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ABSTRACT

Consider estimating a known smooth function (such as a ratio) of unknown means. Our paper accomplishes
this by first estimating each mean via randomized quasi-Monte Carlo and then evaluating the function at
the estimated means. We prove that the resulting plug-in estimator obeys a central limit theorem by first
establishing a joint central limit theorem for a triangular array of estimators of the vector of means and
then employing the delta method.

1 INTRODUCTION

Scientists and engineers frequently need to compute a performance measure α expressed as a known smooth
function of unknown means. Examples include the standard deviation of a random variable, which is a
function of the first and second moments (that is, two means), or the correlation of two random variables,
expressed in terms of the first two moments and mixed moment of the two random variables. Other
examples are the expected hitting time of a set in a regenerative context or a conditional expectation, both
expressed as a ratio of two means, or the derivative of a ratio, which can be written as a function of four
expectations (Nakayama and Tuffin 2023; Glynn et al. 1991). Sections 3.1–3.4 of Serfling (1980) and
Section III.3 of Asmussen and Glynn (2007) provide additional settings that fit this framework.

When the means are analytically intractable, as is typically the case for situations arising in practice, a
commonly used computational approach estimates them via Monte Carlo (MC) simulation and evaluates
the known function at the resulting estimators to obtain a plug-in estimator of α . This estimator of α often
obeys a central limit theorem (CLT), established by first showing a joint CLT for the MC estimator of the
vector of means and then applying the delta method (see Serfling 1980, p. 122, or Asmussen and Glynn
2007, p. 75). We then can exploit the CLT to obtain a confidence interval (CI) for α to provide a measure
of the error of the plug-in estimator. The delta method has been employed extensively in the MC literature,
as, e.g., in the references mentioned in the previous paragraph. Also, application of the delta method and
constructing a CI rely on the existence and continuity of a derivative, which Rhee and Glynn (2023) study
in the context of general state space Markov chains.

As an alternative to MC to estimate the means, quasi-Monte Carlo (QMC) methods constitute a class
of deterministic (quadrature) algorithms to numerically compute a multidimensional integral over a unit
hypercube, so the integral can correspond to a mean. QMC averages the integrand at carefully placed
deterministic points that are more evenly spaced over the integration domain than a typical MC sample,
enabling faster convergence to the expected value. However, QMC suffers from a serious drawback: there
is no practical way to provide a computable measure of error of the QMC estimator.

Randomized QMC (RQMC) methods randomize a QMC point set without losing its good distribution
property, and repeating the process r ≥ 2 independent and identically distributed (i.i.d.) times gives a
simple way to construct an approximate CI for a single mean through a sample variance (L’Ecuyer 2018).
Nakayama and Tuffin (2024) provide sufficient conditions on the joint growth of the number m of QMC
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points and the number r of randomizations to ensure that the RQMC estimator for a single mean obeys
a CLT and to obtain an asymptotically valid CI. The analysis requires a triangular-array formulation to
accommodate that the resulting RQMC estimator averages the r randomizations of estimators based on
a (possibly) growing number m of QMC points, and the fact that the distribution of these r estimators
changes when m increases.

The goal of this paper is to provide sufficient conditions for a CLT when estimating α , a known smooth
function of unknown means by RQMC, not just a single mean as in Nakayama and Tuffin (2024). To
achieve this, we first establish reasonable conditions for a specific multivariate triangular-array CLT for
the RQMC estimator of the vector of means. This multivariate CLT is stated in Theorem 1, whose proof
is a key part of our contribution. Applying the delta method to the function of asymptotically Gaussian
mean estimators then produces the desired CLT for the RQMC plug-in estimator, given by Theorem 2.

The rest of the paper unfolds as follows. Section 2 defines the mathematical problem of estimating a
function of means, the main notations, and the existing results for an evaluation by MC simulation. Section 3
recalls the basics of QMC and RQMC methods, and Section 4 presents the main results, establishing CLTs
for the RQMC estimators of the mean vector and for α . Finally, Section 5 briefly concludes and provides
suggestions for extensions of the work.

