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ABSTRACT

Process Mining (PM) has proven useful for extracting Digital Twin (DT) simulation models for
manufacturing systems. PM is a family of approaches designed to capture temporal process flows by
analyzing event logs that contain time-stamped records of relevant events. With the widespread availability
of sensors in modern manufacturing systems, events can be tracked across multiple process dimensions
beyond time, enabling a more comprehensive performance analysis. Some of these dimensions include
energy and waste. By integrating and treating these dimensions analogously to time, we enable the use of
PM to extract process flows along multiple dimensions, an approach we refer to as multi-flow PM. The
resulting models that capture multiple dimensions are ultimately combined to enable comprehensive DTs
that support multi-objective decision-making. In this paper, we present our approach to generating these
multidimensional discrete-event models and, through an illustrative case study, demonstrate how they can
be utilized for multi-objective decision support.

1 INTRODUCTION

The continuous advancement in digitalization presents new opportunities for optimization in manufacturing
enterprises. The growing numbers of sensors in manufacturing systems generate substantial amounts of
data. This data is a critical asset for maintaining competitiveness in the fluctuating global market (Groggert
et al. 2017). Systematically analyzing data from manufacturing with computational methods enhances
decision-making, thereby improving the efficiency of Smart Manufacturing Systems (SMSs) (Shao et al.
2014). SMSs represent a specialized use of big data, adapting its technologies and methods to meet
manufacturing-specific requirements (O’Donovan et al. 2015). Additionally, SMSs incorporate advanced
technologies such as Machine Learning (ML), simulation, the Internet of Things (IoT), and cyber-physical
systems (CPSs) (O’Donovan et al. 2015). These technologies integrate the physical and digital worlds, with
recent developments mainly focused on Digital Twins (DTs) (Liu et al. 2021).

A DT replicates the behavior of a physical object, process, or service. Configuring a DT of an SMS
entails the integration of physical entities, their virtual counterparts, and a corresponding bidirectional
interface, supporting data collection, validation, knowledge extraction, and model verification (Friederich
et al. 2022). The core of DTs is the data-driven extraction of systems’ models and the simulation of the
models as virtual counterparts. Due to the discrete nature of manufacturing systems, the Discrete-Event
Simulation (DES) paradigm is frequently employed among various simulation paradigms (Li et al. 2021).
Process Mining (PM) algorithms can extract discrete event models by analyzing event logs and extracting
process behaviors (Jadri¢ et al. 2020). These PM algorithms facilitate the extraction and continuous
updating of system models, thereby enhancing the efficiency and intuitiveness of system analysis, which is
fundamental for maintaining a smooth DT lifecycle.

With the widespread use of sensors in SMSs, it is now possible to track and record the impacts of events
on additional process dimensions beyond time, such as energy consumption and waste generation.
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Considering these dimensions is essential for analyzing and improving system performance across multiple
objectives. As a result, there is a need for methodologies that capture and model system behaviors across
multiple dimensions beyond time, such as energy consumption and waste generation. The conventional
DES approach tracks system changes at distinct points in time, updating the simulation clock accordingly
(Zeigler et al. 2000). In comparison, our multidimensional approach treats events as instantaneous
occurrences across multiple system dimensions, each with its own simulation clock that is updated similarly
to the primary time-based simulation clock. To automatically extract underlying multidimensional models
from event logs, we developed an innovative PM methodology, termed Multi-Flow Process Mining
(MFPM) (Khodadadi and Lazarova-Molnar 2024). In this paper, we further our research by presenting a
multidimensional DT framework, outlining the systematic steps required to construct a DT simulation
model for an SMS utilizing MFPM. Multidimensional DTs mimic a system’s behaviors across various
dimensions of interest, facilitating an intuitive data-driven model extraction approach to enable
comprehensive system understanding and support multi-objective decision-making. We demonstrate the
extraction and validation of a multidimensional DT model through an illustrative case study.

We structured the paper as follows: In Section 2, we cover the basics of our research. In Section 3, we
outline our proposed methodology for extracting multidimensional DTs. In Section 4, we present an
illustrative case study to demonstrate the development process of multidimensional DTs in an SMS. Finally,
in Section 5, we summarize our findings and discuss the challenges and future advancements for
multidimensional DTs.

2 BACKGROUND AND RELATED WORK

In this section, we provide the foundation for understanding the various components and methodologies for
DTs within SMSs, and we review related research in this area.

