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ABSTRACT 

Process Mining (PM) has proven useful for extracting Digital Twin (DT) simulation models for 

manufacturing systems. PM is a family of approaches designed to capture temporal process flows by 

analyzing event logs that contain time-stamped records of relevant events. With the widespread availability 

of sensors in modern manufacturing systems, events can be tracked across multiple process dimensions 

beyond time, enabling a more comprehensive performance analysis. Some of these dimensions include 

energy and waste. By integrating and treating these dimensions analogously to time, we enable the use of 

PM to extract process flows along multiple dimensions, an approach we refer to as multi-flow PM. The 

resulting models that capture multiple dimensions are ultimately combined to enable comprehensive DTs 

that support multi-objective decision-making. In this paper, we present our approach to generating these 

multidimensional discrete-event models and, through an illustrative case study, demonstrate how they can 

be utilized for multi-objective decision support. 

1 INTRODUCTION 

The continuous advancement in digitalization presents new opportunities for optimization in manufacturing 

enterprises. The growing numbers of sensors in manufacturing systems generate substantial amounts of 

data. This data is a critical asset for maintaining competitiveness in the fluctuating global market (Groggert 

et al. 2017). Systematically  analyzing data from manufacturing  with computational methods enhances 

decision-making, thereby improving the efficiency of Smart Manufacturing Systems (SMSs) (Shao et al. 

2014). SMSs represent a specialized use of big data, adapting its technologies and methods to meet 

manufacturing-specific requirements (O’Donovan et al. 2015). Additionally, SMSs incorporate advanced 

technologies such as Machine Learning (ML), simulation, the Internet of Things (IoT), and cyber-physical 

systems (CPSs) (O’Donovan et al. 2015). These technologies integrate the physical and digital worlds, with 

recent developments mainly focused on Digital Twins (DTs) (Liu et al. 2021).  

A DT replicates the behavior of a physical object, process, or service. Configuring a DT of an SMS 

entails the integration of physical entities, their virtual counterparts, and a corresponding bidirectional 

interface, supporting data collection, validation, knowledge extraction, and model verification (Friederich 

et al. 2022). The core of DTs is the data-driven extraction of systems’ models and the simulation of the 

models as virtual counterparts. Due to the discrete nature of manufacturing systems, the Discrete-Event 

Simulation (DES) paradigm is frequently employed among various simulation paradigms (Li et al. 2021). 

Process Mining (PM) algorithms can extract discrete event models by analyzing event logs and extracting 

process behaviors (Jadrić et al. 2020). These PM algorithms facilitate the extraction and continuous 

updating of system models, thereby enhancing the efficiency and intuitiveness of system analysis, which is 

fundamental for maintaining a smooth DT lifecycle.  

With the widespread use of sensors in SMSs, it is now possible to track and record the impacts of events 

on additional process dimensions beyond time, such as energy consumption and waste generation. 
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Considering these dimensions is essential for analyzing and improving system performance across multiple 

objectives. As a result, there is a need for methodologies that capture and model system behaviors across 

multiple dimensions beyond time, such as energy consumption and waste generation. The conventional 

DES approach tracks system changes at distinct points in time, updating the simulation clock accordingly 

(Zeigler et al. 2000). In comparison, our multidimensional approach treats events as instantaneous 

occurrences across multiple system dimensions, each with its own simulation clock that is updated similarly 

to the primary time-based simulation clock. To automatically extract underlying multidimensional models 

from event logs, we developed an innovative PM methodology, termed Multi-Flow Process Mining 

(MFPM) (Khodadadi and Lazarova-Molnar 2024). In this paper, we further our research by presenting a 

multidimensional DT framework, outlining the systematic steps required to construct a DT simulation 

model for an SMS utilizing MFPM. Multidimensional DTs mimic a system’s behaviors across various 

dimensions of interest, facilitating an intuitive data-driven model extraction approach to enable 

comprehensive system understanding and support multi-objective decision-making. We demonstrate the 

extraction and validation of a multidimensional DT model through an illustrative case study. 

