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ABSTRACT 

Digital Twins are increasingly being adopted across industries to support decision-making, optimization, 
and real-time monitoring. As these systems and, correspondingly, the underlying models of their 
corresponding Digital Twins, grow in complexity, there is a need to enhance explainability at several points 
in the Digital Twins. This is especially true for safety-critical systems and applications that require Human-
in-the-Loop interactions. Ensuring explainability in both the underlying simulation models and the related 
decision-support mechanisms is key to trust, adoption, and informed decision-making. While explainability 

has been extensively explored in the context of machine learning models, its role in simulation-based 
Digital Twins remains less examined. In this paper, we review the current state of the art on explainability 
in simulation-based Digital Twins, highlighting key challenges, existing approaches, and open research 
questions. Our goal is to establish a foundation for future research and development, enabling more 
transparent, trustworthy, and effective Digital Twins.  

1 INTRODUCTION 

Digital Twins (DTs) have emerged as transformative tools that enable dynamic digital replicas of physical 
systems, enabling real-time monitoring, simulation, and decision-making across various industries 
(Boschert and Rosen 2016). By mirroring behaviors of their physical counterparts, DTs use simulation 
techniques —such as Discrete Event Simulation, System Dynamics, and Agent-Based Modeling—with 
stochastic elements and conditional logic (Law 2015).  

These simulation techniques are theoretically transparent at the component level, with rules that are 

explicitly defined to enable traceability (Law 2015). However, when integrated into a large-scale DT 
framework, their emergent complexity makes it hard to track how specific inputs lead to certain outputs, 
even to domain experts (Riis et al. 2022). Simulation models can become overly complex rapidly due to a 
large number of variables, potential interactions between these variables, and possible non-linear effects 
(Nigel and Klaus 2005). This complexity makes DTs hard to interpret, giving them the appearance of black-
box models (Lorscheid, Heine, and Meyer 2012). Particularly in safety-critical domains such as nuclear 

energy, aerospace, and autonomous vehicles, decisions hinge on understanding how components 
collectively generate outcomes (Koopman and Wagner 2017). For instance, optimization strategies lacking 
interpretability may produce counterintuitive recommendations (e.g., prioritizing cost savings over safety), 
eroding trust even when models are theoretically traceable (Yang et al. 2025).  

The ambiguity in how inputs propagate through interconnected subsystems is aggravated by three key 
factors. First, the inherent complexity of modern physical systems, which DTs are designed to replicate. 

Second, the heterogeneity of data sources, formats, and communication protocols across subsystems (e.g., 
sensors, Internet of Things (IoT) devices, multimodal data streams, simulations), requiring an underlying 
data infrastructure capable of integrating diverse inputs and enabling seamless communication (Friederich 
et al. 2022). Third, inefficient human-machine cooperation, as simulation models and their analyses are 
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often not described exhaustively due to publication limitations or to avoid overwhelming the audience 
(Axelrod 1997). 
 Therefore, the need for explainability has become paramount. For example, in domains such as 

healthcare, and manufacturing, decisions must be traceable, ethical, and safe to build trust, support effective 
decision-making, and drive widespread adoption (Giabbanelli 2024; Zhang et al. 2024a). Stakeholders 
require not just technical accuracy but also human-understandable narratives that validate how inputs map 
to outcomes.  

The goal of this paper is to provide an overview of the importance of explainability in DTs, particularly 
focused on DTs that feature simulation models as underlying models. The paper is organized as follows. 

Section 2 provides a background on the concepts of Digital Twins and Explainability, followed by a deeper 
analysis of Explainability within Digital Twins. In Section 3, we review the limited existing approaches 
that attempt to integrate explainability in simulation-driven DTs. In Section 4, we identify the challenges 
and open questions related to this domain. Finally, Section 5 provides a summary and future research 
directions. 

2 BACKGROUND 

As DTs continue to evolve, their reliance on real-time data and simulation models has become increasingly 
important. In this section, we introduce the core components of DTs, emphasizing their data-driven nature 
and simulation-based frameworks. In addition, we explore the concept of explainability and its importance, 
setting the stage for its integration in simulation-based DTs. 

