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ABSTRACT 

Agent-based social simulation (ABSS) has gained attention as a powerful method for analyzing complex 
social phenomena. However, the visualization of ABSS outputs is often difficult to interpret for users 
without expertise in ABSS modeling. This study analyzes how statistical literacy affects the comprehension 
of ABSS visualizations, based on cognitive processes defined in educational psychology. A web-based 
survey using five typical visualizations based on Schelling’s segregation model was conducted in Japan. 
The results showed a moderate positive correlation between statistical literacy and visualization 
comprehension, while some visualizations remained difficult to interpret even for participants with high 
literacy. Further machine learning analysis revealed that model performance varied by cognitive stage, and 
that basic and applied statistical skills had different impacts on comprehension across stages. These findings 
provide a foundation for designing visualizations tailored to user characteristics and offer insights for 
effective communication based on ABSS. 

1 INTRODUCTION 

Agent-Based Social Simulation (ABSS) has emerged as a powerful method for analyzing complex, multi-
factor social phenomena. By modeling the micro-level behaviors of agents, such as individuals or 
organizations, and observing their interactions, ABSS reveals emergent macro-level patterns (North and 
Macal, 2007; Gilbert, 2008). Recent developments have combined ABSS with statistical and machine 
learning techniques to deepen such analysis (Lee et al., 2015; Tanaka et al., 2018; Yamada et al., 2020). 
However, the outputs generated through such advanced analysis are often multidimensional and 
voluminous, imposing a high cognitive burden on practitioners or stakeholders who aim to utilize ABSS 
for decision-making (hereafter, “ABSS users”). Effective decision-making requires the ability to accurately 
interpret and extract insights from these outputs, making appropriate visualization essential. 
 In the ABSS domain, various visualization techniques, such as Landscape Analysis of Possibilities 
(Goto and Takahashi, 2011) and Cladogram Analysis of Possibilities (Goto, 2020), have been proposed to 
structurally organize multidimensional data and support the comparison between scenarios as well as the 
visualization of causal structures. However, these methods are often visually and structurally complex, 
making them difficult to interpret for ABSS users with low levels of statistical or data literacy. In other 
words, regardless of the sophistication of analysis, if outputs cannot be communicated in an understandable 
manner, the societal utilization of ABSS will remain limited. 
 In contrast to the ABSS field, the broader domain of data visualization has actively examined the effects 
of visualization techniques on human comprehension, particularly from the perspective of non-expert users.  
For example, Schonlau and Peters (2008) experimentally investigated how the use of tables, bar charts, and 
pie charts influences accuracy in information interpretation. Padilla et al. (2015) demonstrated that the way 
uncertainty is visualized, using spatial encodings such as length or area versus non-spatial encodings like 
color or brightness, can significantly affect decision-making tendencies. Maltese et al. (2015) showed that 
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learners with limited scientific experience often misunderstand how to read or construct graphs, and that 
accuracy improves with increased domain expertise. 
 These studies suggest that the visualization formats greatly influence user comprehension, and that user 
literacy also plays a crucial role. In the field of ABSS, few studies have quantitatively evaluated how 
different visualization techniques impact user comprehension, as most existing methods are designed from 
the perspective of expert modelers or analysts, with limited consideration for the understanding of ABSS 
users. This insufficient consideration of user comprehension may be one reason why ABSS outputs have 
not yet been widely utilized in real-world decision-making or policy development. 
 The purpose of this study is to develop a structured analytical framework for evaluating the 
comprehension of ABSS visualizations, considering both users’ levels of statistical literacy and stages of 
cognitive processing. This framework was applied in an empirical study conducted in Japan as an initial 
attempt to identify which visualization types facilitate comprehension across user groups with different 
levels of statistical literacy. We assume that the cognitive process of interpreting ABSS outputs involves 
multiple stages: (1) identifying data points, (2) interpreting their meaning, (3) comparing changes caused 
by different simulation settings, and (4) analyzing the underlying mechanisms. To evaluate comprehension 
at each of these stages in relation to statistical literacy, we applied Bloom’s taxonomy of cognitive processes 
(Bloom, 1956), widely used in educational psychology, to organize and assess visualization comprehension. 
 The structure of this paper is as follows. Section 2 introduces the proposed analytical framework and 
describes the design of the empirical study, including the methods used to measure statistical literacy and 
visualization comprehension. Section 3 presents descriptive and correlational analyses to examine overall 
trends between statistical literacy and comprehension scores. Section 4 explores, in greater depth, which 
statistical literacy components most significantly impact comprehension through machine learning-based 
analysis. Section 5 discusses practical implications for the design of ABSS visualizations based on the 
findings. Finally, Section 6 summarizes the study’s conclusions and suggests future directions. 