We structured the paper as follows: In Section 2, we cover the basics of our research. In Section 3, we 

outline our proposed methodology for extracting multidimensional DTs. In Section 4, we present an 

illustrative case study to demonstrate the development process of multidimensional DTs in an SMS. Finally, 

in Section 5, we summarize our findings and discuss the challenges and future advancements for 

multidimensional DTs. 

2 BACKGROUND AND RELATED WORK 

In this section, we provide the foundation for understanding the various components and methodologies for 

DTs within SMSs, and we review related research in this area. 

2.1 Digital Twins of Smart Manufacturing Systems 

DTs facilitate the data-driven modeling and simulation of SMSs and provide a better insight of system 

behavior that supports comprehensive analysis and optimization. The application of DTs differs based on 

specific factors such as the stage of manufacturing, the processes involved, and the particular industry sector 

(Liu et al. 2024). Applications of DTs are partially classified into several key areas: product design, 

production management and control, manufacturing system design, system fault diagnosis, risk prevention, 

production data management, and manufacturing system management. These applications cover component 

design and manufacturing, system design and maintenance, including dynamic design execution and risk 

prediction, and lifecycle management with a focus on data and process management (Liu et al. 2024). 

Friederich et al. (2022) developed a framework for data-driven DTs of SMSs. In this framework, the 

SMSs, as the modeled real-world entity, continuously collect data via its IoT devices and sensors, initiating 

data-driven modeling. As illustrated in Figure 1, the data-driven modeling process begins with the 

identification of key entities, such as production systems and control technologies, followed by data storage 

in structured databases. The subsequent phase involves data validation, which includes data cleaning, 

preprocessing, and integration. The extracted data contains information about critical events within the 

factory. The detection and labeling of events can be improved by using unsupervised learning techniques, 

such as clustering (Vaarandi 2003). Experts review the clusters to ensure accuracy, provide necessary 

labels, and adjust as required. ML algorithms then continuously and automatically detect events using this 

curated data to create comprehensive event logs. The labeled logs support the discovery of processes by 

employing PM algorithms (Van Der Aalst 2012), forming the basis for building a simulation model of the 

SMS. To ensure that the DT accurately mimics the real-world system behavior, it needs to be validated. 

Once the DT model is validated, the model parameters are archived for future use. The validated DT model 

is then employed to conduct simulation runs and various what-if analyses as part of a broader simulation 

study. These activities are assessed using predefined Key Performance Indicators (KPIs) to evaluate their 
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effectiveness. These analyses provide stakeholders with insights for informed decisions on SMS 

optimization (Friederich et al. 2022). 

DT can incorporate underlying simulation models, and selecting an appropriate level of abstraction for 

these models is a critical step in selecting simulation methodologies in DTs. The proper simulation 

paradigm ensures that the simulation captures essential system features while excluding non-essential 

details, thus developing DTs balanced between oversimplicity and complexity. DES is selected for its 

precision in modeling discrete event sequences, making it a preferred choice for developing DTs for SMSs 

(Li et al. 2021). In this paper, we focus on DES as the simulation paradigm for DTs to accurately represent 

system dynamics and process interactions in SMSs. In DES, systems are represented by state variables that 

are updated at discrete intervals (Varga 2001). Each event occurs at a distinct, predetermined point in time, 

and the simulation clock advances to these points to update the system's state. The clock tracks the 

progression of simulation time, ensuring that state variables are updated only at these discrete intervals.  

2.2 Process Mining for Digital Twin Model Extraction 

PM employs data-driven techniques to extract DES system models, using event logs (Van Der Aalst 2012). 

An event log is a structured record of events, where each event is associated with a specific case, identified 

by a unique case "ID". Each event includes three key elements: the case ID, the performed activity, and its 

corresponding timestamp. The event log consists of multiple cases, each representing a sequence of events 

ordered by their timestamps, reflecting the progression of activities. These logs range from complex 

database systems (for example, patient records in a hospital) to simpler formats such as CSV files. Entries 

may also include attributes such as cost, event type, and resource usage for further system analysis. The 

three main forms of PM include process discovery, enhancement, and conformance checking, with process 

discovery establishing the foundation for the other two forms (Van Der Aalst 2012). Process discovery aims 

to extract a process model from event log data to achieve the highest levels of comprehensiveness, clarity, 

and accuracy. In our research, we utilize process discovery to extract multi-flow process models from 

enhanced event logs containing the necessary data, as will be detailed in Section 3. 