2.1 Digital Twins 

DTs are an evolution of traditional simulation modeling, as both focus on understanding, monitoring, and 

analyzing physical systems (Law 2015). While traditional simulations are static and scenario-bound, DTs 
evolve continuously through bidirectional data exchange, allowing for predictive maintenance, adaptive 
decision-making, and continuous system improvement. Friederich et al. (2022) define Digital Twins as 
comprising of three core components: 
 

• The real-world entity, which can range from one single process to an entire operation.  

• A data-driven simulation model, which includes algorithms for modeling as well as connectivity 
components for real-time data exchange.  
• The data collected from the physical system ensures the accuracy and effectiveness of the DT. 

 
 Building on this foundation, Figure 1 presents a data-driven DT framework that reflects an iterative 
process starting with data generation. The data flows through interconnected stages: Collection, Validation, 

Knowledge Extraction, Model Development, and Model Validation. Notably, "Analysis" is positioned to 
reflect its ongoing interaction with the simulation model—both informing and being informed by it—
underscoring the cyclical nature of insight generation. This continuous synchronization between the DT 
and the real-world entity ensures high fidelity and supports robust system optimization. 
 Central to the data-driven DT framework is the data-driven simulation model, which employs 
simulation techniques such as Discrete Event Simulation (DES), System Dynamics (SD), and Agent-Based 

Modeling (ABM) to replicate system behavior (Maidstone 2012; Law 2015). These models dynamically 
update via sensor data, IoT connectivity, or operational databases, forming the backbone of simulation-
based DTs. In automotive DTs validate radar sensors for automated driving by simulating real test drives 
in virtual environments and comparing sensor outputs using statistical metrics (Magosi et al. 2022). They 
also simulate production line reconfigurations to optimize manufacturing efficiency (Yang et al. 2022). The 
energy sector leverages DTs to model grid behavior for renewable integration and real-time load 

optimization (Ghenai et al. 2022), while simulating photovoltaic systems and fuel cell plants for fault 
diagnosis and operational safety. In healthcare, patient-specific DTs simulate treatment responses to tailor 
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personalized therapies (Kamel Boulos and Zhang 2021). For smart cities, GIS-integrated DTs support 
traffic management simulations to reduce congestion, and traffic trace data is used to optimize urban-scale 
energy efficiency (Abdeen and Sepasgozar 2021). 

 

 
Figure 1 : Framework for Data-Driven Digital Twins (Lazarova-Molnar 2024; Friederich et al. 2022) 

2.2 Explainability 

Explainability refers to the extent to which a model’s internal processes and outputs can be understood by 
its human users (Miller 2019). In recent years, the growing emphasis on explainability has stemmed from 
ethical concerns, regulatory requirements (Goodman and Flaxman 2017) and the need for trust, validation, 
and actionable insights (Miller 2019). 
 The rise of complex black-box models, such as neural networks, has intensified this need. These black-

box models rely on non-linear transformations, hidden layers parameters, and uninterpretable weights, 
making their logic opaque even to developers (Hamm et al. 2023). Consequently, this sparked the 
development of explainable AI (XAI) methods, such as post hoc interpretability techniques— including 
Local Interpretable Model-agnostic Explanations (LIME) and Shapley Additive Explanations (SHAP) 
(Hamm et al. 2023; Lundberg and Lee 2017)— and the use of inherently transparent models (e.g., linear 
regression models, rule-based systems, or decision trees) that are fully understandable by design (Adadi 

and Berrada 2018).  
 As discussed in depth in Vilone and Longo’s work (2021), effective explanations must meet several 
key requirements to ensure clarity and usefulness. Some of the essential attributes include completeness, 
contrastivity, user-centricity, and actionability. Completeness ensures that the explanation faithfully 
represents the model’s reasoning without oversimplification. Contrastivity highlights why a specific 
prediction was made over alternatives, helping users understand the decision-making process. User-

centricity tailors explanations to the audience’s expertise. Finally, actionability enables users to correct 
model errors or adjust input based on the explanation provided. 