2 ANALYTICAL FRAMEWORK AND EMPIRICAL STUDY DESIGN 

To address the research objective outlined in Section 1, this study first proposes an analytical framework 
that integrates statistical literacy, cognitive stages, and visualization techniques to evaluate users’ 
comprehension of ABSS outputs. The framework assesses user comprehension across four cognitive stages, 
Remember, Understand, Apply, and Analyze, adapted from Bloom’s taxonomy (Bloom, 1956; Anderson 
and Krathwohl, 2001). Prior research in data visualization (Burns et al., 2020) has highlighted the value of 
incorporating cognitive process stages for nuanced analysis of how visualization formats influence user 
understanding. As shown in Figure 1, comprehension is measured using task items mapped to each 
combination of cognitive stage and visualization technique. Each cell represents one assessment item 
targeting a specific combination. Statistical literacy is evaluated using Watson’s (1997) three-tiered model. 
By combining cognitive stages, visualization types, and statistical literacy levels, the framework enables a 
systematic evaluation of how user comprehension varies across these dimensions. The following sections 
detail the empirical study built on this framework, including the design of the statistical literacy 
measurement (Section 2.1) and the visualization comprehension measurement (Section 2.2). 
 
 
 
 
 
 
 
 

Figure 1: Analytical framework for mapping comprehension items across cognitive stages and visualization 
techniques 
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2.1 Statistical Literacy Measurement 

In the context of the empirical study, participants were asked to complete a statistical literacy assessment. 
To evaluate their literacy levels, this study adopted Watson’s (1997) three-tiered hierarchy of statistical 
skills, which allows classification into the following three tiers: 
・Tier 1: Basic understanding of probabilistic and statistical terminology 
・Tier 2: Understanding of probabilistic and statistical concepts embedded in broader social contexts 
・Tier 3: Critical attitude toward conclusions lacking sound statistical foundations 
 Various models of statistical literacy have been proposed, including Gal’s (2002) and Garfield’s (2003) 
frameworks. This study adopts Watson’s (1997) hierarchical model, as it was originally developed and 
empirically validated with secondary school students, making it especially suitable for structured 
assessments. The model’s tiered structure reflected knowledge typically acquired through secondary 
education (equivalent to junior and senior high school in Japan), and therefore aligned well with the 
educational background of our target participants. 
 To operationalize statistical literacy in a way that reflected the Japanese secondary education 
curriculum (MEXT, 2017; 2018), we further categorized the required abilities into the following five types: 
・Ability 1: Understanding data distributions 
・Ability 2: Identifying data variability and outliers 
・Ability 3: Collecting and sampling data appropriately 
・Ability 4: Analyzing variability and relationships in data 
・Ability 5: Engaging in probabilistic thinking and statistical inference 
 One item was developed for each of the five abilities at each of the three tiers, resulting in a total of 15 
items (Table 1). Participants’ responses (correct or incorrect) were used to measure their overall statistical 
literacy level. 
 

Table 1: Structure of the statistical literacy assessment items 
 
 
 
 
 
 

2.2 Visualization Comprehension Measurement 

This section describes how participants’ comprehension is evaluated based on different ABSS visualization 
techniques. To this end, we used simulation results generated from Schelling’s segregation model 
(Schelling, 1971) and presented them in five different visualization formats to assess comprehension levels. 
The Schelling model operates on a grid where agents (residents) follow a simple rule: they remain in place 
if the proportion of similar neighbors exceeds a given threshold, and move to an empty cell otherwise. As 
this process repeats, agents gradually cluster, resulting in emergent segregation patterns. 
 Because this model is intuitive and does not require specialized domain knowledge, it is well-suited for 
the purpose of evaluating comprehension of visualization techniques. In contrast, models tailored to specific 
fields, such as business or public policy, may produce results that depend heavily on participants’ prior 
knowledge. To avoid such bias and to isolate the effect of visualization format alone, this study adopted 
Schelling’s model as a neutral base. 