The integration of PM and DTs offers enhancements in the modeling, simulation, and monitoring of 

industrial cyber-physical systems (Vitale et al. 2024). PM is utilized in the extraction and validation process 

models from event logs of SMSs in near-real-time, which are the foundation for the development of DTs 

(Friederich et al. 2022). Recently, there has been a growing interest in integrating PM with DTs to enhance 

real-time analytics and decision-making in SMSs. For example, Vitale et al. (2024) proposed a PM 

framework for DT development in industrial settings and conducted a case study using a Water Distribution 

Testbed (WDT). Vitale et al. assessed the framework's effectiveness by extracting accurate models of the 

WDT and anomaly detection with machine learning algorithms. In the same context, Friederich et al. (2022) 

presented a case study on using PM to extract a DT model of an SMS assembling a drone part, aiming to 

 

Figure 1: Framework for the data-driven Digital Twins of smart manufacturing systems (Lazarova-

Molnar 2024). 
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evaluate the reliability of the assembly line. Friederich et al. employed PM to derive the system's Petri net 

(PN) model, facilitating the identification of bottlenecks and inefficiencies, and directly supporting 

enhancements in reliability and production planning. However, existing PM approaches focus only on the 

temporal flow of the system and, therefore, cannot extract multidimensional process flows for 

comprehensive multidimensional DTs. To overcome this limitation, we introduced the Multi-Flow Process 

Mining (MFPM) (Khodadadi and Lazarova-Molnar 2024) approach, which we will explain in detail in 

section 3. 

2.3 Stochastic Petri Nets 

Process discovery techniques extract underlying processes from event logs, which can be represented using 

various DES modeling formalisms, such as PNs. Several modeling methods have been developed to 

describe the complex behaviors of manufacturing systems, with PN being one of the most effective (Kaid 

et al. 2015). PNs offer an intuitive modeling style, allowing for the simultaneous handling of concurrency, 

a process that can be simplified for analysis. PNs are built on solid mathematical principles and provide 

detailed insights into the structure and behavior of the system. Additionally, PNs support both qualitative 

and quantitative analysis, making them highly effective for complex DES systems (Heiner et al. 2008). 

In a PN diagram, two primary node types are utilized: circles, known as places, and rectangles, referred 

to as transitions. Places and transitions are interconnected by directed arcs, with arcs from places to 

transitions indicating inputs and arcs from transitions to places indicating outputs. PN operates by the 

distribution of markers within the net, known as tokens, which are depicted as black dots within the places. 

Transitions in the system destroy the required number of tokens at each of their input places and generate 

the defined token at each of their possible output places upon activation. (Peterson 1977).  

PNs are available in various forms and extensions, each designed for distinct modeling purposes and 

specific applications. In our study, we utilize Stochastic Petri Nets (SPNs), as formalized and described in 

(Lazarova-Molnar 2005), where SPN is defined as  𝑆𝑃𝑁 = (𝑃, 𝑇, 𝐴, 𝐺, 𝑚0), where 𝑃 = {𝑃1, 𝑃2, … , 𝑃𝑚} 

represents the set of places, represented as circles. 𝑇 = {𝑇1, 𝑇2, … , 𝑇𝑛} forms the set of transitions, each 

associated with either distribution functions or weights, represented as bars. 𝐴 = {𝐴𝐼 ∪ 𝐴𝑂 ∪ 𝐴𝐻} classifies 

the arcs into input arcs 𝐴𝐼 , output arcs  𝐴𝑂 , and inhibitor arcs 𝐴𝐻 , where each arc carries a specific 

multiplicity. 𝐺 = {𝑔1, 𝑔2, … , 𝑔𝑟} indicates the guard functions linked to various transitions. 𝑚0 indicates 

the initial distribution of tokens across the places (initial marking). Each transition is represented as 𝑇𝑖 =
(𝑡𝑦𝑝𝑒, 𝐹), is classified by 𝑡𝑦𝑝𝑒 ∈ {𝑡𝑖𝑚𝑒𝑑, 𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒}. F is a probability distribution function for timed 

transitions, and for immediate transitions, F is a firing weight or probability. 