2.1 Digital Twins of Smart Manufacturing Systems

DTs facilitate the data-driven modeling and simulation of SMSs and provide a better insight of system
behavior that supports comprehensive analysis and optimization. The application of DTs differs based on
specific factors such as the stage of manufacturing, the processes involved, and the particular industry sector
(Liu et al. 2024). Applications of DTs are partially classified into several key areas: product design,
production management and control, manufacturing system design, system fault diagnosis, risk prevention,
production data management, and manufacturing system management. These applications cover component
design and manufacturing, system design and maintenance, including dynamic design execution and risk
prediction, and lifecycle management with a focus on data and process management (Liu et al. 2024).
Friederich et al. (2022) developed a framework for data-driven DTs of SMSs. In this framework, the
SMSs, as the modeled real-world entity, continuously collect data via its [oT devices and sensors, initiating
data-driven modeling. As illustrated in Figure 1, the data-driven modeling process begins with the
identification of key entities, such as production systems and control technologies, followed by data storage
in structured databases. The subsequent phase involves data validation, which includes data cleaning,
preprocessing, and integration. The extracted data contains information about critical events within the
factory. The detection and labeling of events can be improved by using unsupervised learning techniques,
such as clustering (Vaarandi 2003). Experts review the clusters to ensure accuracy, provide necessary
labels, and adjust as required. ML algorithms then continuously and automatically detect events using this
curated data to create comprehensive event logs. The labeled logs support the discovery of processes by
employing PM algorithms (Van Der Aalst 2012), forming the basis for building a simulation model of the
SMS. To ensure that the DT accurately mimics the real-world system behavior, it needs to be validated.
Once the DT model is validated, the model parameters are archived for future use. The validated DT model
is then employed to conduct simulation runs and various what-if analyses as part of a broader simulation
study. These activities are assessed using predefined Key Performance Indicators (KPIs) to evaluate their
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Figure 1: Framework for the data-driven Digital Twins of smart manufacturing systems (Lazarova-
Molnar 2024).

effectiveness. These analyses provide stakeholders with insights for informed decisions on SMS
optimization (Friederich et al. 2022).

DT can incorporate underlying simulation models, and selecting an appropriate level of abstraction for
these models is a critical step in selecting simulation methodologies in DTs. The proper simulation
paradigm ensures that the simulation captures essential system features while excluding non-essential
details, thus developing DTs balanced between oversimplicity and complexity. DES is selected for its
precision in modeling discrete event sequences, making it a preferred choice for developing DTs for SMSs
(Li et al. 2021). In this paper, we focus on DES as the simulation paradigm for DTs to accurately represent
system dynamics and process interactions in SMSs. In DES, systems are represented by state variables that
are updated at discrete intervals (Varga 2001). Each event occurs at a distinct, predetermined point in time,
and the simulation clock advances to these points to update the system's state. The clock tracks the
progression of simulation time, ensuring that state variables are updated only at these discrete intervals.

2.2 Process Mining for Digital Twin Model Extraction

PM employs data-driven techniques to extract DES system models, using event logs (Van Der Aalst 2012).
An event log is a structured record of events, where each event is associated with a specific case, identified
by a unique case "ID". Each event includes three key elements: the case ID, the performed activity, and its
corresponding timestamp. The event log consists of multiple cases, each representing a sequence of events
ordered by their timestamps, reflecting the progression of activities. These logs range from complex
database systems (for example, patient records in a hospital) to simpler formats such as CSV files. Entries
may also include attributes such as cost, event type, and resource usage for further system analysis. The
three main forms of PM include process discovery, enhancement, and conformance checking, with process
discovery establishing the foundation for the other two forms (Van Der Aalst 2012). Process discovery aims
to extract a process model from event log data to achieve the highest levels of comprehensiveness, clarity,
and accuracy. In our research, we utilize process discovery to extract multi-flow process models from
enhanced event logs containing the necessary data, as will be detailed in Section 3.