2.2.1 Explanation of the Simulation Results 
Before responding to questions, participants were provided with explanatory materials to facilitate 
understanding of the basic mechanisms and dynamics of Schelling’s segregation model. These materials 
focused on the following points: 

Ability 1 Ability 2 Ability 3 Ability 4 Ability 5

Tier 1 Q1 Q2 Q3 Q4 Q5

Tier 2 Q6 Q7 Q8 Q9 Q10

Tier 3 Q11 Q12 Q13 Q14 Q15
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・Movement rules: Each agent checks the proportion of similar agents among the eight neighboring cells. 
If the proportion does not meet the threshold, the agent relocates to an empty space. 
・ Satisfaction threshold: Three different threshold settings (25%, 50%, and 75%) lead to distinct 
segregation patterns. 
・Simulation process: For each threshold, 100 runs are conducted, and the final outcomes of segregation 
are recorded. 
 The explanatory material was made continuously available throughout the question-answering process 
to allow participants to consult it as needed for accurate interpretation. 

2.2.2 Overview of Visualization Techniques 

Simulation results from Schelling’s model were represented using five different visualization techniques, 
and participants’ comprehension of each was assessed. These visualization techniques were selected based 
on their frequent use in ABSS research, including common formats for representing agent distributions over 
time, as well as scenario analysis tools such as Landscape Analysis of Possibilities and Cladogram Analysis 
of Possibilities (Figure 2). 
 

 
 
 
 
 
 
 

Figure 2: Visualization techniques used in the questionnaire 
 

・Visualization 1: Landscape of Possibilities (Figure 2(a)) - This visualization plotted three outcome 
indicators after 1,000 simulation steps. The x-axis showed the satisfaction threshold, and the y-axis 
represented the indicator values. For each threshold, results from 100 simulation runs were plotted as blue 
dots. 
・Visualization 2: Time-Series Clustering (Figure 2(b)) - This visualization clustered simulation runs into 
three groups based on similar trends over time. For each group, the average change in values over 1,000 
steps was displayed. 
・Visualization 3: Cladogram of Possibilities (Figure 2(c)) - This visualization showed the hierarchical 
relationships between the time-series clusters. The top-level node represented all 100 simulations, which 
branched into three groups: 26, 36, and 38 simulations, respectively. 
・ Visualization 4: Temporal Change (Figure 2(d)) - This visualization presented the time-series 
progression of a single simulation run, focusing on changes in the number of similar neighbors over time. 
・Visualization 5: Agent Distribution (Figure 2(e)) - Agents were displayed as color-coded cells on a grid: 
red and green represented different types of agents, and black indicated empty cells. Although agents moved 
during the simulation, a static snapshot at a specific point in time was used for the questions. 
 Each visualization varies in its representational structure and level of visual complexity. Accordingly, 
the ease of comprehension may differ depending on users’ statistical literacy and the cognitive stage they 
employ. 

2.2.3 Design of Comprehension Questions 

To evaluate participants’ comprehension of visualizations, we developed items based on the revised version 
of Bloom’s taxonomy (Anderson and Krathwohl, 2001). This revised taxonomy emphasizes action-oriented 
cognitive processes, Remember, Understand, Apply, Analyze, Evaluate, and Create. This verb-based 
structure provides for a clearer identification of the cognitive activities involved in learning and processing 
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information, making it appropriate for assessing comprehension of visualized data. Although the revised 
taxonomy consists of six cognitive stages, this study focused on the first four: Remember, Understand, 
Apply, and Analyze. The remaining two stages, Evaluate and Create, involve advanced tasks such as 
evaluating model validity or generating new hypotheses, which require methodological expertise in ABSS 
and subjective judgment. These characteristics make them unsuitable for objective assessment in 
standardized questionnaires. 

The four selected cognitive stages are defined as follows in the context of ABSS: 
A. Remember: The ability to accurately read and extract numerical or factual information from 

visualizations. 
B. Understand: The ability to interpret trends or relationships shown in the simulation outputs. 
C. Apply: The ability to predict the effect of changes in simulation settings. 
D. Analyze: The ability to infer causal relationships underlying the visualized outputs. 