2.4 Modeling Formalisms with Ability to Capture Multidimensionality 

Several alternative modeling methods have been explored for representing multidimensional systems, 

typically limited to two dimensions of interest, such as time and cost. The Discrete Event System 

Specification (DEVS) (Zeigler et al. 2000) is a formalism designed for modeling and analyzing discrete 

event systems. DEVS supports modular and composable modeling and simulation through smaller atomic 

models, each with its own states and transitions, which can be interconnected to create more complex 

coupled models. As DEVS is increasingly applied to complex systems, such as the modeling of intricate 

physical continuous systems, ensuring the validity and quality of simulation data, as well as its precise 

management and analysis, turns into a significant challenge  (Wainer and Govind 2024; Moreno et al. 2010).  

Colored Petri Nets (CPNs) (Davidrajuh 2023; Gehlot and Nigro 2010) enhance traditional Petri nets by 

integrating data values, referred to as "colors," into tokens. This addition enables the representation of 

intricate system states and supports the modeling of concurrent and distributed systems. While CPNs 

theoretically facilitate multidimensional modeling through the assignment of structured data types to 

tokens, encapsulating various aspects of system behavior, their practical use poses challenges.  
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Another approach explored for multidimensional modeling is hybrid modeling (Fakhimi and Mustafee 

2024; Brito et al. 2011), which combines various modeling techniques, such as discrete events and 

continuous modeling. The possible challenge in hybrid modeling is the accurate representation of 

continuous dynamics, which requires formulating mathematical equations that capture system behaviors 

over time. This task is complex, often necessitating a thorough understanding of the physical processes and 

intricate interactions within the system, such as temperature fluctuations or energy flows. 

The modeling methods outlined in this subsection can accommodate multiple dimensions beyond 

temporal flow. However, they generally cannot support the representation required for automated, data-

driven model extraction through PM. In this context, SPNs facilitate the modeling of a system extracted 

from PM (Van Dongen et al. 2009), however, they do not adequately capture the multidimensional behavior 

of complex systems. To address this limitation, in this paper, we extended the SPN formalism to adjust to 

the representation of multidimensional systems for multidimensional DTs. 

3 MULTIDIMENSIONAL DIGITAL TWINS 

The goal of employing DTs is to enhance decision-making in complex systems, such as SMSs, which often 

have multiple objectives such as increasing throughput, enhancing energy efficiency, and reducing waste 

and CO2 emissions. Achieving a multi-objective optimized system requires a comprehensive understanding 

of the system’s behavior from multiple perspectives. To address this, we propose a novel multidimensional 

DT that can extract and simulate the multidimensional behavior of a complex system based on its diverse 

objectives. For this, we introduce a multidimensional DT framework, where we employ an extension of the 

SPN modeling formalism, offering an intuitive and structured representation of systems’ behaviors across 

multiple dimensions. SPNs are increasingly explored in PM research for data-driven model extraction in 

complex systems (Van Der Aalst 2012), and have been used as simulation backbones for DTs (Friederich 

et al. 2022). Our previously developed PM approach, MFPM, automatically extracts multidimensional 

models, enabling near-real-time systems analysis along multiple dimensions and multi-objective 

optimization. MFPM thus serves as a key enabler of multidimensional DTs.  

In Figure 2, we illustrate our multidimensional DT framework, which builds upon the framework 

proposed by Friederich et al. (2022). Our multidimensional DT framework differs mainly in the data 

requirements, model extraction, and model development. Data is gathered from IoT devices throughout the 

system, capturing metrics across multiple dimensions, such as energy consumption of assets and waste 

production from processes. We then organize the gathered data into extended event logs, referred to as 

multidimensional event logs. To facilitate a multidimensional analysis of the system, the event log is 

enhanced beyond basic data points such as "Time Stamp," "ID," and "Event" by including additional 

metrics. These metrics offer the necessary details to understand system behavior across various relevant 

dimensions, including energy consumption (energy stamp), carbon footprint (CO2 stamp), and waste 

 

Figure 2: Multidimensional Digital Twin framework. 
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generation (waste stamp) at the point in time each event occurs. If needed, tracked dimensions can be further 

refined and categorized, such as into types of waste (water, plastic) or energy sources (battery, electricity). 