The integration of PM and DTs offers enhancements in the modeling, simulation, and monitoring of
industrial cyber-physical systems (Vitale et al. 2024). PM is utilized in the extraction and validation process
models from event logs of SMSs in near-real-time, which are the foundation for the development of DTs
(Friederich et al. 2022). Recently, there has been a growing interest in integrating PM with DTs to enhance
real-time analytics and decision-making in SMSs. For example, Vitale et al. (2024) proposed a PM
framework for DT development in industrial settings and conducted a case study using a Water Distribution
Testbed (WDT). Vitale et al. assessed the framework's effectiveness by extracting accurate models of the
WDT and anomaly detection with machine learning algorithms. In the same context, Friederich et al. (2022)
presented a case study on using PM to extract a DT model of an SMS assembling a drone part, aiming to
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evaluate the reliability of the assembly line. Friederich et al. employed PM to derive the system's Petri net
(PN) model, facilitating the identification of bottlenecks and inefficiencies, and directly supporting
enhancements in reliability and production planning. However, existing PM approaches focus only on the
temporal flow of the system and, therefore, cannot extract multidimensional process flows for
comprehensive multidimensional DTs. To overcome this limitation, we introduced the Multi-Flow Process
Mining (MFPM) (Khodadadi and Lazarova-Molnar 2024) approach, which we will explain in detail in
section 3.

2.3 Stochastic Petri Nets

Process discovery techniques extract underlying processes from event logs, which can be represented using
various DES modeling formalisms, such as PNs. Several modeling methods have been developed to
describe the complex behaviors of manufacturing systems, with PN being one of the most effective (Kaid
et al. 2015). PNs offer an intuitive modeling style, allowing for the simultaneous handling of concurrency,
a process that can be simplified for analysis. PNs are built on solid mathematical principles and provide
detailed insights into the structure and behavior of the system. Additionally, PNs support both qualitative
and quantitative analysis, making them highly effective for complex DES systems (Heiner et al. 2008).

In a PN diagram, two primary node types are utilized: circles, known as places, and rectangles, referred
to as transitions. Places and transitions are interconnected by directed arcs, with arcs from places to
transitions indicating inputs and arcs from transitions to places indicating outputs. PN operates by the
distribution of markers within the net, known as tokens, which are depicted as black dots within the places.
Transitions in the system destroy the required number of tokens at each of their input places and generate
the defined token at each of their possible output places upon activation. (Peterson 1977).

PNs are available in various forms and extensions, each designed for distinct modeling purposes and
specific applications. In our study, we utilize Stochastic Petri Nets (SPNs), as formalized and described in
(Lazarova-Molnar 2005), where SPN is defined as SPN = (P,T, A, G,m;), where P = {P;,P,, ..., P}
represents the set of places, represented as circles. T = {T;, T, ..., T;,} forms the set of transitions, each
associated with either distribution functions or weights, represented as bars. A = {A! U A% U AH} classifies
the arcs into input arcs A’, output arcs A?, and inhibitor arcs A, where each arc carries a specific
multiplicity. G = {g4, g2, ---, g} indicates the guard functions linked to various transitions. m indicates
the initial distribution of tokens across the places (initial marking). Each transition is represented as T; =
(type, F), is classified by type € {timed, immediate}. F is a probability distribution function for timed
transitions, and for immediate transitions, F is a firing weight or probability.

2.4 Modeling Formalisms with Ability to Capture Multidimensionality

Several alternative modeling methods have been explored for representing multidimensional systems,
typically limited to two dimensions of interest, such as time and cost. The Discrete Event System
Specification (DEVS) (Zeigler et al. 2000) is a formalism designed for modeling and analyzing discrete
event systems. DEVS supports modular and composable modeling and simulation through smaller atomic
models, each with its own states and transitions, which can be interconnected to create more complex
coupled models. As DEVS is increasingly applied to complex systems, such as the modeling of intricate
physical continuous systems, ensuring the validity and quality of simulation data, as well as its precise
management and analysis, turns into a significant challenge (Wainer and Govind 2024; Moreno et al. 2010).

Colored Petri Nets (CPNs) (Davidrajuh 2023; Gehlot and Nigro 2010) enhance traditional Petri nets by
integrating data values, referred to as "colors," into tokens. This addition enables the representation of
intricate system states and supports the modeling of concurrent and distributed systems. While CPNs
theoretically facilitate multidimensional modeling through the assignment of structured data types to
tokens, encapsulating various aspects of system behavior, their practical use poses challenges.
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Another approach explored for multidimensional modeling is hybrid modeling (Fakhimi and Mustafee
2024; Brito et al. 2011), which combines various modeling techniques, such as discrete events and
continuous modeling. The possible challenge in hybrid modeling is the accurate representation of
continuous dynamics, which requires formulating mathematical equations that capture system behaviors
over time. This task is complex, often necessitating a thorough understanding of the physical processes and
intricate interactions within the system, such as temperature fluctuations or energy flows.