The modalities of explanations vary depending on the audience and context. Different users require 
distinct types of explanations depending on their role and needs. Glomsrud et al. (2019) identified four 
types of explanations demanded by the different stakeholders, which we generalize as follows. Developer 
explanations that provide in-depth technical details for researchers and developers who need to understand, 

verify, or refine the system. These explanations are often complex and require deep technical expertise. 
Assurance explanations which focus on demonstrating the system’s reliability and compliance with specific 
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requirements, helping stakeholders validate its performance and trustworthiness. End-user explanations are 
designed for individuals who interact with the system directly, offering real-time reasoning in a clear and  
intuitive way without requiring knowledge of the system’s internal workings. Finally, external explanations 

are aimed at those affected by a system’s decisions but not directly involved in its operation, presenting the 
system’s rationale in an accessible and interpretable manner. 

Common forms of explanations include textual, visual, auditory, and multimodal explanations. Each of 
these modalities serves different purposes and is suited to different contexts. Textual explanations provide 
natural language rationales, often generated via rule-based systems (Rodis et al. 2024) or neural text 
generation approaches such as Large Language Models (LLMs) (Zhang et al. 2024b; Yang et al. 2025). 

Visual explanations use graphical elements, such as saliency maps and heat maps, to illustrate the reasoning 
behind decisions (Vilone and Longo 2021). Auditory explanations convey information using sound and are 
emerging in fields such as speech recognition (Wu, Bell, and Rajan 2023). Although less common, these 
explanations can enhance accessibility, particularly for visually impaired users. Multimodal explanations 
combine two or more modalities to enhance explainability. These explanations can be synchronous or 
asynchronous, integrating textual, visual, and auditory elements for a more comprehensive understanding 

(Rodis et al. 2024). 
 Having specified the concept of explainability, it is important to note that while some DT models are 
based on machine learning techniques, often seen as black-box models, we are specifically interested in the 
explainability of simulation-based DTs. In Section 3, we discuss explainability in simulation models and 
DTs and review the existing literature on this subject. 

3 OVERVIEW OF EXPLAINABILITY IN DIGITAL TWINS  

Explainability in DTs is essential for ensuring transparency and trust in complex simulation models, as well 
as the resulting decisions. In this section, we explore how explainability can be integrated into the different 
components of DTs. We review existing explainability approaches and frameworks to highlight progress 
and identify research gaps. 

3.1 Explainability in Digital Twins  

Explainability in DTs ensures that users can understand how a DT functions, with visualization being one 

of the key tools in making the outputs comprehensible (Ali et al. 2024). This is challenged by both the 
complexity of the physical systems they mirror and the technical limitations of the modeling process.  
 As modern systems grow increasingly complex, they incorporate multiple interconnected subsystems 
that generate vast volumes of heterogeneous data. While these subsystems contribute to the overall 
functionality, they also introduce new dependencies complicating the transparency and explainability of 
DTs. For instance, to enhance reliability and ensure fault tolerance, less reliable components are often 

supplemented with redundancies, enabling systems to maintain operation even when individual components 
fail (Sun et al. 2025). Similarly, dense sensor networks facilitate continuous data collection, providing real-
time insights while significantly increasing storage and data management demands (Correia, Abel, and 
Becker 2023). This redundancy hinders traceability, making it difficult to find root causes for anomalies.  
 When it comes to the modeling process, even though simulation models (e.g., DES, DS, ABM) are 
perceived as inherently explainable, their transparency fades as models scale. Creating accurate simulation 

models is time-consuming and labor-intensive (Yang et al. 2025), often integrating rules and conditions 
alongside stochastic elements. However, the combination of randomness and multiple conditional 
possibilities can make it hard to fully understand why the simulation behaves in certain ways across 
different scenarios (Grigoryan 2024). Consequently, the modeling process itself creates significant barriers 
to both the prediction accuracy and the interpretability of the outcomes, as tracing the logic behind specific 
results in the simulation is impractical without a thorough understanding of the underlying model design. 

 Understanding the reasoning behind a simulation model's output and recommendations often requires 
extensive domain-specific expertise, as its outputs typically include complex formats such as measurements 
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and sensor readings that are difficult to parse (Zhang et al. 2024b). In some cases, simulation-derived system 
recommendations may even be counterintuitive, emphasizing the need for the rationale behind them to 
facilitate further decision-making and actionability (Zhang et al. 2024a). Therefore, in human-in-the-loop 

applications, DTs must provide intuitive and user-friendly explanations, considering the expertise of the 
stakeholders (Yang et al. 2025; Zhang et al. 2024a). 