Although time is typically the primary focus, PM has also been used to analyze other process 

dimensions, such as cost (Velásquez 2023). We apply MFPM on validated multidimensional event logs to 

identify a system’s behavior across multiple dimensions. In MFPM, we use conventional PM and extract 

unidimensional models for each dimension of interest. In Figure 3, we present the workflow of MFPM, 

structured in two phases. The first phase involves extracting individual process flows for each dimension, 

designated as Process Flow 1 through N. Following the Petri nets modeling elements, the first phase 

involves identifying and mapping the sets of places (𝑃) and transitions (𝑇), the set of arcs (𝐴) that link 

places to transitions, defining guard functions (𝐺) that regulate flow based on conditions or states, and 

extracting the initial marking (𝑚0) to denote the initial token distribution across places. In the second phase, 

we extract the multidimensional transitions’ attributes, presenting their impact on different dimensions. 

 

 

Figure 3: Multi-flow process mining framework (Khodadadi and Lazarova-Molnar 2024). 

In Algorithm 1, we outline the steps of our framework for extracting unidimensional SPN models from 

event logs across any relevant dimension. The input, denoted as 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛} , represents a 

multidimensional event log, capturing all system dimensions (𝐷). The output of the MFPM is a set of 

unidimensional SPNs (𝑈), each reflecting the flow and transition dynamics for a specific dimension.  

Phase 1 concerns the extraction of the structures of the process flows for each dimension, denoted as 

𝐹𝑑 = (𝑃𝑑, 𝑇𝑑), where 𝑃𝑑 is the set of places and 𝑇𝑑 is the set of transitions in each dimension (Line 2). 

Phase 2 enriches these transitions with further specification and quantitative attributes relevant to the 

currently extracted dimension. For this, we first analyze the time dimension separately: if the currently 

extracted dimension is time, the duration of activities is evaluated to determine the best-fitting probability 

distributions (𝑝(𝑇∆)) for those transitions (Line 4). In addition, for noncontributing transitions to the time 

dimension with multiple output selections, the probability of each output is achieved by counting the 

number of occurrences of each selection option (Line 5). For non-time dimensions, the impact of a 

contributing transition can be represented in one of two ways: as a rated value ( 𝑅𝑑 , calculated by 

multiplying its rate by the time duration, Line 8), or as a fixed or dynamic value which can be calculated 

using the best-fitting probability distributions, 𝑝(𝑇∆) or ML techniques, capturing variability based on 

observed data (𝑊𝑑(𝑡)) (Line 9).  

Following the extraction of the unidimensional models that consist of individual SPN models 

corresponding to the distinct dimensions, these individual models are integrated into a single unified 

comprehensive simulation model, termed the multidimensional model, as the basis of simulation, which is 

described next, in Algorithm 2. The resulting unified multidimensional simulation model subsequently 

undergoes a validation process to ensure its accuracy and reliability. The validated model is employed in 

systematic analyses aimed at enhancing and optimizing the system in various objectives and dimensions. 
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Algorithm 1: Unidimensional models extraction. 

Input:  𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛} 
Output: 𝑈 = {𝐹1, 𝐹2, … , 𝐹𝑚} , 𝐹𝑑 = (𝑃𝑑, 𝑇𝑑)  
1  Foreach 𝑑 ∈ 𝐷 do:  
  //Phase 1: Process Flow Extraction  

2  𝐹𝑑 = {𝑓1
𝑑 , 𝑓2

𝑑 , … , 𝑓𝑛
𝑑} 

  //Phase 2: Multidimensional Transition Modification 
3  Foreach transition in the time dimension:  

4   If contributing transition: calculate the best-fitting probability distributions: 𝑇∆ = 𝑡𝑖+1 − 𝑡𝑖 ; 𝑝(𝑇∆) =
𝑎𝑟𝑔𝑚𝑖𝑛𝑝(𝑓𝑖𝑡(𝑇∆, 𝑝)) 

5   If noncontributing transition with multiple output selection: count the number of occurrences of each selection 
option. 