2 MATHEMATICAL SETUP

Our goal is to estimate

α = g(µµµ) (1)

for a known smooth function g : Rd → R of an unknown d-vector µµµ = (µ1,µ2, . . . ,µd), so we need to
estimate µµµ via some computational method. (All vectors are of column type, although we depict them as
row vectors to save space. If a column vector needs to be converted into a row vector, we use a superscript
⊤ for transpose, which also applies to matrices.) For each t = 1,2, . . . ,d, we assume that

µt =
∫
[0,1]s

ht(uuu)duuu =E[ht(UUU)],

with ht : [0,1]s →R a given function (integrand) for some fixed dimension s≥ 1, random vector UUU ∼U [0,1]s

with U [0,1]s the uniform distribution on the s-dimensional unit hypercube [0,1]s, ∼ means “is distributed
as”, and E denotes the expectation operator. Integrating over [0,1]s is the standard (R)QMC setting, and
it is often possible (e.g., through a change of variables) to express the mean of many stochastic models in
this way. We can regard each integrand ht as a complicated simulation program that converts s independent
univariate uniform random numbers into observations from specified input distributions (possibly with
dependencies and different marginals), which are used to produce an output of the stochastic model, where
the output has mean µt .

We assume that the hypercube [0,1]s has the same dimension s for each integrand ht . When each ht
has domain [0,1]st with dimension st dependent on t, one can simply take s = maxt=1,2,...,d st , and for ht
with st < s, just ignore coordinates st + 1,st + 2, . . . ,s. This is similar to what is done in Section 10 of
L’Ecuyer and Lemieux (2000) to apply QMC and RQMC to problems of infinite dimension, e.g., a random
time horizon with no finite upper bound.

We now review how to estimate µµµ via Monte Carlo. MC employs an i.i.d. sequence (UUU i)i≥1 of uniform
random vectors in [0,1]s to construct an estimator of µt for each t = 1, . . . ,d. One possibility is to use
independent sequences (UUU i)i≥1 for the different values of t. Another one, the common random numbers
(CRN) strategy (Asmussen and Glynn 2007, Section V.6), employs the same sequence for all t, so the d
estimators become dependent. CRN may either decrease or increase the variance of the estimator of α ,
depending on how the random numbers are used in the estimators. For instance, if d = 2 and h1 and h2
are increasing functions, then for g(µ1,µ2) = µ2 −µ1 or g(µ1,µ2) = µ1/µ2, CRN decreases the variance,
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while for g(µ1,µ2) = µ2 + µ1, it increases the variance. See Section 6.4.4 of L’Ecuyer (2024) for more
on this. In general, it is also possible to use CRN for only certain subsets of the values of t, which may
be appropriate in some cases. In the rest of the paper, we assume that CRN is employed, i.e., we have a
single sequence of uniform random points for all t. This is easy to generalize, but it would require more
complicated notation. The MC estimator of µt is then

µ̂
MC
n,t =

1
n

n

∑
i=1

ht(UUU i) (2)

and the plug-in MC estimator of α is

α̂
MC
n = g(µ̂MC

n,1 , µ̂MC
n,2 , . . . , µ̂MC

n,d ).

Nakayama and Tuffin (2023) consider more general possibilities for the dependencies among µ̂MC
n,t (t =

1, . . .d), e.g., allowing for measure-specific importance sampling (Goyal et al. 1992), where importance
sampling is applied to estimate some means, and independently using naive MC for other means, which
is useful when some means relate to rare events but others do not.

Let ΣΣΣ = (Σt,t ′ : t, t ′ = 1,2, . . . ,d) be the covariance matrix of the random vector (h1(UUU), . . . ,hd(UUU)),
assumed finite and positive definite. The vector µ̂µµ

MC
n = (µ̂MC

n,1 , . . . , µ̂MC
n,d ) then obeys a multivariate CLT

(Billingsley 1995, Theorem 29.5)

√
n
[
µ̂µµ

MC
n −µµµ

]
⇒ ΣΣΣ

1/2Nd as n → ∞, (3)

where ΣΣΣ
1/2 is a d×d matrix satisfying ΣΣΣ

1/2(ΣΣΣ1/2)⊤ = ΣΣΣ and Nd is a d-dimensional standard normal random
vector (with mean vector 000 = (0,0, . . . ,0) and covariance matrix equal to the d ×d identity matrix). Let
∇g(·) = (g1(·),g2(·), . . . ,gd(·)) be the gradient of g(·), where gt(·) is the partial derivative of g(·) with
respect to its t-th argument, for t = 1, . . . ,d. Under the assumption that g has a nonzero differential at µµµ ,
the delta method (Serfling 1980, p. 124) leads to a CLT for α̂MC

n :
√

n
[
α̂

MC
n −α

]
⇒ τMCN1 as n → ∞, (4)

with asymptotic variance

τ
2
MC = ∇g(µµµ)⊤ΣΣΣ∇g(µµµ) =

d

∑
t=1

d

∑
t ′=1

gt(µµµ)gt ′(µµµ)Σt,t ′ . (5)

A sufficient condition for the differential of g(·) (also known as a total derivative) to be nonzero at µµµ is
that the gradient ∇g(·) exists in a neighborhood of µµµ and is continuous at µµµ , with ∇g(µµµ) ̸= 000 (Apostol
1974, Theorem 12.11).

