
results have to match the expected output (e.g., in the form of data) to confirm that the simulation model
correctly reflects the modeled process.

Some research questions may call for a what-if analysis, where input parameters or parts of the simulation
model are modified to analyze how changes impact the simulation output. These experiments often involve
comparing simple simulation runs or parameter scans. Other research questions might necessitate a detailed
sensitivity analysis to identify which parameters drive specific behaviors in the system. In some simulation
studies (that are focused on explaining the underlying mechanisms), the insights gained during the simulation
model’s development may already provide sufficient understanding of the modeled process. So, the study’s
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Figure 3: Structure of our experiment generator. Based on a simulation model, the simulation study’s
conceptual model and phase, our approach uses Wilsdorf et al. (2023)’s experiment meta-models to generate
an experiment specification independent of a specification language. That specification is then translated
into a target specification language using Ruscheinski et al. (2018)’s approach to generate experiment
specifications using experiment templates.

research question has already been answered, allowing the modeler to skip the answering research question
phase altogether.

4. Presentation Phase In the presentation phase, the goal is to communicate findings effectively to
stakeholders. Thus, experiments are designed to reproduce specific trajectories from previous experiments
that are used to convey the respective results, e.g., via dedicated reports, infographics, and storytelling
techniques. Primarily, the results of the third phase (referring to the research questions) have to be presented
in an accessible manner to the stakeholders (or for publication). As such, experiments in the presentation
phase select subsets of model configurations of experiments in the third phase. These experiments only
generate the trajectories used in the respective communication form and are thus clear and easy to reproduce.
However, for communication purposes, other experiments (particularly of the confirmative phase) and their
results may also be presented in a way that puts the final results into context (Uhrmacher et al. 2024).

4 USING EXPERIMENT GOALS FOR EXPERIMENT GENERATION

Based on the goals and associated experiments, the simulation model, and context information from the
conceptual model, we automatically generate simulation experiments. The current goal defines what types of
experiments are useful to the modeler in their current phase (see Figure 2). The next step is to identify what
information regarding the model’s inputs and outputs is needed to generate the respective experiment. We
use a meta-model-driven approach for simulation experiments (Wilsdorf et al. 2022; Wilsdorf et al. 2019)
(as shown in Figure 3). The meta-models define properties needed to generate experiments of various types
(e.g., sensitivity analysis) and for various simulation approaches (e.g., stochastic discrete-event simulations).
The combination of experiment type and simulation approach determines what properties are required
(or optional) to generate an experiment. We then collect the information to fill the properties required by
the experiments’ meta-models from the simulation study’s conceptual model, resulting in an experiment
formulated independently of concrete specification languages. Finally, we use this language-independent
experiment specification to generate an executable experiment in a target specification language using
Ruscheinski et al. (2018)’s template-based approach.

In this section, we will explain how the current goal, the conceptual model, and the simulation model
are used to collect and infer the information needed to generate a programming language-independent
experiment specification as defined by meta-models. We first go through the conceptual model’s elements
that we use for the generation of simulation experiments and explain what information we expect to be
part of the elements based on the definition provided by Robinson (2008) and a first formal data model
specified by Wilsdorf et al. (2020). Similar contents of the conceptual model have also been discussed to
be a central ingredient of documentation standards, such as TRACE (Grimm et al. 2014).
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Figure 4: We use information from the conceptual model and simulation model to fill the experiment
properties required by the meta-model for the target experiment’s type. In this figure, the experiment’s type
is a parameter scan with the goal of exploration. For other types, the section labeled “parameter scan”
in the meta-model is exchanged. Properties linked by black arrows can be imported from the conceptual
model directly, while information from the conceptual model with gray arrows is processed first.

4.1 Contents of the Conceptual Model

The research question defines the scope of the simulation model and what questions about the modeled
system shall be answered by the simulation model. Usually, the research question is formulated as text in
natural language.