For each of the five visualization techniques, one item was created per cognitive stage, resulting in a 
total of 20 multiple-choice items (Table 2). Participants’ responses (correct or incorrect) were used to assess 
the effectiveness of each visualization technique. 
 

Table 2: Structure of visualization comprehension assessment items 
 

 
 
 
 

 
 
 For example, the following were the items corresponding to each cognitive stage for the Landscape of 
Possibilities visualization: 
・A1: How many simulation runs are plotted for each setting (25%, 50%, 75%)? 
・B1: Which of the following best describes the segregation pattern trends for each threshold (25%, 50%, 
75%) as shown in the Landscape of Possibilities figure? 
・C1: If the satisfaction threshold is increased to 80%, how is the segregation pattern likely to change? 
・D1: The Landscape of Possibilities figure shows that the variation across the 100 simulation runs differs 
by threshold. Which of the following best explains the reason for this variation? 

3 DESCRIPTIVE ANALYSIS AND CORRELATION BETWEEN STATISTICAL LITERACY 
AND VISUALIZATION COMPREHENSION 

The web-based survey was conducted in Japan from December 17 to December 23, 2024, yielding 392 
valid responses. The participants ranged in age from 16 to 82 years, with a mean of 56.12 and a standard 
deviation of 13.11. The majority of participants were in their 40s to 70s. This section presents descriptive 
statistics on participants’ statistical literacy levels and visualization comprehension scores (i.e., number of 
correct responses), followed by an analysis of the correlation between the two variables. 
 Table 3 shows the mean and standard deviation for each item used to measure statistical literacy. Scores 
for Tier 2 items (Q6–Q10), which assess the level of proficiency in interpreting statistics within broader 
social contexts, were relatively high, suggesting that participants possess a moderate level of proficiency to 
read and interpret statistical information in everyday or professional contexts. In contrast, scores for Tier 1 
items (Q1–Q5), which focus on basic statistical concepts, were lower. This indicates that foundational 
knowledge, such as understanding averages and distributions, may not be well established among many 
participants. Rather than relying on formal or logical understanding, participants may be interpreting 
statistical information based on intuition or heuristic reasoning. This tendency is likely to be more 
pronounced among participants who completed their formal education many years ago, as they may have 
forgotten much of what they learned in school about basic statistics. 

Visualization 1 Visualization 2 Visualization 3 Visualization 4 Visualization 5

Remember A1 A2 A3 A4 A5

Understand B1 B2 B3 B4 B5

Apply C1 C2 C3 C4 C5

Analyze D1 D2 D3 D4 D5
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Table 3: Means and standard deviations for statistical literacy assessment items 
 
 
 

 
 Next, Table 4 presents the mean and standard deviation for each item used to assess visualization 
comprehension. From the perspective of cognitive processes, the items related to Remember (A1–A5) 
showed relatively high accuracy, indicating that many participants were able to perform tasks involving the 
extraction of numerical information visually presented in the visualization. In contrast, scores for the 
Understand items (B1–B5) were generally low, suggesting that many participants struggled to grasp trends 
and relationships within the visualized data. Similarly, scores for the Apply items (C1–C5) were also low 
overall, indicating difficulty in predicting outcomes based on hypothetical changes. Finally, while the 
Analyze items (D1–D5) exhibited greater variability in correct response rates, the average scores remained 
at a moderate level. 
 

Table 4: Means and standard deviations for visualization comprehension assessment items 
 
 
 
 

Figure 3 presents a scatterplot illustrating the relationship between the number of correct responses for 
statistical literacy and visualization comprehension. The size of each plot point visually represents the 
number of participants corresponding to each combination of scores. A Pearson correlation analysis yielded 
a coefficient of r = 0.623, indicating a moderate positive correlation between the two variables. This 
suggests that participants with higher levels of statistical literacy tended to interpret visualizations more 
accurately. However, the relationship was not strictly linear. As shown in Figure 3, there were a number of 
participants who, despite having high statistical literacy scores, exhibited low comprehension of 
visualizations. This indicates that differences in the components of statistical literacy, such as tier levels or 
specific abilities, may interact with the stages of cognitive processing and the types of visualization, 
resulting in varying effects on comprehension. 
 