The modeling methods outlined in this subsection can accommodate multiple dimensions beyond
temporal flow. However, they generally cannot support the representation required for automated, data-
driven model extraction through PM. In this context, SPNs facilitate the modeling of a system extracted
from PM (Van Dongen et al. 2009), however, they do not adequately capture the multidimensional behavior
of complex systems. To address this limitation, in this paper, we extended the SPN formalism to adjust to
the representation of multidimensional systems for multidimensional DTs.

3 MULTIDIMENSIONAL DIGITAL TWINS

The goal of employing DTs is to enhance decision-making in complex systems, such as SMSs, which often
have multiple objectives such as increasing throughput, enhancing energy efficiency, and reducing waste
and CO; emissions. Achieving a multi-objective optimized system requires a comprehensive understanding
of the system’s behavior from multiple perspectives. To address this, we propose a novel multidimensional
DT that can extract and simulate the multidimensional behavior of a complex system based on its diverse
objectives. For this, we introduce a multidimensional DT framework, where we employ an extension of the
SPN modeling formalism, offering an intuitive and structured representation of systems’ behaviors across
multiple dimensions. SPNs are increasingly explored in PM research for data-driven model extraction in
complex systems (Van Der Aalst 2012), and have been used as simulation backbones for DTs (Friederich
et al. 2022). Our previously developed PM approach, MFPM, automatically extracts multidimensional
models, enabling near-real-time systems analysis along multiple dimensions and multi-objective
optimization. MFPM thus serves as a key enabler of multidimensional DTs.

In Figure 2, we illustrate our multidimensional DT framework, which builds upon the framework
proposed by Friederich et al. (2022). Our multidimensional DT framework differs mainly in the data
requirements, model extraction, and model development. Data is gathered from IoT devices throughout the
system, capturing metrics across multiple dimensions, such as energy consumption of assets and waste
production from processes. We then organize the gathered data into extended event logs, referred to as
multidimensional event logs. To facilitate a multidimensional analysis of the system, the event log is
enhanced beyond basic data points such as "Time Stamp," "ID," and "Event" by including additional
metrics. These metrics offer the necessary details to understand system behavior across various relevant
dimensions, including energy consumption (energy stamp), carbon footprint (CO, stamp), and waste
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Figure 2: Multidimensional Digital Twin framework.
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generation (waste stamp) at the point in time each event occurs. If needed, tracked dimensions can be further
refined and categorized, such as into types of waste (water, plastic) or energy sources (battery, electricity).
Although time is typically the primary focus, PM has also been used to analyze other process
dimensions, such as cost (Velasquez 2023). We apply MFPM on validated multidimensional event logs to
identify a system’s behavior across multiple dimensions. In MFPM, we use conventional PM and extract
unidimensional models for each dimension of interest. In Figure 3, we present the workflow of MFPM,
structured in two phases. The first phase involves extracting individual process flows for each dimension,
designated as Process Flow 1 through N. Following the Petri nets modeling elements, the first phase
involves identifying and mapping the sets of places (P) and transitions (T'), the set of arcs (4) that link
places to transitions, defining guard functions (G) that regulate flow based on conditions or states, and
extracting the initial marking (1) to denote the initial token distribution across places. In the second phase,
we extract the multidimensional transitions’ attributes, presenting their impact on different dimensions.
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Figure 3: Multi-flow process mining framework (Khodadadi and Lazarova-Molnar 2024).

In Algorithm 1, we outline the steps of our framework for extracting unidimensional SPN models from
event logs across any relevant dimension. The input, denoted as E = {eq,e,,...,e,}, represents a
multidimensional event log, capturing all system dimensions (D). The output of the MFPM is a set of
unidimensional SPNs (U), each reflecting the flow and transition dynamics for a specific dimension.

Phase 1 concerns the extraction of the structures of the process flows for each dimension, denoted as
F; = (P4, Ty), where Py is the set of places and Ty is the set of transitions in each dimension (Line 2).
Phase 2 enriches these transitions with further specification and quantitative attributes relevant to the
currently extracted dimension. For this, we first analyze the time dimension separately: if the currently
extracted dimension is time, the duration of activities is evaluated to determine the best-fitting probability
distributions (p(T,)) for those transitions (Line 4). In addition, for noncontributing transitions to the time
dimension with multiple output selections, the probability of each output is achieved by counting the
number of occurrences of each selection option (Line 5). For non-time dimensions, the impact of a
contributing transition can be represented in one of two ways: as a rated value (R, calculated by
multiplying its rate by the time duration, Line 8), or as a fixed or dynamic value which can be calculated
using the best-fitting probability distributions, p(T,) or ML techniques, capturing variability based on
observed data (W,(t)) (Line 9).