In the following, we view explainability through the lens of our earlier-introduced framework that we 
illustrate in Figure 1. Explainability can be used to enhance the different elements as follows: 

 
• Data Validation, where explainability can support the process of validating data as a critical 

component of data-driven simulation and data-driven DTs, 
• Knowledge Extraction, where explainability can support the process of knowledge extraction that 

precedes the model extraction and development processes, 
• Model Development, where explainability can support the model extraction processes by providing 

insights into how and why certain model elements have been extracted, 
• Model Validation, where explainability can support face validity, as well as credibility of the 

quantitative validation processes, 
• Decisions, where explainability can support the simulation-based (or optimization-based) resulting 

decision support. 
 

We use these elements as a basis to study available literature on explainability in simulation and DTs, 
detailed in the following subsection. 

3.2 Existing Approaches for Explainability in DTs and Simulation  

To identify relevant work, we surveyed existing scientific literature across IEEE Xplore, ACM, 
ScienceDirect, SpringerLink, and Google Scholar using the following keywords: “explainability,” 
“simulation-based Digital Twins,” “interpretability,” as well as more specific phrases such as “interpretable 
Digital Twin”, “transparent Digital Twin” and “white-box Digital Twin”. We identified a research gap in 
the existing literature as limited work has been conducted on this topic, particularly with respect to DTs. 

Consequently, we expanded our search to include general simulation explainability research as well as 
human-in-the-loop contexts. Table 1 synthesizes these findings, focusing on approaches that integrate 
explainability into both DTs and simulations, while highlighting their explainability goal, explainability 
approach, Digital Twin element, and application domain. The 'Explainability Goal' column in Table 1 
reflects the primary objectives as articulated by the authors, extracted through careful reading and 
interpretation of the selected studies to ensure accurate representation of their stated or implied intentions. 

These studies highlight the diverse strategies researchers have employed to enhance transparency in DTs. 
We note that all approaches focus on isolated aspects of DTs rather than addressing the full lifecycle of 
these systems.  

3.3 Discussion  

Table 1 outlines four main approach categories: LLM-driven explanations, post-hoc interpretability 
methods, collaborative Human-in-the-Loop frameworks, and self-explainability frameworks. 

3.3.1 On Large Language Model-driven Explanations 

The integration of LLMs represents a significant advancement in explainability in DTs (Blasek et al. 2023; 
Yang et al. 2025) with their accessibility increasing due to the rise of tools such as ChatGPT. LLM-driven 
explanations use models trained on extensive corpora to generate context-aware explanations through 
techniques such as retrieval-augmented generation and prompt engineering (Gao et al. 2023; Liu et al. 
2023). Leveraging LLM-driven explanations, significantly lowers the expertise barrier, offering natural 

language explanations for DTs.  
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 The work of Yang et al. (2025) present a comprehensive technical framework illustrating how LLMs 

can be integrated with simulation models throughout the DT lifecycle. Explainability is particularly relevant 
in enhancing data analysis, improving the interpretation of complex patterns and relationships, and aiding  
strategy explanation. In smart agriculture, LLMs empower farmers by generating explanations for 
autonomous drone monitoring decisions (Zhang et al. 2024b). Similarly, Giabbanelli’s (2024) work in 
healthcare shows how LLMs can be used to generate narrative explanations for decisions based on agent-
based simulation models of mental health interventions, aiding policymakers in assessing the fairness and 

effectiveness of various strategies.  
 However, challenges remain in ensuring the reliability and accuracy of LLM-generated explanations, 
particularly in critical decision-making contexts. Computational demands (Yang et al. 2025) and the 

Table 1: Existing Approaches for Explainability in DTs and Simulation. 
Application 
Domain 

Digital Twin 
Element 

Explainability Goal Summary of the Explainability Approach Reference 

Smart 
Manufacturing 

Model 
Development, 
Model 
Validation 

Stakeholders’ collaboration 
framework during modeling 
phase, to enhance their trust in the 
DT 

