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ABSTRACT

This study presents an agent-based simulation that examines how pre-attack misinformation amplifies
the effectiveness of spearphishing campaigns within organizations. A virtual organization of 235 end
user agents is modeled, each assigned unique human factors such as Big Five personality traits, fatigue,
and job performance, derived from empirical data. Misinformation is disseminated through Facebook,
where agents determine whether to believe and spread false content using regression models from prior
psychological studies. When agents believe misinformation, their psychological and organizational states
degrade to simulate a worst-case scenario. These changes increase susceptibility to phishing emails
by impairing security-related decision-making. Informal relationship networks are constructed based on
extraversion scores, and network density is varied to analyze its effect on misinformation spread. The
results demonstrate that misinformation significantly amplifies organizational vulnerability by weakening
individual and collective cybersecurity-relevant decision-making, emphasizing the critical need to account
for human cognitive factors in future cybersecurity strategies.

1 INTRODUCTION

The nature of modern warfare has fundamentally changed compared to the past. The sound of the battlefield
is no longer filled solely with gunfire and artillery, and strong firepower or military strategy alone no longer
guarantees victory. Instead, warfare is increasingly being shaped by invisible flows of information that begin
even before the first shot is fired. These “silent wars” are becoming more prominent, where an adversary’s
internal cohesion is disrupted and morale is weakened, ultimately diminishing the will to fight without the
need for physical confrontation. In today’s highly developed digital world, false information is being widely
disseminated through social networking services and messaging platforms with the intention of promoting
specific narratives or undermining the legitimacy of opposing forces. These operations go beyond simple
opinion manipulation. They are actively used to create confusion in military decision-making, provoke fear
among civilians, and incite distrust among targeted groups, serving as effective tactical tools in modern
information warfare.

This strategy is also likely to be widely adopted by cybercriminals looking to target private companies
in the near future. Traditional cyberattacks have mainly focused on exploiting various system vulnera-
bilities identified within the target organization’s computing infrastructure. However, with the continued
advancement of security systems and the proactive efforts of operating system and network developers, it
has become increasingly difficult to breach systems through technical vulnerabilities alone. As a result,
attackers have increasingly turned to social engineering strategies that aim to bypass technical defenses by
manipulating users to make poor decisions or take unsafe actions. This approach, which targets human
cognitive vulnerabilities, has emerged as an effective alternative or complement to purely technical attacks.
In response, many organizations have implemented various measures such as cybersecurity training and
phishing simulations in an effort to defend against social engineering threats.
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However, even such training and preventive measures can be rendered ineffective in the face of persuasive
social cyber attacks (Carley 2020). For example, the spread of false information through social networks or
messaging platforms, such as scandals involving organizational leaders, rumors of financial instability, or
large-scale layoffs following mergers, can cause psychological unrest and anxiety among employees. This
emotional disruption impairs individual judgment and weakens their vigilance toward security, significantly
increasing their susceptibility to social engineering attacks. As a result, attackers are more likely to succeed
in breaching the organization by exploiting these vulnerabilities through phishing attempts, malicious link
clickbait, or credential theft. In particular, the rapid advancement of artificial intelligence technologies in
recent years has fundamentally transformed the way misinformation is created and disseminated. With the
increasing sophistication of deepfake technologies, it has become possible to generate visual and audio
content that is nearly indistinguishable from reality. Moreover, large language models enable the effortless
creation of highly persuasive and professionally written false narratives. This has led to the emergence of
misinformation that is far more credible and convincing than ever before. When such content infiltrates
an organization, it becomes increasingly difficult for individual members to critically evaluate or verify its
authenticity. Consequently, Al-generated misinformation not only increases the likelihood of successful
social engineering attacks, but also poses a growing threat by undermining the effectiveness of traditional
security education.

To address this emerging threat, this study leverages an agent-based modeling and simulation approach to
explore how hybrid cyberattacks, combining misinformation with traditional technical and social engineering
methods, can amplify organizational damage. We model a medium-sized organization, incorporating a
range of human factors, and construct an informal relationship network among employees based on social
networking service interactions. Through this simulated network, we analyze how misinformation spreads,
how many individuals are influenced by it, and to what extent such misinformation, introduced prior to
a cyberattack, can impact the overall scale of damage. The goal is to quantitatively explore the human
vulnerability amplification effect caused by pre-attack misinformation in organizational contexts.