Requirements pose conditions on the simulation model’s output, inputs, or structure. Requirements for
the simulation model’s outputs require the outputs to fulfill certain constraints or to reproduce (time-series)
data. Either way, the requirement must specify which model output it refers to and how the simulation
model’s input parameters are configured. This type of requirement is usually used to validate the simulation
model. Alternatively, requirements can define that a simulation model should be calibrated by providing a
data set or logical formula (as long as a distance metric is available (Palaniappan et al. 2013)), the output
variable that should fit the data, and the input parameter(s) to be calibrated. Finally, a requirement can
define the modeling and simulation approach or other technical aspects of the simulation study (Balci 2012).

Data is central to simulation studies as it defines parameter values or the initial model state, is used to
calibrate input parameters, and is used to validate the simulation model. Crucially, a data element in the
conceptual model must contain a reference to the data source (file, database, etc.). In addition, the format of
the data source and a tool suggesting how to read the data source can help to process the data automatically.

Output variables define what outputs of the simulation model and expressions thereof are relevant to
the simulation study. The output variables can be used for calibration, validation or analysis, including
answering the research question.

Input parameters may be defined by specific values, value ranges, or even random distributions. Some
input parameters may also be unknown and subject to calibration as part of the simulation study.

4.2 Collecting Information from the Conceptual Model and Simulation Model

Our approach generates experiments containing all the properties required by the meta-models for stochastic
discrete-event simulation using information extracted from both the conceptual model and the simulation
model (see Figure 4). Most properties can be directly imported from the conceptual model as depicted in
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the figure. For example, the model’s configuration names and values can be directly taken from the input
parameter names and the corresponding values in the conceptual model.

For some experiment properties, we chose default values that work for most applications. So, we
always use a default simulator for the respective model specification language, always use the output format
CSV, and perform parameter scans using a Latin hypercube design.

Some information from the conceptual model has to be processed before being used to fill the experiment
properties. For instance, the experiment specification has to define at which points in the simulation the
observation expression(s) shall be evaluated and when the simulation should stop. We fill these properties
using time series data from the conceptual model (that is used for calibration or validation). As we assume
that this data captures the time frame relevant to the simulated process, the time points specified in the data
can be singled out from the data as observation times for the simulation. Similarly, we set the simulation
stop time to match the highest timestamp found in any time-series data within the conceptual model. Also,
the observation alias for the observed expression is generated from the expression by removing all special
characters and numerals from it to obtain a viable variable name.

Figure 4 shows an example of a parameter scan used for exploration. Thus, all model inputs and outputs
are used in the experiment generation, and the number of replications depends on the model runtime (see
Section 5 for a more detailed explanation). Other types of experiments with different goals use the same
principle of importing information from the conceptual model. The main difference is that experiments with
the goal of confirmation focus on the requirements defined as part of the conceptual model. As explained
above, requirements for calibration or validation (which the confirmation phase focuses on) specify the
model’s input configuration, output variables, further constraints, and, in particular, the data (or logical
formula) to fit to or compare with.

5 APPLICATION

As a proof of concept, we implemented a prototype of our approach, which can be accessed in this git
repository (Wolpers et al. 2025). In the following, we will briefly describe how the prototype generates a
parameter scan in the exploration phase for a simulation model of the WNT signaling pathway (Haack et al.
2015) specified in the rule-based multilevel modeling language ML-Rules (Helms et al. 2017). After that,
we will more generally put our approach into the context of experiment generation.

5.1 Generating a Parameter Scan for the Exploration Phase

The WNT signaling pathway model represents the dynamics of key regulatory elements of the pathway,
such as WNT, LRP6, Axin, and Beta-Catenin. It combines regulatory processes at the membrane with
those in the cytosol and the nucleus. As part of the model’s construction, a membrane sub-model simulated
the distribution of specific proteins (LRP6 and CK1γ) within or outside so-called lipid rafts domains.

