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ABSTRACT

Timely and accurate prediction of adversarial unit movements is a critical capability in military operations,
yet traditional methods often lack the granularity or adaptability to deal with sparse, uncertain data. This
paper presents a probabilistic isochrone (PI) framework to estimate future positions of military units
based on sparse reconnaissance reports. The approach constructs a continuous probability density function
of movement distances and derives gradient prediction areas. Validation is conducted using real-world
data from the 2022 Russian invasion of Ukraine, evaluating both the inclusion of actual future positions
within the predicted rings and the root mean-squared error of our method. Results show that the method
yields reliable spatial uncertainty bounds and offers interpretable predictive insights. This PI approach
complements existing isochrone mapping and adversarial modeling systems and demonstrates a novel fusion
of simulation, spatial analytics, and uncertainty quantification in military decision support. Future work
will integrate simulation to enhance predictive fidelity.

1 INTRODUCTION

The method introduced here, referred to as the Probabilistic Isochrone (PI) approach, centers on computing
a probability distribution over travel distances from historical sightings of individual units. By applying
Weighted Kernel Density Estimation (WKDE) with exponential decay, we generate a smoothed and time-
sensitive Probability Density Function of Distance (PDF-D) for each unit. This distribution is then used to
compute a spatial ring-shaped prediction area, which captures 95% of likely future locations. Compared
to traditional isochrone methods that assume deterministic speeds or fixed travel radii, the PI approach
offers a statistically grounded and empirically validated uncertainty band, with higher confidence and
interpretability.

To validate our approach, we apply it to the UAWarDataset, which contains geo-tagged movement
reports from the early phases of the 2022 Russian invasion of Ukraine (Huwiler and Schlottmann 2025).
We evaluate prediction performance using two complementary metrics: (1) the inclusion rate of actual
unit positions within the 95% probabilistic ring, and (2) the Root Mean Squared Error (RMSE) between
the predicted travel distance (mean of PDF-D) and the actual subsequent movement. These metrics offer
both geometric and numeric insight into predictive quality. Visualizations of individual unit forecasts and
aggregate RMSE distributions demonstrate the method’s robustness, adaptability, and practical utility for
command-level decision support.

2 RELATED WORK

Isochrones—spatial contours representing regions reachable within a fixed time or cost—have been widely
applied across both civilian and military domains. While originally used for logistics and transportation
planning, their use has expanded into predictive analytics, evacuation modeling, and accessibility assess-
ments. This section reviews isochrone-based approaches across three key themes: (1) civilian evacuation
and emergency planning, (2) accessibility modeling, and (3) military mobility and adversarial prediction,
highlighting how the proposed PI framework extends this body of work.
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2.1 Isochrone-Based Triggers for Civilian Evacuation

A prominent civilian use of isochrones lies in wildfire evacuation planning. Cova et al. (2005) introduced
the concept of evacuation trigger buffers derived from fire spread models and Geographic Information
Systems (GIS), where the intersection of a fire front with a trigger perimeter prompts evacuation. Later
frameworks like PERIL Mitchell et al. (2023) and WUIVAC built on this by coupling fire spread simulation
(e.g., FARSITE) with estimates of evacuation time (WRSET) to define non-uniform trigger zones around
communities. These approaches reflect an early form of probabilistic reasoning, where safety margins
("safety factors") buffer uncertainties in terrain, fuel conditions, or human behavior. While deterministic in
shape, the trigger zones implicitly reflect time-based probabilistic risk. Unlike our method, however, these
approaches do not construct predictive distributions over likely outcomes; instead, they focus on rule-based
spatial delineation of threat thresholds.

Other models, such as EVITA (Kiranoudis et al. 2014) and recent stochastic trigger models (Ramirez
et al. 2019), introduced machine learning and Monte Carlo simulation to account for wind variability and
fuel moisture uncertainty—highlighting the importance of probabilistic modeling in dynamic environments.
These methods primarily focus on environmental threats and population clearance times. In contrast, our
work centers on adversarial movement under sparse observation, a fundamentally different problem that
benefits from similar isochrone reasoning.