2 RELATED WORKS

Agent-based modeling and simulation (ABMS) (Macal and North 2009) has been widely used in the field
of cybersecurity to replicate security problems within virtual environments and to experiment with various
defense strategies to identify optimal solutions (Kavak et al. 2021; Vestad and Yang 2024). Well-designed
and validated simulation models can be effectively leveraged to systematically experiment with a wide
range of complex and unconventional scenarios that are difficult to test in real-world environments (Carley
et al. 2006). Through such simulations, it becomes possible to identify optimal cybersecurity solutions.
This approach has been widely adopted to replicate and analyze various cybersecurity situations that are
otherwise difficult to experiment with in reality due to practical, financial, or ethical constraints, enabling
low-cost and risk-free exploration within a virtual environment.

Research on ABMS in the field of cybersecurity has evolved in line with the changing nature of
cyberattacks. During the period when technically driven attacks such as Distributed Denial of Service
(DDoS) were predominant, ABMS was primarily used to replicate realistic computer network infrastructures
and to model how DDoS attacks operate within those environments (Chen, Longstaff, and Carley 2004).
Through such simulations, ABMS was leveraged to analyze how collaborative or distributed defense
strategies among networked devices could effectively respond to DDoS attacks (Gorodetski et al. 2001). In
more recent years, when simulating technical attacks such as DDoS, ABMS has been commonly employed
to assess how intrusion detection systems (IDS), developed using various machine learning algorithms,
perform once deployed within an organization. Specifically, these simulations aim to evaluate the extent
to which such systems can mitigate damage and enhance organizational resilience (Shin et al. 2023a).

As social engineering became widely adopted in cyberattacks, ABMS began to incorporate not only
technical components, such as devices and networks, but also human and organizational behavioral char-
acteristics into simulation models. Blythe et al. implemented human agents within their simulation and
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modeled how factors such as fatigue and stress influenced behaviors such as ignoring security warnings
or underestimating risks (Blythe et al. 2011). Their study examined how these cognitive factors affect the
overall cybersecurity posture of an organization. Burns et al. integrated various social science theories
to simulate human agents’ attitudes toward cybersecurity within organizational contexts. Their research
explored how differences in these attitudes impacted susceptibility to phishing attacks and, ultimately,
influenced the overall scale of cybersecurity damage (Burns et al. 2017). Shin et al. developed the OSIRIS
framework (Shin et al. 2022), in which each human agent was assigned a unique level of phishing suscepti-
bility based on a regression model trained on empirical data (Shin, Carley, and Carley 2024). This approach
enabled the simulation to more accurately reflect individual differences in vulnerability to phishing attacks.
In addition, Shin et al. extended their model by introducing a mechanism in which human agents’ phishing
susceptibility dynamically changes over time due to memory recency effects following security training
(Shin, Carley, and Carley 2023). They incorporated regression models from multiple empirical studies to
simulate dynamic human factors, demonstrating how changes in fatigue, perceived vulnerability, and job
performance influence phishing susceptibility and ultimately affect organizational cyberattack outcomes
(Shin, Carley, and Carley 2025).

In the current landscape, hybrid attacks that combine technical cyberattacks with social cyberattacks
(Carley 2020), such as misinformation campaigns, remain relatively rare. As a result, simulation-based
research exploring such integrated future threats is still limited. A notable exception is the work by Padur et
al., who simulated a hybrid attack combining DDoS and misinformation. In their model, malicious agents
use reinforcement learning to determine when to launch the attack and how long to sustain it, with the goal
of undermining user trust in the targeted service and influencing users to switch providers or act irrationally
based on false information (Padur, Borrion, and Hailes 2025). While Padur et al. focused on the erosion of
external user trust, this study shifts attention inward to the organization itself. Specifically, we examine how
socially driven cyberattack campaigns can destabilize internal personnel, increase human vulnerability, and
make individuals more susceptible to targeted social engineering attacks. Using agent-based simulation,
we examine how this increased susceptibility influences the magnitude of damage in cyberattacks for data
exfiltration within the organization. To the best of our knowledge, this is one of the first simulation-based
studies to model the impact of socially driven hybrid attacks on internal organizational vulnerabilities.

3 HYBRID MISINFORMATION AND SPEARPHISHING CAMPAIGN
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Figure 1: Hybrid cyberattack campaign model.