3 RANDOMIZED QUASI-MONTE CARLO

QMC methods replace the sequence of independent uniformly distributed vectors (UUU i)i≥1 in the estimators
(2) by a deterministic sequence ΞΞΞ = (ξξξ i)i≥1 with ξξξ i = (ξi,1, . . . ,ξi,d) ∈ [0,1]d . The sequence ΞΞΞ is carefully
designed to cover [0,1]d more evenly than a typical sequence of independent uniform random vectors. The
unevenness of the spread of the first n points of ΞΞΞ can be measured by, e.g., the star discrepancy D∗

n(ΞΞΞ)
(Niederreiter 1992; Lemieux 2009), and ΞΞΞ is called a low-discrepancy sequence when D∗

n(ΞΞΞ)=O(n−1(lnn)s)
as n → ∞, where the notation f1(n) = O( f2(n)) as n → ∞ for functions f1 and f2 means that there exist
constants c0 > 0 and n0 such that | f1(n)| ≤ c0| f2(n)| for all n ≥ n0. We also write f1(n) = Θ( f2(n)) as
n → ∞ to denote that both f1(n) = O( f2(n)) and f2(n) = O( f1(n)) as n → ∞. Several QMC error bounds
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exist in the literature, the best-known being the Koksma-Hlawka bound. To describe it for a single integrand
ht(·), let V (ht) be its variation in the sense of Hardy and Krause. If V (ht) < ∞ (a property known as
“bounded variation in the sense of Hardy and Krause” (BVHK)), then the estimator µ̂

Q
n,t =

1
n ∑

n
i=1 ht(ξξξ i)

satisfies ∣∣∣µ̂Q
n,t −µt

∣∣∣≤V (ht)D∗
n(ΞΞΞ), (6)

leading to, when ΞΞΞ is a low-discrepancy sequence, a convergence rate of O(n−1(lnn)s), faster than MC’s rate
of Θ(n−1/2) for its root-mean-square error from the CLT. Niederreiter (1992) and Lemieux (2009) provide
more details on QMC and low-discrepancy sequences. While there are several families of low-discrepancy
sequences (digital nets, etc.), we just provide one as an illustration. A lattice rule of rank-1 for a number
n of points selects a generating vector aaa = (a1, . . . ,ad) and uses ξξξ i = ((i− 1)aaa mod 1)/n for 1 ≤ i ≤ n,
where the modulo is applied coordinate-wise. The software tool LatNet Builder (L’Ecuyer et al. 2022)
provides good ways to select aaa.

Despite its appealing fast convergence rate, QMC suffers the drawback that it is usually not possible
to compute an actual estimate of the integration error. While, e.g., the Koksma-Hlawka inequality (6)
provides a theoretically attractive bound on the QMC error, computing the exact values of V (ht) and D∗

n(ΞΞΞ)
is very difficult, and even if we could, the resulting bound typically overspecifies the actual error by orders
of magnitude for reasonable values of n.

This motivated the development of RQMC to try to obtain computable error bounds via a CLT through
r ≥ 2 i.i.d. randomizations of a QMC point set. Specifically, in a single randomization, RQMC randomizes
a low-discrepancy sequence ΞΞΞ of m points without losing its good repartition property (L’Ecuyer 2018).
Let (UUU ′

i)i≥1 be the randomized low-discrepancy sequence built from ΞΞΞ, such that each UUU ′
i is uniformly

distributed over [0,1]s. One approach to do this (mostly used for lattice point sets) is through a random
shift: generate a single uniform UUU ∼ U [0,1]s and add it to each point of ΞΞΞ, resulting in the randomized
points UUU ′

i = (ξξξ i +UUU) mod 1, for i = 1,2, . . . ,m. Typically, the points UUU ′
i are correlated (because each UUU ′

i
uses the same uniform UUU) but the low-discrepancy property is preserved, e.g., when the random shift is
applied to ΞΞΞ from a lattice rule. We can preserve the finer structure of other types of low-discrepancy
sequences by applying alternative randomization methods (L’Ecuyer 2018).