Following the extraction of the unidimensional models that consist of individual SPN models
corresponding to the distinct dimensions, these individual models are integrated into a single unified
comprehensive simulation model, termed the multidimensional model, as the basis of simulation, which is
described next, in Algorithm 2. The resulting unified multidimensional simulation model subsequently
undergoes a validation process to ensure its accuracy and reliability. The validated model is employed in
systematic analyses aimed at enhancing and optimizing the system in various objectives and dimensions.
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Algorithm 1: Unidimensional models extraction.
Input: E = {eq, e, ...,e,}

Output: U = {F,, F,, ..., En} , Fg = (P, Ta)

1  Foreachd € D do:

//Phase 1: Process Flow Extraction
2 Fd = {ﬂd'fzd""'fnd}
//Phase 2: Multidimensional Transition Modification
3 Foreach transition in the time dimension:
4 If contributing transition: calculate the best-fitting probability distributions: Tph = t;y 1 — t; ; p(Ty) =
argmin, (fit(Ty, p))
5 If noncontributing transition with multiple output selection: count the number of occurrences of each selection
option.
6 End
7 Foreach contributing transition to dimensions other than time:
8 If rated value: Rq = 2%, AVg = V&, — V& AT =ty — t;
9 If fixed or dynamic value: calculate p(Ty) or Wy (t) = fu.(t,0)
10 End
11 End

3.1 Multidimensional Digital Twin Model

Next, we outline the methodology for integrating the extracted unidimensional SPN models into a unified
Multidimensional SPN (MDSPN), a novel modeling approach introduced in this work. MDSPNs extend
traditional SPNs by allowing each transition to exhibit distinct behaviors across multiple dimensions. This
unified model serves as the foundation for the simulation. To simulate the MDSPN model, we assign
distinct simulation clocks to each dimension. The clock in the temporal dimension tracks the progression
of time, while clocks in other dimensions track updates specific to their respective attributes. These clocks
advance with each transition firing, ensuring an accurate and synchronized representation of all relevant
dimensions within the discrete-event system.

Algorithm 2: Unification of unidimensional models into one multidimensional model.

Input: Unidimensional SPN models U = {Fy, F,, ..., Fn} , Fg = (P, Ty)

Output: Unified multidimensional SPN model MDSPN, with associated "multidimensional Transitions" {MT;, MT,, ..., MT,,}
Procedure:

1 Initialize the complete flow

2 Split transitions into segments corresponding to the number of dimensions ()

3 Foreach transition in the model t:

3 Identify the contributing and noncontributing dimensions

4 Define the impact of the transition in each contributing dimension
5

6

Adjust other SPN specifications
end

In Algorithm 2, we outline our methodology for integrating unidimensional SPN models into a unified
MDSPN model. The input to this process consists of unidimensional SPN models extracted using the
MFPM approach. In MDSPN, each transition is decomposed into segments corresponding to the number
of dimensions of interest (m), representing their contribution type in each respective dimension. Each
transition segment is color-coded, white for contributing and black for noncontributing transitions, to
indicate the transition's impact on specific dimensions visually. Additionally, we specify the quantitative
impact of each transition on its respective dimensions and define other model specifications such as guard
functions, selection probabilities, and so forth.

In Figure 4, we illustrate an example of a unification process to extract and assess an MDSPN model.
Here, we use a manufacturing line segment that incorporates the dimensions of time and energy. In this
scenario, a new order arrives after a certain duration without effect on the energy dimension. Concurrently,
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a robot in an idle state consumes energy until a new order arrives, at which point it transitions immediately
to the production process. Although the temporal flow features an immediate transition, this transition
contributes added value to the energy dimension. Upon completion of production, which impacts the energy
dimension, the robot reverts to its idle state, and the production advances to subsequent stages. Following
the unification process, we employ multidimensional transitions (labeled MT).
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Figure 4: Unification of different dimensions models into one multidimensional model.