- Mathematical formulation of modeling 
processes 
- Three types of explanations: model-
based, scenario-based, and goal-oriented 
- Development of explainability scores 
based on option differences and 
performance impacts 

Wang et al. 
(2021) 

General Knowledge 
Extraction, 
Model 
Validation, 
Decisions 

Integrating LLMs into DT 
framework to provide explicable 
decision-making 

- Integrating LLMs throughout the DT 
lifecycle 
- Enhancing explainability by using 
LLM-enhanced data analysis and strategy 
explanation 

Yang et al. 
(2025) 

Smart 
Agriculture 

Decisions Providing a natural language 
explanation for decisions made by 
Dynamic data-driven DTs 

- Integrating LLM explainability in the 
DDT depending on the decision maker 
(DDT, Human, LLM)  
- Generating textual explanations for 
autonomous decisions through retrieval-
augmented generation 

Zhang et al. 
(2024b) 

Healthcare Decisions Generating narrative explanations 
using LLMs for translating 
graphical representation of (scaled 
up) agent-based simulation model 
into accessible formats  

- Agent-based models for simulating 
population-scale interventions 
- Translating simulation model 
visualizations (e.g., node and link 
diagrams) into textual reports (graph-to-
text) for clinicians, policymakers and 
community members 

Giabbanelli 
(2024) 

Game Theory Model 
Development, 
Decisions 

Using feature importance to 
explain how different input 
parameters affect the results of a 
simulation model 

- Using post-hoc Shapley value 
calculation and Nucleolus-based methods 
to determine feature importance 

Grigoryan 
(2024) 

Air Traffic 
Management 

Model 
Development, 
Decisions 

Combines simulation meta-
modeling with SHAP to provide 
functional approximations and 
quantify the effect each input 
variable has on the output 

- Simulation metamodeling using 
XGBoost 
- Integrating SHAP values for feature 
importance analysis 

Riis et al. 
(2022) 

Smart 
Manufacturing 

Data 
Collection, 
Model 
Development, 
Model 
Validation 

Explaining autonomous decisions 
made by the DT to human 
operators using interpretable 
machine learning techniques. 

- Architecture with three controllers 
implementing interpretable machine 
learning (K-Nearest Neighbors, Support 
Vector Machines, decision tree etc.) 
- Adaptive selection algorithms for 
dynamic model switching. 

Zhang et 
al.(2024a) 

Automotive Model 
Development, 
Model 
Validation, 
Decisions 

Enhance self-explainability of 
DTs through hierarchical, model-
driven explanations 

- Use of the MAB-EX framework 
(Monitor, Analyze, Build, Explain) to 
enable DTs to explain their decisions 
- Deriving explanations from system, 
process, and reasoning models 
- Tailoring explanations to different 
stakeholders. 

Michael et 
al. (2024) 
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potential for hallucinations due to inadequate domain adaptation (Huang et al. 2025) pose significant 
challenges that can undermine user trust. 

3.3.2 On Post-hoc Interpretability Methods 

Post-hoc explanations are techniques used to examine and understand a model’s decision-making process 
after it generates predictions, providing insight into how its outputs were determined (Retzlaff et al. 2024). 
A widely used post-hoc approach involves assessing feature importance to understand the impact of 
individual variables on the model’s output (Adadi and Berrada 2018). Among these techniques, SHAP is 
particularly notable. Originally introduced by Shapley (1953) for game theory; it was later adapted by 
Lundberg and Lee (2017) to enhance interpretability in machine learning models.  

 Riis et al. (2022) and Grigoryan (2024) utilized Shapley values to quantify the contribution of individual 
features to model predictions, providing explanations that enhance transparency and trustworthiness. Riis 
et al. applied SHAP to Air Traffic Management (ATM) simulations to interpret how input parameters (e.g., 
fuel prices, planning horizons) affect performance metrics such as passenger delays. Grigoryan extended 
SHAP to agent-based predator-prey models, demonstrating how features such as predator reproduction rates 
and resource availability drive emergent behaviors.  