The first experiments generated by our tool are always designed to support exploration. Based on
the simulation model (an ML-Rules file) and the simulation study’s conceptual model (a JSON file), it
automatically generated a parameter scan. In addition to multiple model configurations, multiple replications
need to be calculated as the model is stochastic. As explorative simulation experiments should give fast
feedback to the user, our tool internally measured the execution time of one replication and, based on this (and
some default) information, determined the number of replications and the number of model configurations
to be calculated. Automatically, all available processing cores, but one, are used. Runtime information is
also important in selecting methods for exploration as well as confirming specific requirements, e.g., to
decide whether variance-based and density-based methods can be used for sensitivity analysis (or will be
too computationally challenging (Pianosi et al. 2016)).

Figure 5 shows how, based on the different types of information in the conceptual model, our tool
generates the simulation experiment to support the exploration of the model.
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Figure 5: How our tool generated a parameter scan experiment specification in the exploration phase in
SESSL by importing information from the conceptual model.

5.2 Generating Simulation Experiments for the Different Goals

The generation of simulation experiments for the different goals typically follows a pattern similar to related
experiment generation approaches: The key challenge lies in identifying and integrating suitable sources of
information. In this regard, the conceptual model can play a central role by providing tables of parameters
(with their ranges, meaning, and names in the simulation model), logic formulas as requirements, etc.

Exploration Generally, for exploration, information about parameter values and ranges is important,
e.g., for conducting parameter scan experiments and sensitivity analyses. In Ruscheinski et al. (2018), input
parameter tables were used to generate sensitivity analysis experiments. Once generated and executed, these
experiments might be reused to explore the behavior of refined simulation models (Wilsdorf et al. 2023).
For exploration, visualizations will be central. Therefore, spontaneous simulation experiments, i.e., toy
duck experiments in which you simply “wind it up and let it run” (Uhrmacher 2012) can be generated and
executed, illustrating the behavior of relevant output variables. Also, for exploration, it would be interesting
to explore specific underlying assumptions of the simulation model. For example, if we assume that a
specific cognitive theory can be applied (Haase et al. 2022), what would it mean for the simulation results
if another cognitive theory is used? So experiments with the goal of exploration could support exploratory
modeling, where not one single model but a set of alternative simulation models is explored. To automate
this process would imply transforming a simulation model based on one theory to another cognitive theory.

Confirmation Confirmation experiments require testable hypotheses. In addition to the generation of
parameter scans and the comparison to data as explained in Section 3, Yilmaz et al. (2016) and Lorig
(2019) formally specified hypotheses to generate model-checking experiments. The hypotheses may describe
mechanisms, input-output relations, or constraints in a logic-based domain-specific language (Yilmaz et al.
2016) or as stylized facts (Wilsdorf et al. 2023). Ruscheinski et al. (2018) have used metric-interval
temporal logic formulas to determine if a model behaves similarly to experimental wet-lab results (e.g., if
a peak occurs in a specific time interval). This approach may be successively applied for re-validation
after each model extension (Peng et al. 2016). But not only measured data, but also previous simulation
results produced with a related simulation model may be used for generating (cross-)validations (Cooper
et al. 2016). These, once an initial specification exists, may again may be generated repeatedly when new
model versions become available (Wilsdorf et al. 2023). Our approach can contribute by integrating these
methods for confirmation and automatically checking when which method applies to a given simulation
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study based on the study’s context information and the methods’ required information. We also aim to
integrate a variety of calibration methods into the list of possible suggestions, which so far have not been in
the focus of experiment generation.

Answering Research Question Some of the confirmatory experiments may be considered as part of
the answering research question phase, depending on how close the hypotheses are to the original research
question. Typically, a set of hypotheses will need to be evaluated to answer the research question (Yilmaz
et al. 2016). Additionally, if the conceptual model explicitly and formally specifies target functions, such
as “Maximise the storage capacity” in a manufacturing application (Lattner et al. 2011), parameter scans
or optimization experiments may automatically be generated to obtain the answer to the overall research
question. If the research question, like in most cases, is specified in natural language, new approaches for
natural language processing (Hadi et al. 2023) may be exploited to extract suitable what-if scenarios.