Figure 1 illustrates the hybrid misinformation and spearphishing campaign simulated in this study. We
used the MITRE ATT&CK techniques (Strom et al. 2018) to model the cyberattack scenario. The attack
begins with the adversary selecting a target organization and gathering information about it (T1591). The
attacker then collects the names and email addresses of end user agents within the organization (T1589.002,
T1589.003) and identifies their Facebook social media accounts (T1593.001). Next, following a technique
previously used by the Windshift group, the attacker creates a fake Facebook account using a fake persona
(T1585.001), and this account is used to send friend requests to the target organization’s end user agents
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(Karim 2018). Once the requests are accepted, the attacker engages with the users over time to build
trust (T1566.003). After establishing trust, the attacker begins posting plausible but false organizational
information on the fake account. These posts are repeatedly disseminated to the connected end user agents.
Once a sufficient level of misinformation exposure is achieved, the attacker sends phishing emails containing
malicious attachments to all end user agents in the organization (T1566.001). The campaign concludes as
the attacker waits for recipients to mistakenly download and execute the malware (T1204.002).

4 HUMAN AND ORGANIZATION MODEL

Eftimie et al. collected data from 235 employees prior to conducting a phishing campaign, including
age, gender, and Big Five personality traits (openness, conscientiousness, extraversion, agreeableness, and
neuroticism) (Eftimie, Moinescu, and Réacuciu 2022). After the campaign, they developed a regression
model to analyze the relationship between these human factors and phishing susceptibility. We perform
our attack simulations on a virtual organization that was replicated, calibrated, and validated by Shin et al.
using the OSIRIS framework, based on the organization studied in Eftimie et al.’s empirical research (Shin
et al. 2024; Shin et al. 2022). Shin et al. extended the human factor model by adding several dynamic
human factors after recognizing that phishing susceptibility is not determined solely by static characteristics
(Shin, Carley, and Carley 2025). In our study, we include two of these factors, job performance (Mwaisaka
et al. 2019; Rehman et al. 2015; Basit et al. 2017) and fatigue (Tian et al. 2022; Akerstedt et al. 2014),
as illustrated in Figure 2.
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Figure 2: Comprehensive human factor model of end user agents (Shin, Carley, and Carley 2025).

We then configure job performance and fatigue to affect end user agents’ decision-making during
interactions with suspicious emails, as illustrated in Figure 3. There is no designated cyber defender agent
in this virtual organization. Instead, following Shin et al.’s human firewall simulation model (Shin et al.
2023b), we assume that all end user agents are trained to broadcast organization-wide security alerts when
encountering a suspicious email. Furthermore, each agent is designed to double-check previously shared
alerts even if an externally sourced email is not initially perceived as suspicious. The decision-making
processes in both steps are influenced by each end user agent’s current job performance and fatigue level.
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Figure 3: Decision-making process of end user agents in response to suspicious emails.

4.1 Stranger Friend Request Acceptance Model on Social Networking Services

In this paper, we assume that all end user agents use Facebook as their primary social networking service
platform to communicate with their friends. As described in the attack campaign in Section 3, the attacker
agent creates a Facebook account using a fake persona and sends friend requests to all end user agents
within the target organization. This step is essential because, under the Facebook content delivery system, a
user’s posts are significantly more likely to appear on the feeds of those they are connected with as friends.

To model whether each end user agent accepts or rejects a friend request based on their unique Big Five
personality traits, we investigated empirical studies that offer regression models capable of predicting such
social decisions. Leow and Wang proposed a regression model that predicts the likelihood of accepting
a Facebook friend request from a stranger based on the stranger’s gender, the personality cues conveyed
in the message, and the degree of alignment between those cues and the recipient’s own personality traits
(Leow and Wang 2018). However, because our simulation does not model the attacker’s persona or the
message content based on empirical data, we could not directly apply this study. Instead, we adopted the
regression model proposed by Freitag and Bauer (Freitag and Bauer 2016), which estimates the probability
of trusting a stranger using Big Five personality traits on a 0-to-1 scale. We operationalize generalized
interpersonal trust as the likelihood of a positive response to a stranger’s social overture. In this case,
the overture refers to accepting a friend request from an unknown individual on Facebook. Although
Freitag and Bauer’s study was based on a physical-world wallet return scenario (Freitag and Bauer 2016),
we argue that similar trust dynamics apply in virtual social interactions involving unfamiliar individuals.
Both situations involve deciding whether to trust a stranger by granting access to personal property or
information, such as returning a lost wallet or accepting a friend request from an unknown contact. Thus,
the wallet return scenario provides a practical measure of generalized interpersonal trust. Freitag and Bauer
presented several regression models, but except for one, all include the language region as an independent
variable (Freitag and Bauer 2016). Since the language region reflects cultural differences specific to the
original sample, it is not directly applicable to our simulation. Therefore, we used the first model, which
estimates trust using only the Big Five personality traits. We then converted the original 20-to-80 scale Big
Five personality values to a 0-to-1 scale and applied the Freitag and Bauer’s regression formula presented
in Equation 1 (Freitag and Bauer 2016) to model the probability that each human agent accepts a Facebook
friend request from a stranger.