   The technical nature of these explanations may be difficult for non-experts to interpret without 
additional visualization or simplification, particularly in stochastic systems that heavily rely on 
mathematical annotations (Grigoryan 2024). However, a key limitation of SHAP is that these explanations 
focus solely on input relationships rather than directly mapping to the simulator’s actual output behavior. 
Additionally, the calculation of Shapley values involves evaluating the model's performance across all 
subsets of features, ensuring a fair and comprehensive assessment of each feature's importance. This process 

comes at a high computational cost, which scales exponentially with input dimensionality, necessitating 
strategies such as active learning to reduce training data requirements (Riis et al. 2022).  

3.3.3 On Collaborative Human-in-the-Loop Frameworks 

Collaborative frameworks represent a promising direction for enhancing explainability in DTs by 
integrating human expertise with automated systems. Effective decision-making relies on the synergy of 
computational analysis and human intervention. As noted by Wang et al. (2021), the integration of 

stakeholders in the modeling process is essential for the successful implementation of DTs. The framework 
of Wang et al. automates the generation of three types of explanations: (1) model-based explanations, which 
clarify how different model configurations impact performance metrics, providing a comparative analysis 
of model options; (2) scenario-based explanations, which interpret how model performance varies across 
different business scenarios, offering insights into model robustness and adaptability; and (3) goal-oriented 
explanations, which guide how models can be modified to achieve specific performance objectives, often 

formulated as optimization tasks. To quantify the value of explanations, informativeness of explanations is 
used by measuring differences in model configurations, performance trade-offs, and scenario sensitivity.  
 Similarly, Zhang, et al. (2024b) propose an architecture that incorporates an agent-based simulation 
model at its core to replicate the physical space and integrates interpretable machine learning with goal 
modeling to explain autonomous decisions to human operators within a DT system. Unlike black-box 
models, interpretable machine learning models (e.g., decision trees, k-nearest neighbors, and support vector 

machines) are preferred for their inherent interpretability, as they provide transparency into their decision-
making processes. Human operator feedback is strategically integrated at critical stages of the modeling 
process with the use of controllers at the following stages Sensor Re-configurator, Model Updater, and 
Behavior Optimizer. This feedback loop interaction ensures that the system evolves with human oversight, 
maintaining alignment with operational requirements, and ethical standards. This architecture offers three 
types of explanations for autonomous decisions. First, measurement adaptation focuses on why and how 

data collection is adjusted, with benefits including improved state estimation or cost savings. Second, model 
adaptation explains changes to the model itself, such as parameter calibration or knowledge updates, to 
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enhance fidelity. Finally, system behavior adaptation involves explaining what-if scenarios and how they 
help optimize system behavior, linking to design-phase requirements or performance metrics. 

3.3.4 On Self-Explainability Frameworks 

The work by Michael et al. (2024) focuses on enhancing the self-explainability of DTs in cyber-physical 
systems through the proposed Monitor, Analyze, Build, and Explain (MAB-EX) framework. This model-
driven approach leverages various formal models — including system, process, and reasoning models—to 
generate explanations derived from their underlying simulation logic. The MAB-EX framework is 
structured to create a multi-level tree of explanations, allowing stakeholders to access varying levels of 
detail based on their expertise. This hierarchical design balances accessibility for non-technical users while 

providing in-depth insights for specialists. 
It is, however, important to note that while the framework automates explanation generation, it does 

not include feedback loops for refining system behavior based on user input. So, whereas human-in-the-
loop approaches—where stakeholders’ feedback directly refines models, validates decisions, or adapts 
model behavior— Michael et al.’s method focuses on automated, one-way explanation generation. 

Additionally, deeper explanation layers require parsing complex dependencies between system models, 

which can strain real-time performance in dynamic environments. During the "Monitor" phase, the DT 
continuously tracks system and environmental data to detect critical events, such as anomalies or significant 
state transitions. To optimize computational efficiency, it prioritizes high-impact events based on 
predefined metrics, such as safety risks and performance deviations. This targeted approach ensures real-
time analysis and explanation generation while minimizing unnecessary processing, allowing the system to 
remain responsive and efficient, even in resource-constrained environments. 

4 CHALLENGES AND OPEN QUESTIONS  

As outlined in the previous sections, explainability is gaining attention in the context of DTs, yet significant 
challenges remain in achieving transparent, trustworthy, and actionable explanations for stakeholders. In 
the following, we elaborate on the key challenges and open research questions, emphasizing gaps that 
hinder the practical deployment of explainable simulation-based DTs.  