Presentation So far, experiment generation has not focused on the presentation of simulation studies’
results. Experiment generation for this phase will work similarly to the example shown above, and values
of the conceptual model will need to be mapped to the properties required by experiment meta-models,
following the goal and purpose of the respective experiments. A new challenge in this phase is the selection
of which trajectories are of interest to present a study’s results. Here, for being included in a publication,
providing part of the caption of a figure might suffice for generating a simulation experiment and outputs
fitting the caption. Additionally, a new aspect in the presentation phase will be the integration of existing
knowledge and tooling from visual analytics and conceptualizing how to intertwine visualization (i.e,
typically a postprocessing step with separate scripts) with experiment design.

6 DISCUSSION AND FUTURE RESEARCH

We extended existing approaches for (semi-)automatic experiment generation (Ruscheinski et al. 2018;
Wilsdorf et al. 2022) with a goal-oriented mechanism. Four central goals of a simulation study were
identified and used to steer the suggestion and generation of executable simulation experiments. The
experiment specifications are generated from scratch with additional context information provided by the
conceptual model. Our case study, in which we generated an exploration experiment, demonstrated the
feasibility of this approach. We successfully extracted parameter values and ranges from the conceptual
model, determined observation times and simulation stop times from the associated data, and generated
a complete experiment specification that was executable without any additional user input. Further, we
discussed how the application of our goal-oriented mechanism within existing experiment generators may
support the different phases of a simulation study.

Beyond automation, our approach can effortlessly be expanded to automatically record provenance
and thus support study documentation and reproducibility (Ruscheinski et al. 2019). Since all experiment
executions, along with their corresponding goals and roles, are explicitly known to the tool, provenance
recording can be seamlessly integrated.

Nevertheless, our automation requires users to define necessary information within a conceptual model
that adheres to a well-defined structure with unambiguous semantics. While this may introduce initial
effort, we argue that keeping explicit and well-structured conceptual models pays off by making the
simulation workflow more efficient. Previously, the practical benefits of explicit conceptual models for
improving a simulation study’s documentation, understandability, reproducibility, and reusability have
been highlighted (Wilsdorf et al. 2020; Robinson 2008; Uhrmacher et al. 2024). Thus, modelers are
already encouraged to document their conceptual models for these reasons. Our only additional requirement
is to structure this documentation in a machine-readable format (Wilsdorf et al. 2020). However, the
new developments in large language models and their applications to text summarization, translation, and
information retrieval (Hadi et al. 2023) may enable us to handle less rigid formats in the future.

In addition, we plan to integrate support for visualizing the results of simulation experiments into our
tool, as our interviews have shown that visualizations are central to simulation studies. Modelers emphasized
that their workflow involves iteratively designing experiments based on the visualized results of previous

2132



Wolpers, Wilsdorf, Haack, and Uhrmacher

runs while refining their models during the exploration and confirmation phases. Allowing users to interact
with visualized results and modify the generated experiments accordingly would support the modelers’
workflows even more naturally.

Currently, our concept has been developed and tested primarily for rule-based stochastic discrete-event
simulations and three specific application domains, with a limited number of participants. Thus, we can
only be confident that similar simulation studies fit our classifications – even though we assume that they
can be applied to most other simulation studies analogously. Future research could broaden the scope by
interviewing more modelers from diverse research domains with different levels of expertise and exploring
other modeling paradigms to assess and improve the generalizability of our approach. Particularly, we
expect the definition of goals and the mapping of experiment types to these goals to evolve as we conduct
more extensive interview studies. For instance, additional experiment types may arise during the discussions
(e.g., using Bayesian methods for parameter estimation and uncertainty quantification (Mitra and Hlavacek
2019)). Moreover, based on a larger empirical data set, it may become possible to quantify the occurrence
of different experiment types across the various phases of a simulation study, which may allow us to provide
more targeted support for modelers.
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