6  End 

7  Foreach contributing transition to dimensions other than time: 
8   If rated value:  𝑅𝑑 =

∆𝑉𝑑

∆𝑡
,   ∆𝑉𝑑 =  𝑉𝑖+1

𝑑 − 𝑉𝑖
𝑑 ,   ∆𝑇 = 𝑡𝑖+1 − 𝑡𝑖 

9   If fixed or dynamic value: calculate 𝑝(𝑇∆) or 𝑊𝑑(𝑡) = 𝑓𝑀𝐿(𝑡, 𝜃)    
10  End 

11 End 

3.1 Multidimensional Digital Twin Model 

Next, we outline the methodology for integrating the extracted unidimensional SPN models into a unified 

Multidimensional SPN (MDSPN), a novel modeling approach introduced in this work. MDSPNs extend 

traditional SPNs by allowing each transition to exhibit distinct behaviors across multiple dimensions. This 

unified model serves as the foundation for the simulation. To simulate the MDSPN model, we assign 

distinct simulation clocks to each dimension. The clock in the temporal dimension tracks the progression 

of time, while clocks in other dimensions track updates specific to their respective attributes. These clocks 

advance with each transition firing, ensuring an accurate and synchronized representation of all relevant 

dimensions within the discrete-event system. 

 

Algorithm 2: Unification of unidimensional models into one multidimensional model. 

Input: Unidimensional SPN models 𝑈 = {𝐹1, 𝐹2, … , 𝐹𝑚} , 𝐹𝑑 = (𝑃𝑑 , 𝑇𝑑)  

Output: Unified multidimensional SPN model MDSPN, with associated "multidimensional Transitions" {𝑀𝑇1, 𝑀𝑇2, … , 𝑀𝑇𝑚} 

Procedure: 

1   Initialize the complete flow 

2   Split transitions into segments corresponding to the number of dimensions (m) 

3   Foreach transition in the model 𝑡: 

3             Identify the contributing and noncontributing dimensions 

4             Define the impact of the transition in each contributing dimension 

5             Adjust other SPN specifications 

6   end 

 

In Algorithm 2, we outline our methodology for integrating unidimensional SPN models into a unified 

MDSPN model. The input to this process consists of unidimensional SPN models extracted using the 

MFPM approach. In MDSPN, each transition is decomposed into segments corresponding to the number 

of dimensions of interest (𝑚), representing their contribution type in each respective dimension. Each 

transition segment is color-coded, white for contributing and black for noncontributing transitions, to 

indicate the transition's impact on specific dimensions visually. Additionally, we specify the quantitative 

impact of each transition on its respective dimensions and define other model specifications such as guard 

functions, selection probabilities, and so forth. 

In Figure 4, we illustrate an example of a unification process to extract and assess an MDSPN model. 

Here, we use a manufacturing line segment that incorporates the dimensions of time and energy. In this 

scenario, a new order arrives after a certain duration without effect on the energy dimension. Concurrently, 
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a robot in an idle state consumes energy until a new order arrives, at which point it transitions immediately 

to the production process. Although the temporal flow features an immediate transition, this transition 

contributes added value to the energy dimension. Upon completion of production, which impacts the energy 

dimension, the robot reverts to its idle state, and the production advances to subsequent stages. Following 

the unification process, we employ multidimensional transitions (labeled MT). 

 

 

Figure 4: Unification of different dimensions models into one multidimensional model. 

4 ILLUSTRATIVE CASE STUDY 

To demonstrate the methodology for developing and simulating multidimensional DT models, we 

conducted an illustrative case study of an SMS. This study employs DES based on the MDSPN formalism 

to represent system dynamics. The model encompasses three key dimensions: time, energy (sourced from 

the grid), and product waste, each linked to specific KPIs. In our study, we simulate what we refer to as the 

'ground truth model' to generate data used as a basis for (re)discovering the underlying multidimensional 

model. The process begins with a detailed description of the SMS, followed by identifying essential data 

for extracting the multidimensional models. We then apply the MFPM methodology to extract the 

underlying unidimensional models. Upon deriving the MDSPN model, we simulate the model using the 

MDPySPN simulation library (Khodadadi and Lazarova-Molnar 2025a). Finally, we validate the extracted 

multidimensional model against the ground truth model, comparing the defined KPIs for each dimension. 