4 ILLUSTRATIVE CASE STUDY

To demonstrate the methodology for developing and simulating multidimensional DT models, we
conducted an illustrative case study of an SMS. This study employs DES based on the MDSPN formalism
to represent system dynamics. The model encompasses three key dimensions: time, energy (sourced from
the grid), and product waste, each linked to specific KPIs. In our study, we simulate what we refer to as the
'ground truth model' to generate data used as a basis for (re)discovering the underlying multidimensional
model. The process begins with a detailed description of the SMS, followed by identifying essential data
for extracting the multidimensional models. We then apply the MFPM methodology to extract the
underlying unidimensional models. Upon deriving the MDSPN model, we simulate the model using the
MDPySPN simulation library (Khodadadi and Lazarova-Molnar 2025a). Finally, we validate the extracted
multidimensional model against the ground truth model, comparing the defined KPIs for each dimension.
The simulation code and associated resources are publicly accessible on GitHub (Khodadadi and Lazarova-
Molnar 2025b).

4.1 Case Study Model Description

Our illustrative case study is a simple example of a production line focused on three dimensions of time,

energy consumption, and waste generation that includes two production robots. The production process

initiates with the arrival of a new order, which is randomly assigned to one of the robots, each having a

50% probability of selection. Following the production process, the product is completed and stored in the

warehouse, which then alerts the user. Relevant to the energy consumption and waste generation

dimensions, the robots are powered by the electrical grid and operate in two modes, active and idle, each

characterized by distinct energy consumption and waste generation profiles. Robots generate plastic waste

during production. In our case study, the KPIs are structured around multiple dimensions, including:

e Time Dimension (Basic): number of output products and throughput of orders.

e Energy Dimension: total energy consumption measured in kWh from the grid, tracking each asset's
energy usage.

e Waste Dimension: total product waste measured in kg.
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4.2 Case Study Data Requirements

To extract event logs from each asset, it is essential to catalog all activities of each asset, including both
non-value-adding activities, such as idle energy states, and value-adding activities, such as machining or
assembling components during the manufacturing process. Event logs are continuously generated and
dynamically updated throughout operations to reflect system activities. Entries in the logs are specifically
added at the start and end of activities, ensuring that any potential inefficiencies or waste occurring between
events are accurately documented. Events irrelevant to a specific dimension are assigned a zero or “NA”
value to signify their exclusion. Event logs, extracted from the system, encompass a 24-hour operational
period of the production line, with each data point recording time details to the second. In Table 1, we
presented a subset of the integrated event logs pertinent to the case study production line. For instance, the
"New Order" event does not involve any assets or affect other dimensions, whereas the "Robot 2 Operation
Begin" impacts all dimensions of time, energy consumption, and product waste generation.

Table 1: Multidimensional event log excerpt.

Time Stamp ID Asset  Energy Stamp Energy Type Waste Stamp Waste Event
(kWh) (kg) Type
00:09:22 334 NA 0.0 NA 0.0 NA Queue End
00:09:22 10043 Robot 2 340.24 Electricity 0.0 NA Robot 2 Idle End
00:09:22 334  Robot2 340.24 Electricity 3.14 Plastic Robot 2 Operation Begin
00:09:26 335 NA 0.0 NA 0.0 NA New Order

4.3 Case Study Multidimensional Digital Twin

In our case study, we employed the extracted event logs from the ground truth model as input for the MFPM.
For this, we employed process discovery methods (Van Der Aalst 2012) to extract the processes. Next, we
utilized SciPy (Virtanen et al. 2020) to determine the probability distributions for timed transitions. Further
analysis entailed extracting probabilities associated with immediate transitions, alongside detailed energy
and waste-related information, including both rate and fixed value additions for each transition that affects
these dimensions. Following the extraction of the unidimensional SPN models, we integrate them into a
unified MDSPN model. In Figure 5, we show the extracted MDSPN model from the case study system,
which we then simulate with an extended version of MDPySPN capable of KPI extraction.

To simulate varied behaviors of a single transition represented by the MDSPNs in MDPySPN, we
extended the traditional SPN simulation techniques to manage different behaviors across time and other
dimensions. For example, the different behavior of one transition is in the idle state of an asset which refers
to a condition where a system or component is operational but not currently engaged in any active processes,
such as the production process. Here, the idle process (represented by transition MT11) is an immediate
(noncontributing) transition in the time dimension but contributes to the energy dimension. To address such
different behaviors by one transition, MDPySPN allows for tracking the time that tokens remain in idle
states. The energy consumed during the idle state is calculated by multiplying the time by the robot's energy
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Figure 5: Unified multidimensional model of the case study.
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consumption profile. Upon firing a transition, the value is consistently added to the respective dimension's
clock each time the transition is activated.