2.2 Isochrones for Emergency and Healthcare Accessibility

Isochrones are also widely employed in health services and transportation planning. For example, Zhao and
Zhou (2024) use cumulative opportunity isochrone analysis to assess emergency medical service (EMS)
accessibility across Beijing’s central districts. Their analysis emphasizes travel-time-based isochrone
coverage during different traffic conditions, evaluating how facility placement impacts response equity.
Similarly, Sheu (2024) highlights the importance of incorporating behavioral dynamics in evacuation
planning, especially during disaster-triggered congestion. These works leverage isochrone-based modeling
for evaluating infrastructure performance under time constraints, focusing on coverage and access equity
rather than prediction.

From a methodological perspective, many urban applications use deterministic routing with traffic
sensitivity (e.g., Amap, Mapbox) to generate isochrone contours. Some, like the radial-ray method (Zhao
and Zhou 2024), employ dynamic traffic models to generate high-resolution temporal isochrones. Our
method, while also based on empirical travel data (unit movement reports), departs by predicting probabilistic
distances, not locations, enabling the construction of confidence-based spatial contours around origin points.

2.3 Isochrone Modeling in Military and Adversarial Contexts

Military uses of isochrones traditionally emphasize deterministic mobility envelopes. Our prior work
(Roman and Rose 2024) proposed an improved method for calculating ground movement isochrones by
incorporating off-road travel and buffering road networks with diminishing travel budgets. That method
enables tactical planners to visualize feasible engagement or resupply zones. However, that approach treats
all locations within an isochrone as equally likely, lacking a probabilistic notion of movement preference.

The ValoRens project (Bitoun et al. 2023) introduces adversarial prediction using simulation and
graph-based reasoning over points of interest. Their system integrates topography, behavior models, and
destination inference to estimate likely enemy positions. Howeyver, it relies on structured inputs (operations
orders, doctrinal rule sets, etc.) and extensive simulation, whereas our PI model extracts behavior directly
from sparse, noisy observations—Ilearning travel distance profiles empirically through WKDE.

More broadly, template-based threat assessment in man-in-the-loop systems, such as the approach
proposed by Lorenz and Biermann (2004), emphasizes the importance of integrating reconnaissance
observations with expert-in-the-loop reasoning to predict threat development. While effective, these systems
rely heavily on expert-defined rules and complete situational awareness.
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3 PROBLEM STATEMENT

Isochrone models, while widely used for visualizing movement envelopes, traditionally assume uniform
likelihood within defined regions and fail to represent uncertainty or preference in adversarial travel patterns.

Research Gap: Existing military movement models typically lack the ability to handle data sparsity,
temporal irregularity, and dynamic behavior. These models are either too rigid—depending on doctrinal
templates—or too complex, requiring extensive simulation infrastructure and structured inputs (e.g., orders
of battle, predefined destinations). As a result, they do not provide practical or probabilistically grounded
uncertainty quantification. Moreover, classical isochrone models treat all locations within a contour as
equally likely, ignoring behavioral variance in actual movement. There is a critical need for a lightweight,
interpretable, and data-driven method that can quantify where an adversarial unit is likely to be, rather than
where it can be.

Methodological Innovation: This study introduces the PI framework, a novel approach for estimating
future adversarial positions under uncertainty using sparse observational data. The core innovation lies
in leveraging WKDE with exponential decay to model a PDF-D. This allows the system to assign higher
importance to more recent observations and compute a statistically grounded travel distance distribution.
The model then uses this PDF-D to create ring-shaped probabilistic contours that enclose 95% of the
predicted future positions, thereby constructing spatial uncertainty bounds.