The simulation code and associated resources are publicly accessible on GitHub (Khodadadi and Lazarova-

Molnar 2025b). 

4.1 Case Study Model Description 

Our illustrative case study is a simple example of a production line focused on three dimensions of time, 

energy consumption, and waste generation that includes two production robots. The production process 

initiates with the arrival of a new order, which is randomly assigned to one of the robots, each having a 

50% probability of selection. Following the production process, the product is completed and stored in the 

warehouse, which then alerts the user. Relevant to the energy consumption and waste generation 

dimensions, the robots are powered by the electrical grid and operate in two modes, active and idle, each 

characterized by distinct energy consumption and waste generation profiles. Robots generate plastic waste 

during production. In our case study, the KPIs are structured around multiple dimensions, including: 

• Time Dimension (Basic): number of output products and throughput of orders. 

• Energy Dimension: total energy consumption measured in kWh from the grid, tracking each asset's 

energy usage.  

• Waste Dimension: total product waste measured in kg. 
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4.2  Case Study Data Requirements 

To extract event logs from each asset, it is essential to catalog all activities of each asset, including both 

non-value-adding activities, such as idle energy states, and value-adding activities, such as machining or 

assembling components during the manufacturing process. Event logs are continuously generated and 

dynamically updated throughout operations to reflect system activities. Entries in the logs are specifically 

added at the start and end of activities, ensuring that any potential inefficiencies or waste occurring between 

events are accurately documented. Events irrelevant to a specific dimension are assigned a zero or “NA” 

value to signify their exclusion. Event logs, extracted from the system, encompass a 24-hour operational 

period of the production line, with each data point recording time details to the second. In Table 1, we 

presented a subset of the integrated event logs pertinent to the case study production line. For instance, the 

"New Order" event does not involve any assets or affect other dimensions, whereas the "Robot 2 Operation 

Begin" impacts all dimensions of time, energy consumption, and product waste generation. 

 

Table 1: Multidimensional event log excerpt. 

Time Stamp ID Asset Energy Stamp 

(kWh) 

Energy Type  Waste Stamp 

(kg) 

Waste 

Type 

Event 

00:09:22 334 NA 0.0 NA 0.0 NA Queue End 

00:09:22 10043 Robot 2 340.24 Electricity 0.0 NA Robot 2 Idle End 

00:09:22 334 Robot 2 340.24 Electricity 3.14 Plastic Robot 2 Operation Begin 

00:09:26 335 NA 0.0 NA 0.0 NA New Order 

… … … … … … … … 

4.3 Case Study Multidimensional Digital Twin 

In our case study, we employed the extracted event logs from the ground truth model as input for the MFPM. 

For this, we employed process discovery methods (Van Der Aalst 2012) to extract the processes. Next, we 

utilized SciPy (Virtanen et al. 2020) to determine the probability distributions for timed transitions. Further 

analysis entailed extracting probabilities associated with immediate transitions, alongside detailed energy 

and waste-related information, including both rate and fixed value additions for each transition that affects 

these dimensions. Following the extraction of the unidimensional SPN models, we integrate them into a 

unified MDSPN model. In Figure 5, we show the extracted MDSPN model from the case study system, 

which we then simulate with an extended version of MDPySPN capable of KPI extraction.  

To simulate varied behaviors of a single transition represented by the MDSPNs in MDPySPN, we 

extended the traditional SPN simulation techniques to manage different behaviors across time and other 

dimensions. For example, the different behavior of one transition is in the idle state of an asset which refers 

to a condition where a system or component is operational but not currently engaged in any active processes, 

such as the production process. Here, the idle process (represented by transition MT11) is an immediate 

(noncontributing) transition in the time dimension but contributes to the energy dimension. To address such 

different behaviors by one transition, MDPySPN allows for tracking the time that tokens remain in idle 

states. The energy consumed during the idle state is calculated by multiplying the time by the robot's energy 

 

Figure 5: Unified multidimensional model of the case study. 
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consumption profile. Upon firing a transition, the value is consistently added to the respective dimension's 

clock each time the transition is activated. 