RQMC repeats this r ≥ 1 times, independently, computing an estimator from each randomization.
Specifically, let UUU ′

i, j ∈ [0,1]s be the i-th point of the j-th i.i.d. randomization (i = 1,2, . . . ,m, and j =
1,2, . . . ,r). The RQMC estimator of α is

α̂
RQ
m,r = g(µ̂RQ

m,r,1, µ̂
RQ
m,r,2, . . . , µ̂

RQ
m,r,d),

where for each t = 1,2, . . . ,d, the RQMC estimator of µt is

µ̂
RQ
m,r,t =

1
r

r

∑
j=1

X j,t , where X j,t =
1
m

m

∑
i=1

ht(UUU ′
i, j), (7)

with X j,t as the estimator of µt from randomization j = 1,2, . . . ,r, of m points. Since the randomizations are
independent across the r replicates, the random vectors (X j,1,X j,2, . . . ,X j,d), j = 1,2, . . . ,r, are always i.i.d.
However, their components are generally not independent. We will assume that the same randomized points
UUU ′

i, j, i = 1,2, . . . ,m, are used across all values of t, which corresponds to CRN. Then, X j,1,X j,2, . . . ,X j,d are
dependent. We could make them independent by using independent randomizations for X j,1,X j,2, . . . ,X j,d
instead. In that case, the analysis in Section 4 simplifies significantly but we may not benefit from the
application of CRN described in Section 2. It is hoped that as m or r (or both) grows large, the overall
RQMC estimator α̂RQ

m,r obeys a Gaussian CLT.
To analyze the asymptotic behavior of our RQMC estimator as the number of integrand evaluations

grows large, we define a “budget parameter” n corresponding to using at most nd integrand evaluations
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across all d integrands ht , t = 1,2, . . . ,d; i.e., we must have mr ≤ n. We now define the RQMC estimator
in (7) with (m,r) = (mn,rn), where rn ≥ 1 is the number of randomizations and mn ≥ 1 is the number of
points used from each randomized sequence, so the total number of evaluations of the integrand ht is mnrn,
and the total number of evaluations across all d integrands is at most mnrnd. Note that the RQMC point
set may change completely when mn increases. We assume the following:
Assumption 1 mnrn ≤ n for each n ≥ 1, with mnrn/n → 1 and rn → ∞ as n → ∞.

Under Assumption 1, the RQMC estimator of µt , t = 1,2, . . . ,d, in (7) becomes

µ̂
RQ
mn,rn,t =

1
rn

rn

∑
j=1

Xn, j,t , where Xn, j,t =
1

mn

mn

∑
i=1

ht(UUU ′
i, j), (8)

so Xn, j,t is the estimator from randomization j = 1,2, . . . ,rn, of mn points, where mn ≤ n. We then get an
estimator

α̂
RQ
mn,rn

= g(µ̂RQ
mn,rn,1, µ̂

RQ
mn,rn,2, . . . , µ̂

RQ
mn,rn,d). (9)

The question we aim to answer in the next section is: how should mn and rn increase with n so that the
resulting estimator α̂RQ

mn,rn
satisfies a weak convergence result with a Gaussian limit? Assumption 1 requires

rn → ∞ as n → ∞ because otherwise, a Gaussian CLT may not hold. For example, L’Ecuyer et al. (2010)
show that when applying RQMC using a lattice rule and the random shift, the resulting estimator can obey
a limit theorem with non-Gaussian limit as mn → ∞ for fixed rn ≥ 1. The only existing Gaussian CLT for
rn fixed and mn → ∞ is established for a particular (more costly) type of RQMC, nested digital scrambling
(Loh 2003; Basu and Mukherjee 2017; He and Zhu 2017). Our goal here is to express conditions on
(mn,rn) under which a Gaussian CLT can be proved for all randomization methods. Nakayama and Tuffin
(2024) perform this type of analysis for a single mean α̂RQ

mn,rn
= µ̂

RQ
m,r,t (i.e., t = d = 1 and g the identity

function in (1)). While Assumption 1 specifies that rn → ∞ as n → ∞, it does not require that mn → ∞ as
n → ∞; we may take mn = m0 for some fixed m0 ≥ 1, where m0 = 1 corresponds to MC. Our analysis in
the next section covers all these special cases.