Complexity of DT architectures: As previously discussed in Section 3.1, the emergent behavior arising 

from simulations can be opaque, making it difficult for users to understand the relationship between input 
parameters and resulting outcomes. This is further compounded by DTs’ connections to real-time data 
streams and their capacity for autonomous decision-making. This complexity makes it impractical to trace 
the logic behind specific results without a thorough understanding of the underlying model design. 
Consequently, the trustworthiness of decisions made by DTs can be undermined by a lack of explainability. 
Thus, the research question that arises is how can explainability be integrated across the full lifecycle of 

DTs, from data collection to decision support. 
 Balancing computational efficiency and explainability: Achieving a high level of explainability can 
come at the cost of increased computational resources and time, while optimizing for efficiency might lead 
to less transparent models. This can force trade-offs between the level of detail and computational efficiency 
(Giabbanelli 2024). The Shapley values technique, while effective in quantifying feature importance, 
evaluate the performance of the model across all possible subsets of features, leading to high computational 

costs that scale exponentially with input dimensionality (Riis et al. 2022). Moreover, generating 
explanations at runtime can introduce additional computational complexity, which is particularly relevant 
for DTs running on resource-constrained edge devices (Michael et al. 2024). 

Real-time constraints and explainability enables stakeholders to act on insights with minimal latency. 
DTs demand continuous data ingestion and iterative model updates to reflect real-world conditions, leading 
to delays. A key challenge lies in balancing the need for timely decisions with the criticality of explanations. 

In safety-critical applications, speed often takes precedence over detailed explanations, while a thorough 
analysis afterward is preferred for gaining comprehensive insights. Li et al. (2020) proposed an adaptive 
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cost-aware approach that uses probabilistic model checking to determine when to provide explanations, 
optimizing the timing based on risk levels and operational context. This method highlights that while 
explanations can increase the probability of human operators successfully completing tasks, they may also 

introduce comprehension delays that need to be managed. Zhang et al. (2024b) explored this concept in the 
context of human-in-the-loop DTs, leveraging similar principles to optimize explanation timing. 
Furthermore, the integration of LLMs in DTs introduces additional challenges: although LLMs can support 
explainability, their computational intensity may cause delays in response generation, ultimately impacting 
real-time performance (Yang et al. 2025). 
 Data heterogeneity, multi-modality, and integrating expert knowledge: The integration of diverse data 

types and modalities, such as structured data, unstructured text, images, and sensor outputs, presents a 
significant challenge for explainability in DTs. The varying data types come with distinct characteristics 
and structures, making it difficult to combine them into a unified model. For example, while structured data 
can be easily integrated into mathematical models, unstructured data (text, images) need specialized 
processing, and sensor outputs must be continuously synchronized. Additionally, incorporating expert 
knowledge into DT models can be complex, as it requires translating human expertise into a format that 

can be understood and utilized by the system. Expert knowledge needs to continuously be updated to ensure 
consistency (Jungmann and Lazarova-Molnar 2024). The challenge lies in ensuring that all these data types 
align correctly within the DT’s framework and contribute to the generation of accurate, coherent 
explanations. Therefore, a key area to explore is the role of ontologies in the standardization of 
heterogeneous data semantics. By providing a unified vocabulary, ontologies can make the underlying data 
models more explicit and interpretable, thereby enhancing traceability and reducing ambiguity in DT's 

operation (Karabulut et al. 2024).  
Evaluating explainability in DTs: The absence of standardized benchmarks for explainability in 

simulation-based models creates additional challenges. Unlike, for example, traditional models, where 
accuracy metrics provide clear benchmarks, the quality of explanations is inherently more subjective and 
contextual. Various stakeholders may have different criteria for what constitutes a good explanation (e.g., 
engineers might prioritize technical accuracy, managers might value actionability, and regulators might 

focus on compliance aspects). Currently, methods and metrics for assessing explainability in DTs are 
lacking. Wang et al. (2021) presented metrics such as Vmodel, Vtradeoff, and Vscenario, aiming to quantify 
explanation value but they fall short of providing a comprehensive comparative evaluation. The integration 
of LLMs for generating explanations introduces new challenges, including the risk of hallucinations, 
thereby necessitating thorough human expert validation (Zhang et al. 2024b; Giabbanelli 2024). Finally, 
insights from established methods for evaluating model explanations from explainable AI could provide 