 
 
 
 
 
 
 
 
 
 

Figure 3: Relationship between statistical literacy and visualization comprehension scores 
 

 Table 5 presents the average number of correct responses for each cognitive stage, aggregated by 
participants’ total scores on the statistical literacy assessment. Overall, as statistical literacy scores increase, 
visualization comprehension scores also tend to rise. However, the degree of this increase varies depending 
on the cognitive stage. 

In the Remember stage, accuracy rates were the highest across all levels of statistical literacy, indicating 
that most participants were capable of accurately reading visual information regardless of their literacy 
level. In the Understand stage, participants with statistical literacy scores of 11 or below recorded the lowest 

A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 C5 D1 D2 D3 D4 D5

mean 0.533 0.559 0.296 0.566 0.406 0.288 0.112 0.372 0.245 0.306 0.383 0.181 0.273 0.347 0.214 0.416 0.385 0.268 0.260 0.309

std 0.500 0.497 0.457 0.496 0.492 0.454 0.316 0.484 0.431 0.461 0.487 0.386 0.446 0.477 0.411 0.493 0.487 0.443 0.439 0.463

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

mean 0.423 0.329 0.513 0.298 0.087 0.806 0.503 0.668 0.554 0.579 0.528 0.495 0.375 0.120 0.543

std 0.495 0.470 0.500 0.458 0.282 0.396 0.501 0.471 0.498 0.494 0.500 0.501 0.485 0.325 0.499

132



Ohori, Kageura, and Yamane 
 

 

comprehension scores, whereas those with scores of 12 or above performed second best after the Remember 
stage. This suggests that, while sufficient statistical knowledge enables participants to interpret visual 
structures and trends more effectively, many still experience difficulty at this stage. In the Apply stage, 
average scores remained low across all levels, suggesting that the hypothetical or predictive thinking 
required at this stage cannot be fully supported by basic statistical knowledge alone. For the Analyze stage, 
the scores were somewhat higher than those in the Apply stage, resulting in moderate overall performance. 
This implies that a certain number of participants were able to make plausible inferences about causal 
structures by using visual patterns as cues. 
 

Table 5: Average visualization comprehension scores by statistical literacy level and cognitive stage 
 
 
 
 
 

 

4 PREDICTIVE MODELING OF VISUALIZATION COMPREHENSION BASED ON 
STATISTICAL LITERACY 

This section provides a more detailed analysis of the relationship between statistical literacy and 
visualization comprehension. Specifically, we examine which individual statistical literacy items (out of 
the 15 assessment items) most strongly influence the correctness of responses to visualization 
comprehension items, which are categorized by combinations of cognitive stages and visualization 
techniques. This analysis deepens the understanding of the overall trends presented in the previous section. 
The practical implications of these findings will be discussed in detail in Section 5. 
 To investigate this relationship, we conducted a machine learning-based analysis consisting of two 
steps: training classifiers to predict correctness on each visualization comprehension item based on 
participants’ statistical literacy profiles, and examining the importance of each statistical literacy item in 
determining the prediction outcomes. In this approach, each visualization comprehension item was treated 
as a target variable (binary: correct or incorrect), while the 15 statistical literacy items were treated as 
explanatory variables. In the application of machine learning, high multicollinearity among explanatory 
variables can adversely affect both the predictive performance and interpretability of the model. As part of 
the evaluation, the Variance Inflation Factor (VIF) is computed to assess the degree of multicollinearity. 
The maximum value of VIF was found to be 1.71, indicating no multicollinearity concerns. Therefore, no 
variables were removed or merged. Among various classification models such as logistic regression, 
support vector machines (SVM), and decision trees, we selected LightGBM (Ke, et al. 2017), which 
provided the highest prediction accuracy in preliminary experiments. It should be noted that the choice of 
LightGBM was made solely to ensure predictive accuracy in this study, and we do not claim its general 
superiority. The primary goal of this analysis is to demonstrate the effectiveness of a multivariate 
framework for identifying how visualization comprehension varies depending on statistical literacy, 
cognitive stages, and visualization techniques. In future applications, other models may also be appropriate 
depending on the purpose and characteristics of the data. 
 For model training, we first optimized the LightGBM hyperparameters for each visualization 
comprehension item using the parameter ranges listed in Table 6. A five-fold cross-validation was 
performed, and the mean accuracy was used as the evaluation metric. Bayesian optimization was applied 
to identify the best-performing parameters.  