4.4 Case Study Multi-Flow Structural Model Validation 

We utilized a synthetic model as a ground truth model, enabling structural validation of the model extracted 

through the MFPM method. In real-world scenarios, such direct validation is not feasible, typically 

requiring an expert's assessment to confirm the fidelity of the extracted model (Alsalamah et al. 2017). To 

structurally validate our model (Sargent 2010), we analyze the graph representation extracted from the 

simulation model, which we implemented using the MDPySPN tool. This analysis involves counting 

places, transitions, and arcs, examining connectivity patterns (arcs). We validate correctness by comparing 

with the ground truth model, confirming accurate structural reflection. 

4.5 Case Study Simulation Model Validation 

To validate the model, we compare the predefined KPIs from the ground truth model with those from the 

extracted simulation model. Output validation verifies that the 95% confidence intervals of the number of 

output products and throughput KPIs overlap after 100 independent replications. For other KPIs, such as 

total energy consumption and waste generation, the validation process considers the effect of each 

transition’s occurrence probability. Specifically, we assess the extent to which their 95% confidence 

intervals are close to each other. In Figure 6, we illustrate a comparison of the number of output products 

and throughput, demonstrating a strong alignment between our extracted DT and the ground truth model. 

In Table 2, we present a comparison of KPIs, including total energy consumption and total waste generation, 

based on their 95% confidence intervals. This comparison confirms the accuracy of the simulation model 

in replicating critical operational metrics of the ground truth model. 

Table 2: 95% Confidence intervals for energy consumption and waste generation KPIs. 

KPI Ground Truth Model Digital Twin’s Model 

Total Energy Consumption (kWh) [2083.67, 2107.07] [2174.31, 2206.11] 

Total Waste Generation (kg) [25.12, 25.94] [20.85, 21.43] 

 

Figure 6: 95% Confidence intervals for output products and throughput KPIs. 

5 SUMMARY AND OUTLOOK 

Digital Twins present promising solutions for complex systems, such as in the manufacturing domain, by 

enabling comprehensive system analysis and enhancements. With Process Mining, Digital Twin models of 

real-world systems can be extracted from systems’ event logs. With the widespread use of sensors in 

modern manufacturing systems, events can be tracked and recorded across multiple process dimensions, 

beyond time, such as energy and waste. Tracking systems across multiple dimensions enable a better 

understanding and analysis of system behavior and support stakeholders in optimized multi-objective 

decision-making. In this paper, we introduced a framework for extracting and simulating multidimensional 

Digital Twins utilizing multi-flow process mining. We demonstrate our proposed methodology through an 

illustrative case study of a smart manufacturing system, focusing on three key dimensions: time, energy 
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consumption, and waste generation. Our findings identify several key challenges that must be addressed to 

advance the development and deployment of multidimensional Digital Twins in complex systems.  

• Multi-Source Data Integration: Multidimensional Digital Twins must integrate data from multiple 

sources and handle a wide range of data types, from structured numerical data to unstructured textual 

information. The capability to process this data in (near) real-time is essential for the twin to reflect the 

system behavior in different dimensions correctly. 

• Scalability and Dynamic Dimension: The scalability of Digital Twins to represent systems with 

frequent changes, along with the dynamic selection of relevant dimensions, requires effective strategies 

to extract accurate multidimensional Digital Twins aligned with system objectives in real-time. 

• Automatic Identification of Complex Processes: In complex systems such as manufacturing, existing 

process mining can struggle to automatically extract certain process flows, and hinder the achievement 

of validated Digital Twin models. For instance, the behavior of assets in an idle state in the SPNs model. 

• Clock Drift & Synchronization Delay: In real-world systems, network latency separates distributed 

timestamps. These errors disorder events, skew KPIs, and erode model fidelity. 

• Real-World Data Validation: While our proposed technique shows promise, its application to extensive, 

real-world datasets has yet to be demonstrated. Thus, validating the approach of multidimensional 

Digital Twins with real industrial data forms part of our future work. 
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