4 CENTRAL LIMIT THEOREMS

To establish a CLT for α̂RQ
mn,rn

in (9), our approach will be to first obtain a multivariate CLT for

µ̂µµ
RQ
mn,rn

= (µ̂RQ
mn,rn,1, µ̂

RQ
mn,rn,2, . . . , µ̂

RQ
mn,rn,d)

as n → ∞, and then apply the delta method (Serfling 1980, Theorem 3.3A). The multivariate CLT requires
a triangular-array formulation, as in Theorem 5 on p. 19 of Gikhman and Skorokhod (1996), which is
originally stated for random functions but we specialize to random vectors. We next set up the necessary
framework to do this.

Define the random vector XXXn, j = (Xn, j,1,Xn, j,2, . . . ,Xn, j,d), where each Xn, j,t is from (8). This vector
has a multivariate distribution that depends only on mn = m but not on n nor rn, conditionally on mn.
Component t has mean µt =E[Xn, j,t ] and variance

σ
2
mn,t = Var[Xn, j,t ], (10)

where Var[·] denotes the variance operator. To avoid uninteresting situations, we assume the strict positiveness
and finiteness of the variances when the budget parameter n is large enough:
Assumption 2 For each t = 1,2, . . . ,d,

σ
2
mn,t ∈ (0,∞) for all n sufficiently large. (11)
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In the following, we assume throughout that n is sufficiently large in the sense of (11). Both µt and
σ2

mn,t do not depend on j because as noted earlier,

XXXn,1,XXXn,2, . . . ,XXXn,rn are i.i.d. random vectors,

where each XXXn, j = (Xn, j,1,Xn, j,2, . . . ,Xn, j,d) has the same joint distribution Fn.
(12)

This triangular-array setup allows for the distribution Fn to change with n, as is the case in (8). In the
special case where mn = m0 is fixed and only rn changes with n, then Fn does not depend on n and we
readily have a CLT similar to (4), with n there replaced by rn, Σt,t ′ replaced by Cov[Xn, j,t ,Xn, j,t ′ ], where
Cov[·, ·] denotes the covariance operator, and α̂MC

n replaced by α̂RQ
m0,rn

.
The general case when mn varies with n requires a more complicated analysis that involves the covariance

structure. We could write the covariance matrix of XXXn, j with elements Cov[Xn, j,t ,Xn, j,t ′ ] for 1 ≤ t, t ≤ d,
but for the proof of Theorem 1, it will be more convenient to use the correlation matrix ΣΣΣn = Corr(XXXn, j)
instead. Its (t, t ′) entry is

Σn,t,t ′ = Corr[Xn,1,t ,Xn,1,t ′ ] =
Cov[Xn,1,t ,Xn,1,t ′ ]

σmn,tσmn,t ′
, (13)

which is 1 when t = t ′ (i.e., on the diagonal). The covariance matrix is then

Cov(XXXn, j) = ΓΓΓnΣΣΣnΓΓΓn, where ΓΓΓn = diag(σmn,1,σmn,2, . . . ,σmn,d), (14)

i.e., ΓΓΓn is a d ×d diagonal matrix that contains the standard deviations from (10).
Assumption 3 There exists a positive-definite d ×d correlation matrix ΣΣΣ0 such that ΣΣΣn → ΣΣΣ0 as n → ∞.

We now discuss the conditions of this assumption. When mn is fixed (independent of n), ΣΣΣn is the
same for all n, and we just need to assume that ΣΣΣn is positive definite. Another special case where things
simplify is if we use independent randomizations across the different values of t. In that case, the correlation
matrix is just the identity for all n. For the more general case, the correlations outside the diagonal can be
anywhere in [−1,1]. On the right side of (13), the denominator typically converges to 0 when mn → ∞, so
the numerator must shrink to 0 as well, but it is conceivable that the ratio might not converge. Assumption 3
rules out this possibility. Moreover, requiring the limit ΣΣΣ0 to be positive definite simplifies the development
by preventing degenerate cases from occurring.