After optimization, we trained classifiers using the selected parameters to predict participants’ response 
correctness for each visualization comprehension item. The performance of each classifier was evaluated 
using accuracy as summarized in Table 7. Since the proportions of correct answers for some items were 
very low, we additionally evaluated the model using the F1-score as shown in Table 8. Some items yielded 

Correct Answers A B C D
0-2 0.692 0.231 0.692 0.404
3-5 1.672 0.776 0.897 1.216
6-8 2.347 1.000 1.213 1.627
9-11 3.286 2.041 2.071 2.337
12- 3.863 2.784 2.235 2.529
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F1-scores close to zero, indicating that statistical literacy had little explanatory power for those particular 
items. 

Table 6: Parameter ranges for LightGBM optimization 
 
 
 
 
 
 
 
 
 
 

Table 7: Prediction accuracies for visualization comprehension items 
 
 
 
 
 
 

Table 8: F1-scores for visualization comprehension items 
 
 
 
 
 
 
 According to Table 7, some items related to Visualizations 2 and 5 achieved relatively high accuracy 
rates. However, Table 8 reveals that certain items, specifically B2, C2, and C5, had F1-scores of zero. As 
shown in Table 4, these items had very low correct response rates in the original questionnaire data, and 
the classifiers predicted almost all responses as incorrect. This implies that these items were difficult 
regardless of participants’ statistical literacy levels. In this way, the interpretation of accuracy and F1-scores 
suggests several implications.  
 From the perspective of visualization techniques, multiple cognitive stages were associated with low 
F1-scores for Visualizations 2 and 3. In particular, Visualization 3 resulted in low scores for Remember, 
Apply, and Analyze items. This suggests that Visualizations 2 and 3 hinder comprehension across several 
cognitive stages. One likely reason is the high complexity of these visualizations, which involve multiple 
interacting variables.  
 From the cognitive process perspective, Apply items (except for Visualization 1) consistently produced 
low scores. Although Visualizations 4 and 5 appear relatively simple, Apply items, requiring participants 
to predict changes resulting from simulation setting modifications, proved challenging for participants. 
Similarly, the F1-scores for Analyze items were also low, though not as severely as for Apply. These results 
suggest that reducing visual complexity alone is insufficient to support deeper levels of cognitive 
engagement such as Apply and Analyze. 
 Next, we analyzed which statistical literacy items serve as stronger predictors for each visualization 
comprehension item. Figure 4 presents the feature importance results from the LightGBM classifiers, with 
visualization comprehension items on the x-axis and statistical literacy items on the y-axis. In each column, 
greater values are represented by lighter shades. The heatmap shows that certain applied statistical literacy 
items, such as Q6, Q9, and Q14, were among the most important predictors across multiple comprehension 

Visualization 1 Visualization 2 Visualization 3 Visualization 4 Visualization 5
Remember 0.735 0.745 0.709 0.709 0.709
Understand 0.771 0.888 0.732 0.781 0.745
Apply 0.724 0.819 0.730 0.658 0.786
Analyze 0.655 0.640 0.735 0.765 0.709

Visualization 1 Visualization 2 Visualization 3 Visualization 4 Visualization 5
Remember 0.749 0.772 0.081 0.745 0.606
Understand 0.512 0.000 0.605 0.474 0.528
Apply 0.622 0.000 0.018 0.194 0.000
Analyze 0.546 0.402 0.021 0.390 0.392

Parameters Min Max

reg_alpha 0.0001 10

reg_lambda 0.0001 10

num_leaves 2 10

Colsample_bytree 0.1 1

Subsample 0.1 1

Subsample_freq 0 7

Min_child_samples 10 100
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items. This finding suggests that applied aspects of statistical literacy play a more significant role in 
visualization comprehension than basic knowledge alone. 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 4: Feature importance of statistical literacy items for predicting visualization comprehension 
 
 On the other hand, for comprehension items associated with Apply and Analyze stages, items such as 
Q1-Q4, which assess basic statistical concepts, emerged as important predictors. This implies that 
fundamental statistical knowledge is essential for reasoning about the underlying information presented in 
visualizations. In particular, Visualization 1 required a solid understanding of basic statistics, as it closely 
resembles a scatterplot. Without the ability to interpret such visuals statistically, participants would struggle 
to perform accurate analysis. 
 In summary, this analysis reveals that statistical literacy is not a monolithic skill but rather a collection 
of abilities, each influencing visualization comprehension in different ways. Furthermore, the unequal 
distribution of feature importance across the 15 statistical literacy items suggests the potential to predict 
comprehension using a smaller subset of items, which could improve the efficiency of future assessments. 