Trust in Strangers (%) =22.81-A—6.11-E—1.75-N+16.13-0 —28.86-C +43.88 (1)
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4.2 Informal Relationship Network

C=50 c=100 C =200

Figure 4: Informal relationship network visualized via ORA (Carley 2014; Altman et al. 2020).

In this study, we construct the informal relationship network within the organization based on each end
user agent’s Extraversion value. Previous research consistently shows that individuals with higher levels of
extraversion tend to form more social connections and maintain broader interpersonal networks. For example,
Barrick et al. found that extraverted team members are more likely to develop friendships and interpersonal
bonds with their colleagues (Barrick et al. 1998). Similarly, Asendorpf and Wilpers demonstrated that
highly extraverted individuals are more successful in making new friends and maintaining larger social
networks (Asendorpf and Wilpers 1998). Feiler and Kleinbaum further observed that extraverts, compared
to introverts, are significantly more likely to form extensive friendship ties (Feiler and Kleinbaum 2015).
These findings suggest that extraversion plays a central role in shaping informal social structures within
organizations, making it a suitable basis for modeling relationship networks in agent-based simulations.

Based on this theoretical foundation, we constructed the informal relationship network among the
235 end user agents in our virtual organization by modifying the Erd6s—Rényi random network algorithm
(Erdos and Rényi 1960). While Erd6s and Rényi originally assumed a uniform connection probability p
between all pairs of nodes, our model introduces heterogeneity in link formation based on each agent’s
Extraversion score. Specifically, we first normalized the original 20-to-80 scale Extraversion scores to a
0-to-1 scale. Then, as illustrated in Equation 2, we defined the probability P;; of an informal relationship
forming between agents i and j as the product of their normalized Extraversion values. The resulting
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probability was then divided by a scaling constant ¢, and the final probability of connection IJ}f}“al was
calculated as shown in Equation 3.

x; —20 x;—20 (xi —20)(x; —20)
Pl:El E: J = J 2
g R <80—20> . (80—20> 3600 )
P..
final )
p;™ == (3)

In this study, we varied the scaling constant ¢ to generate informal relationship networks with different
densities, in order to analyze how changes in network density affect the spread of misinformation and
the subsequent impact of phishing email attacks. Specifically, we applied nine values of ¢ (2, 5, 10, 20,
30, 40, 50, 100, and 200) to construct networks based on Equations 2 and Equation 3. Figure 4 presents
visualizations of the resulting networks for each case, created using ORA software (Altman, Carley, and
Reminga 2020). Table 1 summarizes the average number of informal relationships per end user agent, the
total network density, and the number of isolated nodes for each case. As the value of ¢ increases, both the
average number of informal relationships per end user agent and the total network density tend to decrease,
while the number of isolated nodes tends to increase.

Table 1: Informal relationship network characteristics under varying values of scaling constant c.

c Mean # of Links Per Each End User Agent | Total Network Density | # of isolated nodes
2 28.31 0.120967 0
5 11.19 0.047827 1
10 5.69 0.024332 5
20 2.74 0.011711 27
30 1.96 0.008365 42
40 1.64 0.007019 55
50 1.18 0.005055 77
100 0.45 0.001928 147
200 0.30 0.001273 178

4.3 Misinformation Belief & Spread Model

During the simulation, each end user agent who encounters a piece of misinformation on Facebook undergoes
two decision-making processes. The first is whether to believe the misinformation. The second is whether
to engage with the post (e.g., sharing, liking, commenting, or reacting), thereby potentially spreading it
to their Facebook friends. To model the first process, belief in misinformation, we applied the regression
model developed by Lai et al., which examines the relationship between Big Five personality traits and
rumor belief using data from 11,551 participants (Lai et al. 2020). However, since the intercept value
was not reported in their model, we estimated it indirectly. We calculated the weighted sum of the beta
coefficients and the mean values of each personality trait, then subtracted this from the overall mean of the
rumor belief scores to approximate the constant (2.09). As illustrated in Equation 4, we used the estimated
intercept and beta coefficients to calculate the belief score of each agent on a scale of 1 to 5. This score was
then normalized to 0-1 scale, to obtain the probability that the agent believes misinformation disseminated
by the attacker agent. Belief in rumors is determined probabilistically for each exposure. An agent believes
the misinformation if a random draw is less than or equal to their belief probability. Although this allows
for probabilistic belief, the outcome for each event is still binary. Future research could model susceptibility
as a continuous variable to better capture risk across the population.