Objectives and Anticipated Impact: The objective of the PI method is to provide a reliable, interpretable,
and computationally efficient prediction mechanism for future enemy unit positions under uncertain and
sparse reconnaissance conditions. By quantifying spatial uncertainty and enabling validation through real-
world datasets (e.g., UAWarDataset), the method supports more informed military decisions. The approach
is designed to integrate easily into Command and Control Information Systems, war games, and tactical
simulations, offering an empirical and probabilistically justified enhancement over traditional isochrone
and behavior-template models.

Key technical components include:

1. Exponential decay weighting to prioritize recent observations.
. Distance normalization to derive daily average movement metrics.
3. Ring construction using 2.5% and 97.5% quantiles of the PDF-D to encapsulate likely movement
areas.
4. Validation pipeline using RMSE and spatial containment of actual positions within the predicted
ring.

Assumptions and Simplifications:

1. Given any isochrone area we assume the underlying unit can reach any point within that area within
a fixed time frame at a fixed speed. In other words: the probability of the unit being within the
area is 1.0.

The distribution of probability weights over that reachable area is not uniform. Units have a purpose,
they try to reach a goal or leave the location where they have been spotted, etc.

Given the movement data of a unit we can compute a PDF-D.

The mean of the PDF-D is used as a point estimate for travel prediction.

PDF-D can be computed using standard mathematical methods like Kernel distribution estimations.
Using this PDF-D we can calculate the PI.

We simplify the gradient to a simple ring. The ring is used to describe the area where 95% of
predictions are in.

0
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8. We normalize the distribution function of the most likely travel distances to a daily time frame.

4 METHOD

The following method describes how we calculate the PI for one unit. In Appendix A we describe a
Pseudo Code version of how our method is computed. Algorithm 1 shows the prediction for one unit, and
algorithm 2 depicts the validation using the whole dataset.

The basic idea of our method is as follows:

To calculate the PI of any unit we need a PDF-D, which we get through WKDE out of sparse data.

WKDE requires us to calculate many distances between two geo-locations. Our proposed way to compute
distances and isochrones uses a Graphhopper server (GH) (GraphHopper GmbH 2025) to compute the
shortest road-bound distance. Our fallback is the Great Circle (GC) distance, serving as both, our fallback
measurement and base truth, if the GH server cannot return a path. GC describes a simple straight line
measurement between two points, accounting for earth curvature.

To validate our PI method, we make use of the UAWarDataset (latitude, longitude, unit name, and timestamps)
from the Russian invasion of Ukraine in 2022. We evaluate each unit separately and derive two performance
values:

1. We measure the error with the Root Mean-Squared Error (RMSE) between the predicted positions
dpreq and the actual recon positions groundTruthLoc in the validation set as an estimation how far
off we are with our prediction

2. We check, if we were able to correctly predict the ring area, where the unit moved to.

The final result of one experiment consists of the distribution of RMSE over the whole dataset and the
percentage of how often the groundTruthLoc was in the predicted circle. Furthermore, we compare GH
to GC distance measurement, since GC is our base truth.

4.1 Weighted Kernel Distribution Estimation - WKDE

Standard KDE assigns the same weight to every observation, meaning each data point contributes equally to
the density estimate. In contrast, weighted KDE assigns specific weights w; to each observation, allowing
for a differential influence. This is used in this work to assign more weight to recent observations.

In standard KDE, we estimate the density f(x) from a sample {x;,x2,...,x,} using a kernel function K(-)
and a bandwidth £ as follows:

f<x>=,fhi_zlz<(x;x">.

To give more recent observations a higher influence we incorporate weights, and modify the estimator to:

o 1 1 X—X;
Flx) = hz?_lwi;wiK( - )

Here, each w; represents the weight for observation x;, and the normalization factor )\ ; w; ensures that
the estimator still integrates to one.

We are applying exponential decay, assigning weights so that more recent data are given higher
importance. If the data are time-ordered, with time stamps f1,%,...,t, (where t, is the most recent), a
common choice is:
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w; :exp<—7t(t,,—ti)>,

with A > 0 controlling the rate of decay—the larger the A, the faster the weight decreases for older

observations.
An explanation of the components can be found in Appendix B. For a comprehensive treatment of the
method, including various kernel functions, bandwidth selection, and extensions like weighted KDE, you

may refer to Silverman (2018).