We also assume that each coordinate Xn,1,t of XXXn,1, t = 1,2, . . . ,d, obeys a marginal Lindeberg condition
(Billingsley 1995, p. 359) specialized to our setting (12), where I(·) denotes the indicator function:
Assumption 4 For each t = 1,2, . . . ,d,

1
σ2

mn,t
E

[
(Xn,1,t −µt)

2 I (|Xn,1,t −µt |> w
√

rnσmn,t)
]
→ 0, as n → ∞, ∀w > 0. (15)

A sufficient condition to secure (15) is the Lyapunov condition (Billingsley 1995, Theorem 27.3): there
exists ε > 0 such that

1

rε/2
n σ

2+ε
mn,t

E

[
|Xn,1,t −µt |2+ε

]
→ 0, as n → ∞. (16)

Nakayama and Tuffin (2024) also consider conditions (15) and (16) in the univariate case of a single
integrand. These conditions impose restrictions on the allocation (mn,rn), on each integrand ht , and on the
RQMC method through Xn,1,t in (8) and σ2

mn,t in (10), which Nakayama and Tuffin (2024) further explore.
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Theorem 1 Suppose that Assumptions 1, 2, 3 and 4 hold. Then µ̂µµ
RQ
mn,rn

obeys a d-dimensional CLT:

r1/2
n ΓΓΓ

−1
n

(
µ̂µµ

RQ
mn,rn

−µµµ

)
⇒ Nd(000,ΣΣΣ0), as n → ∞, (17)

where ΓΓΓn is from (14), and Nd(000,ΣΣΣ0) represents a d-dimensional random vector with mean vector 000 and
covariance matrix ΣΣΣ0.

Proof. We will apply Theorem 5 on p. 19 of Gikhman and Skorokhod (1996), which has three conditions
(denoted here as a, b, c) that we will show hold. Rather than utilizing that result on the triangular array
for XXXn, j having nth row from (12), we will consider instead another triangular array with random vectors
YYY n, j = (Yn, j,1,Yn, j,2, . . . ,Yn, j,d), with scaled and centered components defined by

Yn, j,t =
Xn, j,t −µt√

rnσmn,t
, (18)

where σmn,t is from (10). Specifically, for any given n,

YYY n,1,YYY n,2, . . . ,YYY n,rn are i.i.d. random vectors, where each YYY n, j has the same joint distribution Gn, (19)

which defines the nth row of a triangular array.
The squared denominator in (18) satisfies

rnσ
2
mn,t = Var

[
rn

∑
j=1

Xn, j,t

]
(20)

which by (10) is the variance of the sum of the t-th components across the rn i.i.d. random vectors in (12).
Thus,

E[Yn, j,t ] = 0, Var[Yn, j,t ] =
1
rn
, and s2

n,t ≡ Var

[
rn

∑
j=1

Yn, j,t

]
= 1, (21)

where each does not depend on j. Also, note that

Cov

[
rn

∑
j=1

Yn, j,t ,
rn

∑
j=1

Yn, j,t ′

]
=

rn

∑
j=1

rn

∑
ℓ=1

Cov[Yn, j,t ,Yn,ℓ,t ′ ] =
rn

∑
j=1

Cov[Yn, j,t ,Yn, j,t ′ ]

=
rn

∑
j=1

Cov[Xn, j,t ,Xn, j,t ′ ]

rnσmn,tσmn,t ′
=

Cov[Xn,1,t ,Xn,1,t ′ ]

σmn,tσmn,t ′
= Σn,t,t ′

for Σn,t,t ′ in (13), where the second equality stems for the independence of the Yn, j,t across the values of
j, and the last one from the identical distribution for each j ( j = 1, . . . ,rn). For each t = 1,2, . . . ,d, (21)
implies that max j=1,2,...,rn Var[Yn, j,t ] = 1/rn → 0 as n → ∞ since rn → ∞ by Assumption 1. Thus, condition
a holds by Assumption 2, (21), and (19).

Our Assumption 3 is slightly stronger than condition b, as the latter does not assume that ΣΣΣ0 is
positive-definite.

Next we turn to condition c. Recall that s2
n,t = Var[∑rn

j=1Yn, j,t ] in (21). Condition c requires a marginal
Lindeberg condition for each component t of the random vectors in (19): i.e., we need that for each w > 0,

qn,t(w)≡
1

sn,t

rn

∑
j=1
E
[
Y 2

n, j,tI(|Yn, j,t |> wsn,t)
]
→ 0 as n → ∞.
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But since s2
n,t = 1 by (21) and because Yn, j,t , j = 1,2, . . . ,rn, are i.i.d. by (19), we can use (18) to write

qn,t(w) = rnE
[
Y 2

n,1,tI(|Yn,1,t |> w)
]

= rnE

[(
Xn,1,t −µt√

rnσmn,t

)2

I
(∣∣∣∣Xn,1,t −µt√

rnσmn,t

∣∣∣∣> w
)]

=
1

σ2
mn,t
E

[
(Xn,1,t −µt)

2 I (|Xn,1,t −µt |> w
√

rnσmn,t)
]
,

where σ2
mn,t is defined in (10). Thus, Assumption 4 ensures that condition c holds.