valuable guidance. This gap highlights the need for evaluation frameworks that can effectively address both 
qualitative and quantitative aspects of explainability in DTs. 
 Ethical and regulatory implications: The implementation of explainable DTs, particularly those 
involving sensitive data or high-stakes decisions, raises crucial ethical and regulatory concerns. It is vital 
to ensure that explanations generated by DTs are fair, unbiased, and respect privacy. One dilemma would 
be that the notion of fairness and equity varies across applications of ABM frameworks (Giabbanelli 2024). 

Fairness often emphasizes ensuring all agents receive some benefit, even if unequally, while maintaining 
provider viability (Thorve et al. 2024). This contrasts with traditional approaches that average outcomes 
across agents, advocating for a nuanced equity assessment in ABM to address uneven benefit distributions 
(Steger et al. 2022). Another major ethical concern for LLMs is their potential to generate biased or harmful 
content (Yang et al. 2025), which necessitates ongoing inspection of their outputs. From a legal perspective, 
LLMs often require access to vast amounts of personal data for training, raising issues of data privacy and 

intellectual property rights. Therefore, to ensure that explanations mitigate bias and comply with 
regulations, auditability and accountability mechanisms are needed (Goodman and Flaxman 2017). As a 
result, the key question to explore is how explanations can balance transparency with data privacy. 

Fidelity, comprehensibility, and trustworthiness: Balancing explanations fidelity with stakeholders’ 
comprehensibility remains a challenge. Explanations must be both technically accurate and understandable 
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to non-experts (Michael et al. 2024). This requires tailoring them to the audience’s expertise, ensuring they 
are actionable, and fostering trust in the DT system. However, trust in DT explanations depends on both 
their technical quality and their alignment with users’ expectations. This highlights the need for explanation 

approaches that bridge the gap between accuracy and human comprehension, potentially through adaptive 
interfaces that adjust to stakeholders’ knowledge levels and information needs. 

User studies and human-centered evaluation methods are essential for validating explainable DTs, yet 
systematic approaches remain limited. Wang et al. (2021) highlight stakeholder participation and propose 
a framework validated through human subject experiments, demonstrating increased user confidence and 
trust. Zhang et al. (2024a) further stress that explanations enable users to understand decision rationales and 

intervene when necessary, highlighting the critical role of user evaluations for effective interaction. 
Ultimately, explainability should enhance understanding and decision-making. User studies can help assess 
whether explanations are clear, meaningful, and relevant to the target audience, ensuring they are tailored 
to different user groups and lead to better outcomes. 

5 SUMMARY AND OUTLOOK 

This paper provides an exploration of explainability in simulation-based Digital Twins, synthesizing 

current advancements, persistent challenges, and critical gaps. As Digital Twins continue to evolve, their 
capacity to support decision-making in complex, dynamic environments will depend not only on their 
technical sophistication but also on their ability to communicate their reasoning in an accessible and 
actionable way to diverse stakeholders. Our review highlights diverse approaches to enhancing 
explainability, including Large Language Model-driven explanations, post-hoc interpretability methods, 
collaborative Human-in-the-Loop frameworks, and self-explainability frameworks. These methods are 

successful in addressing domain-specific needs; however, existing approaches remain fragmented, focusing 
on isolated aspects of Digital Twins rather than the full lifecycle, from data validation to decision support.  
 Two particularly promising directions for explainable Digital Twins that are of interest to us are: first, 
developing unified frameworks that embed explainability across the lifecycle to ensure transparency and 
trust throughout; and second, tackling data heterogeneity and integrating expert knowledge via ontologies 
to provide a consistent, interpretable structure for diverse data sources and domain insights. Addressing 

these gaps will require adaptive explanation systems capable of dynamically adjusting detail and modality 
to the user’s expertise and context. Interdisciplinary collaboration between simulation experts, human-
computer interaction researchers, and ethicists will be needed to balance technical rigor with usability and 
regulatory compliance.  
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