(0.10x E40.02xA+0.01 xC+0.13xN—-0.04 x 0+2.09) — 1

Probability of Believing a Rumor = G

“
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When an end user agent believes the misinformation disseminated by the attacker, several independent
human factors presented in Figure 2 are negatively affected. In reality, the extent to which each human
factor is influenced may vary depending on individual characteristics. However, since the objective of
this study is to evaluate how severely misinformation can amplify the impact of subsequent spearphishing
attacks, we assume a worst-case scenario. Specifically, we assume that once an end user agent believes
the misinformation, all associated human factors immediately shift from their optimal values to their worst
possible states. The specific changes in each human factor are summarized in Table 2. These changes
directly affect fatigue levels and overall job performance, which in turn negatively influence the decision-
making process described in Figure 3. As a result, users become less capable of recognizing suspicious
emails and are less likely to engage in security-supportive behaviors, such as alerting other members of
the organization or double checking ambiguous emails, even when they do not appear overtly malicious.
Although this assumption may not reflect all real-world cases, it is intentionally designed to represent a
worst-case scenario in which belief in misinformation causes immediate and comprehensive degradation of
psychological and organizational resilience. This approach allows us to better understand the upper bounds
of risk amplification through social cyber attacks.

Table 2: Changes in human factor values before and after belief in misinformation.

Human Factor Value Before Belief in Misinformation | Value After Belief in Misinformation
iSleep Quality 5
Stress Average
Subjective Health Rating
Depression HAD
Supportive Leadership
General Job Satisfaction
Intrinsic Motivation
Intention to Leave
Burnout
Lack of Motivation

W|\O| —

| = = | O Q| —

—| ] N = —

To model the second decision-making process, engagement with the misinformation post, we leveraged
the regression model developed by Buchanan and Benson based on an empirical study involving 357 Facebook
users (Buchanan and Benson 2019). In their study, they proposed a model that predicts the likelihood that
end user agents will generate organic reach through actions such as sharing, liking, commenting, or reacting
to a misinformation post. This prediction was based on the Big Five personality traits, risk propensity,
and trust condition. Risk propensity in this context refers to an individual’s general tendency to take risks
in daily life. The trust condition indicates whether the misinformation post was shared by a close friend,
which represents high trust, or by someone recently added as a Facebook friend but not well known to the
user, which represents low trust. Since the beta coefficient for risk propensity was reported as 0.00 in their
model, we excluded this variable from our simulation. In our implementation, we assigned a trust condition
value of 0 when the user directly encountered the misinformation from the attacker agent, and a value of
1 when the post was viewed through another end user agent within the organization who was connected
as a Facebook friend. As shown in Equation 5, we calculated the organic reach score of each agent, which
ranged from 4 to 20, based on their Big Five personality traits and trust condition. As illustrated in Equation
6, this score was then normalized using Min-Max normalization to derive the probability of spreading
misinformation by organic reach. In our simulation, when an end user agent generates organic reach in
response to a specific misinformation post, Facebook’s algorithm automatically exposes the post to other
end user agents within the organization who are connected as Facebook friends. Although we assume all
users interact only via Facebook, real-world users and attackers operate across multiple platforms. Thus,
actual misinformation spread depends on both organizational usage patterns and attack strategies.

1902



Shin, Wang, Carley, and Carley

Organic Reach Score =9.704+0.03 X E —0.12xA—0.03x C+0.02x N —-0.01 x O4+1.55xTC (5)

Organic Reach Score - 4

Probability of Spreading Misinformation = T

(6)

5 VIRTUAL EXPERIMENTS

In this section, we describe the details of our virtual experiment. We first simulated a baseline attack
campaign, which involved only a spearphishing attack targeting all end user agents within the organization.
Subsequently, we simulated a hybrid cyberattack campaign, which began with the spread of misinformation
followed by a spearphishing attack, using nine different informal relationship networks. In total, we
defined 10 experimental cases, and for each case, we conducted 100 simulation runs, resulting in 1,000
simulations overall. Throughout the simulation, we collected data on the number of agents who encountered
misinformation, those who believed it, and those who were ultimately deceived by the spearphishing email
and executed the malware. An overview of the virtual experiment design is summarized in Table 3.