Since all of the conditions of Theorem 5 on p. 19 of Gikhman and Skorokhod (1996) hold, we obtain

rn

∑
j=1

YYY n, j ⇒ Nd(000,ΣΣΣ0), as n → ∞, (22)

for ΣΣΣ0 from Assumption 3. Note that (22) does not need any scaling by
√

rn or 1/
√

rn because each Yn, j,t
has standard deviation 1/

√
rn by (18) and (20), so each of the rn i.i.d. summands in (22) already includes

the appropriate scaling for a CLT.
Now we want to convert (22) into a multivariate CLT for µ̂µµ

RQ
mn,rn

= (1/rn)∑
rn
j=1 XXXn, j, where each XXXn, j

is as in (12) and (8). Doing this requires some care because each component Yn, j,t in (18) of each random
vector YYY n, j in (22) is centered by a different µt and scaled by a different

√
rnσ2

mn,t . By (18), we first rewrite
(22) as (

rn

∑
j=1

Xn, j,t −µt√
rnσmn,t

: t = 1,2, . . . ,d

)
⇒ Nd(000,ΣΣΣ0), as n → ∞, (23)

which can then alternatively be expressed in terms of µ̂µµ
RQ
mn,rn

as in (17), where the r1/2
n on the left side

of (17) comes from rnµ̂µµ
RQ
mn,rn

= ∑
rn
j=1 XXXn, j and the

√
rn in the denominator on the left side of (23). This

completes the proof.

We can bring the ΣΣΣ0 to the left side of (17) by premultiplying each side of (17) by ΣΣΣ
−1/2
0 , whose

existence is guaranteed by Assumption 3, leading to r1/2
n ΣΣΣ

−1/2
0 ΓΓΓ

−1
n

(
µ̂µµ

RQ
mn,rn

−µµµ

)
⇒ Nd(000, IIId) as n → ∞,

where IIId is the d × d identity matrix. Also, we can further replace ΣΣΣ
−1/2
0 on the left side with ΣΣΣ

−1/2
n

because Assumption 3 ensures for n sufficiently large the existence of ΣΣΣ
−1/2
n and its convergence to ΣΣΣ

−1/2
0

as n → ∞, so applying Slutsky’s theorem (Serfling 1980, Theorem 1.5.4) yields

r1/2
n ΣΣΣ

−1/2
n ΓΓΓ

−1
n

(
µ̂µµ

RQ
mn,rn

−µµµ

)
⇒ Nd(000, IIId), as n → ∞. (24)

In the CLTs in (23), (17), and (24), each σmn,t → 0 as n → ∞ when mn → ∞, where σmn,t appears as a
diagonal entry in ΓΓΓn from (14) in (17) and (24). This is needed to ensure a Gaussian limit by counteracting
that µ̂µµ

RQ
mn,rn

− µµµ can shrink faster than 1/r1/2
n because typically RQMC converges faster than MC when

mn → ∞. For example, if ht has BVHK, then we often have that σmn,t = O((lnmn))
s/mn) as mn → ∞ (e.g.,

see eqs. (12) and (37) of Nakayama and Tuffin 2024), but recall that this O(·) notation only gives an upper
bound; the actual convergence rate for σmn,t can be faster than that. Faster rates can also be proved under
various conditions (L’Ecuyer 2018).

Finally we use the delta method to get a CLT for α̂RQ
mn,rn

= g(µ̂RQ
mn,rn,1, µ̂

RQ
mn,rn,2, . . . , µ̂

RQ
mn,rn,d) in (9).
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Theorem 2 Suppose that Assumptions 1, 2, 3 and 4 hold. Also suppose that the function g in (1) has
non-zero differential at µµµ . Then α̂RQ

mn,rn
in (9) obeys a CLT

√
rn

τn

[
α̂

RQ
mn,rn

−α
]
⇒ N1(0,1), as n → ∞, (25)

where

τ
2
n = ∇g(µµµ)⊤ΓΓΓnΣΣΣnΓΓΓn∇g(µµµ) =

d

∑
t=1

d

∑
t ′=1

gt(µµµ)σmn,tgt ′(µµµ)σmn,t ′Σn,t,t ′ . (26)

For example, if each ht has BVHK, then τn/
√

rn is typically O
(
(lnmn)

s/(mn
√

rn)
)
, which shrinks

faster (as n → ∞) than τMC/
√

n = Θ
(
1/

√
mnrn

)
from (4) when using MC with an equal budget parameter

n = mnrn. It shows the gain that can be obtained with RQMC. As with MC, using CRN across the different
values of t improves the variance compared to using independent randomizations if and only if τ2

n as given
in (26) is smaller than the one we get if we replace ΣΣΣn by the identity in that equation.