5 RESULTS

Figure 1 shows a typical prediction of our method. Our new PI method yields a prediction accuracy of
87% for the sparse dataset we used. The RMSE distribution for the same data in Figure 2 is significantly

lopsided to the left.

WKDE and Prediction Bounds Spatial Evaluation
0.5 : 1 }— Weighted KDE —— Predicted Isochrone Ring
1 | == 2.5% quantile 49.4 Prediction Origin
: == 97.5% quantile ' @ Validation Point
1 {=— Actual final movement i
4 1
0.4 49.2 A
49.0
0.3 4
= [F]
& S 48.8 -
g £ o
& 3
0.2 4
48.6
01 48.4
1 48.2 - . — T
1 1 Theoretical area: 13784484210.04 km*
ng}&gigg?ooo km 1 WEKDE ring area: 16546.54 km*
0.0 — : Reduction: 99.99988%
T T T T T T T T T T
0 1 2 3 4 37.5 38.0 38.5 39.0 39.5
Average Daily Distance (km) Longitude

Figure 1: On the Left: The PDF-D with the ring diameters (green), we expect the real location (red) to be
within. On the Right: a visualization of bespoke ring area. The lower bound is so close to zero, that the

ring shape is not apparent.
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Figure 2: A left sided distribution of the RMSE. Data was collected over the whole dataset. Each unit that
had valid data was evaluated according to our experimental design.

6 DISCUSSION

At first glance, the lopsided distribution of RMSE in Figure 2 indicates that our analysis tends to predict
with small errors. Furthermore, the real world travel distance (the red dotted line in Figure 1) is within the
95% percentile 87% of the time. So, all in all quite promising numbers. But there are some caveats we
are pondering on.

Distance Measurementsa and Pathing

Figure 3 shows that base truth distance measurement, in this case GC, seems to be better than using shortest
road-bound path distance computed with our GH server. We assume two factors to be of significance in
that regard.

First, for long time frames the isochrone area should closely resemble a circle, which should hold
especially true in areas with well-established and dense road networks. This would imply that at a certain
threshold time after reconnaissance, the prediction should switch from GH to GC to save resources.

Second, GH computes distances based on the traveling profile we give it, returning the shortest path it
can find. But the server might not return a path, or the path is irrationally long. Basically, the GH based
route prediction has a non-zero chance of returning bad pathing (e.g. a path that is unnecessarily long and
winded, since a military unit could just take an off-raod shortcut instead), if the traveling profile is not well
crafted enough.
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Figure 3: Dissimilarities of simple great circle to a isochrone based approach. Significant similarities and
dissimilaritys are evident.

Dealing with Frugal and Sparse Data

The real world dataset we used shows time steps of at least three days between sightings and suffers from
degrading data density over time. In an ideal case, we would have enough data to form a PDF-D for each
time frame we want to predict, e.g. to predict the area the unit will be in in two hours, we would have to
have enough data to form a PDF-D for two hours. And we would need another PDF-D for one hour, and
one for three, and so on. However, when working with real world data, this is not possible; data is too
frugal and sparse.

Figure 4 shows the degradation in the UAWar dataset. Which is expected; this specific dataset is open
source intelligence (OSINT) and consists of civilian reports of troop sightings that have been posted to
social media (Instagram, Reddit, etc.). A sighting, usually a picture and a geolocation, was then evaluated
by experts or hobbyists to identify the unit. The ongoing war led to evacuations, which resulted in fewer
reports from civilians. Simultaneously, OSINT shifted to standard military reconnaissance. Adding the fact
that high-resolution movement data of military movements is usually confidential, we have no publishable
way to validate our method with remotely good data sources.

Furthermore, isochrones are normally used in time frames of minutes to hours, well beneath one day. This
fact lead to two concessions we had to make to still utilize the data we had for validation.