Table 3: Virtual experiment summary.

Category Variable Description

Independent| Informal Relationship Network | Network density is controlled by adjusting the scaling constant c¢. Values
Variable (scaling constant c) of ¢ used in this study include 2, 5, 10, 20, 30, 40, 50, 100, and 200.

Dependent | Number of agents who encountered | The number of end user agents exposed to the misinformation post
Variable misinformation shared on Facebook.

Number of agents who believed | The number of end user agents who accepted the misinformation as

misinformation true.

Number of agents tricked by | The number of end user agents who were deceived by the spearphishing

spearphishing email and executed the attached malware.

Control Virtual Organization A simulated organization consisting of 235 end user agents, each with
Variable distinct human factors such as phishing susceptibility, job performance,
and fatigue level.

Cyberattack Campaign Type Two types of attack campaigns were simulated: (1) a baseline spearphish-
ing campaign targeting all users, and (2) a hybrid campaign beginning
with misinformation dissemination followed by spearphishing.

Number of Simulations Per Case 100

5.1 Simulation Results & Statistical Analysis

As illustrated in Figure 5, the denser informal relationship networks, represented by lower values of
the scaling constant ¢, resulted in greater exposure to and belief in misinformation. This, in turn, led
to higher success rates for phishing attacks. Compared to the baseline spearphishing campaign without
misinformation, the hybrid campaign resulted in an increase of 4 to 7 additional phishing victims on
average. This corresponds to approximately a 40% to 75% increase in overall impact, demonstrating the
amplification effect of misinformation on cyberattack outcomes.

The regression analysis results presented in Tables 4-6 demonstrate that the mean number of informal
relationships per agent is a strong and statistically significant predictor of all three outcome variables:
exposure to misinformation, belief in misinformation, and phishing victimization. Specifically, each
additional informal connection increases the number of exposed agents by 4.51 ( = 0.83), the number of
believers by 2.00 (8 = 0.80), and the number of phishing victims by 0.11 (=0.26). These results suggest
that informal relationship network density within the virtual organization influences the amplification of
the overall effectiveness of hybrid misinformation and spearphishing attacks.
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Figure 5: Simulation results.

Table 4: Regression analysis 1 - correlation between mean number of informal relationships to the number
of end user agents exposed to misinformation.

B SD B B t p
(Constant) 130.15 | 1.04 125.09 | < 0.0001
Mean Number of Informal Relationships per Each Agent 4.51 0.09 | 0.83 | 45.13 | < 0.0001

Table 5: Regression analysis 2 - correlation between mean number of informal relationships to the number
of end user agents believed misinformation.

B SD B B t P
(Constant) 57.34 | 0.51 111.00 | < 0.0001
Mean Number of Informal Relationships per Each Agent | 2.00 0.04 | 0.80 | 40.34 | < 0.0001

Table 6: Regression analysis 3 - correlation between mean number of informal relationships to the number
of end user agents tricked by phishing.

B SD B B t )4
(Constant) 1474 | 0.14 100.83 | < 0.0001
Mean Number of Informal Relationships per Each Agent | 0.11 0.01 | 0.26 8.14 < 0.0001

6 CONCLUSION AND FUTURE WORKS

In this paper, we used agent-based simulations to examine how hybrid misinformation and spearphishing
campaigns amplify phishing victimization across virtual organizations with varying degrees of informal
relationship network density. Our findings show that the presence of misinformation prior to technical attacks
significantly amplifies organizational vulnerability, increasing phishing success rates by up to 75% compared
to baseline conditions. These results highlight the critical importance of addressing human cognitive factors
and pre-attack psychological manipulation in cybersecurity strategies. In the future, we plan to expand
this research in several directions. First, we will incorporate alternative network generation algorithms to
explore how different social structures affect misinformation spread. Second, the current spearphishing
model only captures the number of users deceived. Future simulations will implement more realistic attack
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chains to evaluate how early stage misinformation affects overall organizational damage. Third, we plan to
assess the effectiveness of technical and organizational defense strategies against misinformation. Finally,
while the current study assumes an immediate and extreme shift in human factors as a worst-case scenario,
which may overestimate the impact compared to real-world situations, we acknowledge this limitation and
will incorporate empirically grounded models of how misinformation gradually influences human emotions
and cognitive states in future work.
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