We now give a heuristic justification of Theorem 2. By (8), we have for each t that
√

rn[µ̂
RQ
mn,rn,t −µt ] =

∑
rn
j=1(Xn, j,t − µt)/

√
rn is roughly equal in distribution to σmn,tZt for Zt ∼ N1(0,1) for large n by the

CLT (23) since Σn,t,t = Σ0,t,t = 1 from (21). Also, (Z1,Z2, . . . ,Zd)∼ Nd(000,ΣΣΣn)≈ Nd(000,ΣΣΣ0) for large n by
Assumption 3. Then a first-order Taylor approximation for α̂RQ

mn,rn
= g(µ̂RQ

mn,rn,1, µ̂
RQ
mn,rn,2, . . . , µ̂

RQ
mn,rn,d) suggests

that for large n,

√
rn
[
α̂

RQ
mn,rn

−α
]
≈

d

∑
t=1

gt(µµµ)
√

rn

[
µ̂

RQ
mn,rn,t −µt

]
≈

d

∑
t=1

gt(µµµ)σmn,tZt ,

whose variance is given by (26). Also, in (26) note that the factors σmn,t → 0 and σmn,t ′ → 0 as n → ∞

when mn → ∞, leading to τn → 0 as n → ∞. So dividing by τn in (25) is needed to ensure a Gaussian limit
to counteract that α̂RQ

m,r −α can shrink faster than 1/
√

rn because typically RQMC converges faster than
MC when mn → ∞.

5 CONCLUDING REMARKS

We considered an RQMC plug-in estimator of the estimand α in (1), which is a smooth function of a vector
µµµ of unknown means. We applied RQMC to estimate µµµ using rn i.i.d. randomizations of mn points from
a low-discrepancy sequence, and we established a CLT (Theorem 2) for the RQMC plug-in estimator as
n ≈ mnrn → ∞. Our argument first showed a multivariate CLT for the RQMC estimator of µµµ (Theorem 1),
and then applied the delta method to obtain Theorem 2, which gives a CLT for the estimator of α .

There are several directions for future work. For the case of the RQMC estimator of a single mean,
Nakayama and Tuffin (2024) provide CLT refinements based on the allocation (mn,rn) in terms of properties
of a single integrand (e.g., BVHK or simply bounded) and the randomized low-discrepancy sequence. Also,
that paper establishes the asymptotic validity of confidence intervals. In our Theorem 2 we may similarly
want in practice to replace τn in (25) by an estimator. A natural solution is to estimate τ2

n in (26) by say

τ̂
2
n = ∇g(µ̂µµRQ

mn,rn
)⊤ĈCCn∇g(µ̂µµRQ

mn,rn
) (27)

where ĈCCn is the matrix of empirical covariances, used to estimate the covariance matrix ΓΓΓnΣΣΣnΓΓΓn. Showing
that the CLT still holds and that we obtain an asymptotically valid confidence interval (AVCI) is of interest.
Our triangular-array setting in (12) presents a theoretical complication in establishing an AVCI: it is not
sufficient to merely show that τ̂2

n consistently estimates τ2
n in the sense that τ̂2

n −τ2
n ⇒ 0 as n → ∞. Because

τ2
n → 0 when mn → ∞ (see the paragraph before Section 5), it could be the case that τ̂2

n shrinks at a different
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rate than τ2
n does, which may lead to τn/τ̂n ̸⇒ 1 and (25) not holding when τ̂n replaces τn. Instead, what

needs to be shown is that τ̂2
n/τ2

n ⇒ 1, which is more complicated than simply proving consistency. We
plan to also carry out analyses for the estimation of α similar to the principles developed in Nakayama and
Tuffin (2024) when estimating a single mean by RQMC. In particular, we want to specialize Assumption 1
to consider allocations (mn,rn) = (nc,n1−c) for some c ∈ [0,1], and determine the largest values of c (to
gain the benefits of the fast convergence rate of RQMC) for which a CLT and AVCI hold.
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