4.4  Case Study Multi-Flow Structural Model Validation

We utilized a synthetic model as a ground truth model, enabling structural validation of the model extracted
through the MFPM method. In real-world scenarios, such direct validation is not feasible, typically
requiring an expert's assessment to confirm the fidelity of the extracted model (Alsalamah et al. 2017). To
structurally validate our model (Sargent 2010), we analyze the graph representation extracted from the
simulation model, which we implemented using the MDPySPN tool. This analysis involves counting
places, transitions, and arcs, examining connectivity patterns (arcs). We validate correctness by comparing
with the ground truth model, confirming accurate structural reflection.

4.5 Case Study Simulation Model Validation

To validate the model, we compare the predefined KPIs from the ground truth model with those from the
extracted simulation model. Output validation verifies that the 95% confidence intervals of the number of
output products and throughput KPIs overlap after 100 independent replications. For other KPIs, such as
total energy consumption and waste generation, the validation process considers the effect of each
transition’s occurrence probability. Specifically, we assess the extent to which their 95% confidence
intervals are close to each other. In Figure 6, we illustrate a comparison of the number of output products
and throughput, demonstrating a strong alignment between our extracted DT and the ground truth model.
In Table 2, we present a comparison of KPIs, including total energy consumption and total waste generation,
based on their 95% confidence intervals. This comparison confirms the accuracy of the simulation model
in replicating critical operational metrics of the ground truth model.

Table 2: 95% Confidence intervals for energy consumption and waste generation KPIs.

KPI Ground Truth Model Digital Twin’s Model
Total Energy Consumption (kWh) [2083.67, 2107.07] [2174.31, 2206.11]
Total Waste Generation (kg) [25.12,25.94] [20.85, 21.43]
150
0.9970 ‘3 149 Extracted
5 0.9965 B 148 Model
(=3 o
& 0.9960 & 147
g 0.9955 | %, 146
£ 09950 g_ 145 Ground Truth
0.9945 8 144 Model

0.9940

Figure 6: 95% Confidence intervals for output products and throughput KPIs.

5 SUMMARY AND OUTLOOK

Digital Twins present promising solutions for complex systems, such as in the manufacturing domain, by
enabling comprehensive system analysis and enhancements. With Process Mining, Digital Twin models of
real-world systems can be extracted from systems’ event logs. With the widespread use of sensors in
modern manufacturing systems, events can be tracked and recorded across multiple process dimensions,
beyond time, such as energy and waste. Tracking systems across multiple dimensions enable a better
understanding and analysis of system behavior and support stakeholders in optimized multi-objective
decision-making. In this paper, we introduced a framework for extracting and simulating multidimensional
Digital Twins utilizing multi-flow process mining. We demonstrate our proposed methodology through an
illustrative case study of a smart manufacturing system, focusing on three key dimensions: time, energy
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consumption, and waste generation. Our findings identify several key challenges that must be addressed to

advance the development and deployment of multidimensional Digital Twins in complex systems.

e Multi-Source Data Integration: Multidimensional Digital Twins must integrate data from multiple
sources and handle a wide range of data types, from structured numerical data to unstructured textual
information. The capability to process this data in (near) real-time is essential for the twin to reflect the
system behavior in different dimensions correctly.

e Scalability and Dynamic Dimension: The scalability of Digital Twins to represent systems with
frequent changes, along with the dynamic selection of relevant dimensions, requires effective strategies
to extract accurate multidimensional Digital Twins aligned with system objectives in real-time.

e Automatic Identification of Complex Processes: In complex systems such as manufacturing, existing
process mining can struggle to automatically extract certain process flows, and hinder the achievement
of validated Digital Twin models. For instance, the behavior of assets in an idle state in the SPNs model.

e Clock Drift & Synchronization Delay: In real-world systems, network latency separates distributed
timestamps. These errors disorder events, skew KPIs, and erode model fidelity.

e Real-World Data Validation: While our proposed technique shows promise, its application to extensive,
real-world datasets has yet to be demonstrated. Thus, validating the approach of multidimensional
Digital Twins with real industrial data forms part of our future work.
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