First, to get close to these time frames our method normalizes travel distance data to one day. Meaning,
we divide the distance a unit traveled between sightings by the number of days between sightings. We do
that to get as much data for the WKDE computation as possible, since our method needs the PDF-D to
make predictions.

Second, because the PDF-D is a one-day probability, we have to scale it up if more than one day has
passed since the last sighting. We multiply the 2.5%-97.5% quantile of the PDF-D to form the prediction
ring by the number of days we want to predict. This infers a huge error since we scale the error with our
prediction. So, the further time passes, the greater the error gets.

One would assume that to increase the prediction quality nonetheless, we should focus on the data-dense
area of the dataset. But that leaves us with so few data points that any sort of prediction would equal a
guessing game.
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This leaves us two possible future routes to take: (1) use undigitalized open data on conflicts (e.g. WWII);
(2) build a data-farming pipeline to generate data ourselves.
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Figure 4: Violin plot of the standard deviation of days-gaps between sightings. Basically the frequency at
which the UAWar dataset has records. Lower values indicate frequent sightings.
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Gradients, Points and established Methods

The next issue lies in using a PDF and in extension WKDE as a basis to build the PI. The base concept
of our method is to synthesize all the decision-making (i.e, all the military doctrines) down to a PDF we
use to predict movement.

The fact that it still works 87% of the time with errors that tend to be small, may be taken as an argument
for the viability of the core concept of our approach. Namely, using stochastic movement data and heuristics
to predict unit movement as a PI. But KDE is not a probabilistic method per se, it yields points not gradients
or areas, we simply forced it to do so. There are several established methods we want to evaluate: Bayesian
inference, Kalman filters, or Kriging. Maybe a combination of different techniques would be most effective.

However, our results show that our approach has the potential to predict troop movements, but we will
need to address key issues in future research and with further experimentation. Moreover, by building
upon established libraries (OSMnx, NetworkX, GeoPandas, graphhopper, etc.), the method ensures repro-
ducibility and ease of integration into existing decision-support systems.

Future Work

We will utilize agent-based combat simulation software to generate rich datasets we can validate our method
against. If that software will be of-the-shelf or in-house has yet to be addressed. It has to be said that the
formulation of agent based simulations of the granularity we need for this particular data generation task
is extensive and highly involved. We would much rather use existing data or software.

On the other hand, we are working on using explainable Al methods that could potentially be used to
digitalize data that is very rich and not confidential, namely WWII data. But, this digitization pipeline is

in its infancy stadium.

Regarding the benefit of our method for tactical to operative level planning. We plan to develop an
adversarial test environment. Two Al-agents compete in finding and hiding from each other. Experiment
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will be cathegorized by search method. For instance, a baseline could be a simple grid search around the
last seen location. We will then compare the baseline to our method of prediction where an adversary could be.

We believe isochrones to be a very flexible tool for military planning. And, they play a big part in the
thesis of this papers author. As such we are currently working on implementing similar prediction methods
to less movable assets that are not in the direct frontline context this paper has addressed. For example,
a supply depot will be stationed at several hours from the front lines, still reachable in a pinch but far
enough to not get immediately found and destroyed. Furthermore, the location of that supply depot is
highly impacted by logistical necessities.

Regarding different stochastic methods or combinations thereof to improve the WKDE to PDF-D approach.
We have already researched the prediction accuracy of singular methods, but not yet the combination of
several methods. The results of our preliminary research therein will be published at a later date.

7 CONCLUSION

In conclusion, our study has demonstrated that the PI framework represents a promising advancement in
the predictive modeling of adversarial unit movements. By leveraging weighted kernel density estimation
with exponential decay, our approach not only produces an interpretable probability density function of
travel distances but also translates these insights into a practical ring-shaped spatial prediction area. Our
validation results, indicating an 87% inclusion rate and favorable RMSE metrics despite inherent data
sparsity, underscore the operational viability of the method.

While acknowledging the challenges associated with temporal normalization, data sparsity, and dis-
tance measurement uncertainties, we view these as valuable avenues for further enhancement rather than
insurmountable obstacles. Future work will focus on refining the normalization techniques, examining the
integration of multiple stochastic methods, and incorporating higher frequency movement data to further
improve predictive accuracy. Overall, this research lays a solid foundation for more nuanced and reli-
able decision support tools in military operations, and we remain optimistic about the potential for these
refinements to substantially elevate the practical impact of the PI framework in real-world scenarios.
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A OUR METHOD IN PSEUDO CODE

Algorithm 1 Simplified PI Computation Sequence

Require: Unit sighting data unitData (list of timestamped locations)
Ensure: Prediction area A, Predicted travel distance d,cq
1: procedure COMPUTEPI(unitData)

[NC TN ST S R (S R e e e e e e
PR 2 Q9 RIS RRDD 2O

24

R e A U S ol

Sort unitData by date.
Initialize list dailyDistances.
if |unitData| < 2 then return Error: Insufficient data
end if
for all consecutive sightings (s;,s;11) in unitData do
At + days_difference(date(s;; 1), date(s;))
if Ar > 0 then
moveDist <— CALCULATEBESTDISTANCE(loc(s;), loc(s;+1)) > Road dist, fallback G. Circ.
if moveDist is valid then

Add (moveDist/At) to dailyDistances > Normalize and store
end if
end if
end for
if dailyDistances is empty then return Error: No distances computed
end if
PDF-D <~ CoMPUTEWKDE(dailyDistances) > Get density of daily distances

(Giow» Ghigh) < 2.5% and 97.5% quantiles of PDF-D.
lastLoc <+ location of the last sighting.
Compute Isochrones 1y, Inign for distances qjow, ghign from lastLoc.

A < Inigh — 10w > Define 95% prediction ring area
dpreq < mean(PDF-D) > Predict mean travel distance
GENERATEVISUALIZATION(A, lastLoc) > Draw area and start point

return A,d,cq

25: end procedure
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Algorithm 2 Prediction Validation Sequence

Require: Full unit sighting data unitData (with enough points for training+test)

Ensure: Boolean is/nside (True if actual location is in predicted area), Squared Error SE (between predicted
and actual distance)

1: procedure VALIDATEPREDICTION(unitData)

2 if |unitData| < 3 then > Need >=2 for PI train, 1 for test
3 return Error: Insufficient data

4 end if

5: Split unitData: trainingData <— all points except the last one.

6 groundTruthLoc <+ the last point’s location in unitData.

7 lastTrainingLoc < the last point’s location in trainingData.

8 (A,dpreq) < COMPUTEPI(trainingData) > Prediction based on training data (Algorithm 1)
9: if call failed or returned error then
10: return Error: PI computation failed
11: end if
12: isInside < Check if groundTruthLoc is within predicted area A. > Geometric check
13: realDistance <— GC_DISTANCE(lastTrainingLoc, groundTruthLoc) > Actual distance moved
14: if realDistance is invalid then
15: return Error: Could not compute real distance
16: end if
17: RMSEppr <= GC_DISTANCE(deq,» groundTruthLoc)

18: return isinside, RMSEppr

19: end procedure

B EXPLANATION OF WKDE COMPONENTS

* Kernel Function K(-): A symmetric and usually unimodal function (e.g., Gaussian, Epanechnikov)
that determines the contribution of each data point relative to its distance from the point x where
the density is estimated.

* Bandwidth s: A smoothing parameter that controls the width of the kernel. A smaller & results in
a more detailed (less smooth) density estimate, while a larger 4 produces a smoother estimate.

*  Weights w;: In this weighted version, each data point’s contribution is scaled by w;. With exponential
decay, recent observations (with higher w;) influence the density estimate more than older ones.

* Normalization )} | w;: This ensures that the area under the density curve remains 1, maintaining
the properties of a probability density function.
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