5 PRACTICAL IMPLICATIONS FOR ABSS VISUALIZATION 

Based on the analyses presented in Sections 3 and 4, this section outlines practical implications for selecting 
visualization techniques in ABSS. The findings suggest that different cognitive stages, Remember, 
Understand, Apply, and Analyze, require distinct considerations when choosing appropriate visualizations 
depending on ABSS users' statistical literacy levels. The following summarizes key insights for each stage. 
 First, at the Remember stage, the relatively high F1-scores indicate that ABSS users’ ability to 
comprehend visualizations can be predicted by their statistical literacy. As shown in Table 4, the correct 
response rates for Remember items were high overall, suggesting that ABSS users with a certain level of 
statistical literacy can perform basic data extraction without additional visual aids. However, Visualization 
3, due to its structural complexity, yielded low F1-scores and low accuracy, indicating that it is difficult to 
comprehend regardless of literacy level. Such complex visualizations should ideally be avoided. 
 At the Understand stage, although the F1-scores were not as high as those at the Remember stage, they 
were still relatively high. Some items also showed clear differences in comprehension depending on 
statistical literacy levels. This suggests that this stage offers useful cues for selecting appropriate 
visualization techniques based on ABSS users’ literacy. However, as Table 5 shows, participants with lower 
literacy scores struggled significantly at this stage. This implies that difficulties may arise regardless of 
visualization technique, requiring careful selection. If ABSS users fail to understand information at this 
stage, subsequent stages (Apply and Analyze) become less meaningful. Furthermore, Visualization 2 had 
an F1-score of 0, and the proportion of correct responses among participants was also low, indicating that 
it is difficult to comprehend regardless of statistical literacy. Since this visualization aggregates multiple 
time series into clustered averages, the original meaning becomes difficult to grasp. At the Understand stage, 
visualizations must emphasize simple structure and clearly perceptible temporal or relational changes. 

A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 C5 D1 D2 D3 D4 D5

Q1 12 9 48 33 28 15 25 55 90 21 52 6 492 65 28 2197 552 4 84 53

Q2 102 62 101 51 47 8 4 37 86 383 63 62 73 52 0 7 166 25 48 34

Q3 26 57 53 24 24 123 3 68 53 25 38 10 23 5 35 5498 32 41 31 19

Q4 39 119 3 39 53 39 47 56 111 32 39 63 18 24 16 77 0 358 60 391

Q5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Q6 21 306 4 10 424 23 10 542 13 39 195 6 7 62 30 5477 56 14 101 62

Q7 70 63 47 32 45 4 28 61 3 57 45 35 21 40 14 36 39 11 7 12

Q8 15 34 41 57 7 106 0 63 1 7 3 13 1 73 105 73 11 44 18 161

Q9 8 10 70 324 40 483 309 16 57 11 11 1 67 6 90 4 5 10 58 19

Q10 31 45 36 20 20 5 22 20 4 13 463 398 14 40 23 30 18 12 37 47

Q11 12 9 40 23 62 10 32 23 6 44 14 78 11 8 15 114 84 44 1 70

Q12 520 110 63 64 11 22 1 25 69 17 45 18 67 73 37 85 6 48 37 82

Q13 70 76 12 45 22 50 76 43 37 36 69 61 10 68 31 17 19 31 59 6

Q14 121 0 448 204 155 88 0 470 86 98 0 81 416 0 355 0 737 12 475 82

Q15 30 70 72 41 49 83 78 33 398 11 29 4 58 31 45 48 38 48 10 37
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 At the Apply stage, all visualizations except for Visualization 1 had extremely low F1-scores, indicating 
that comprehension at this stage cannot be predicted based on statistical literacy. Even participants with 12 
or more correct responses on the literacy assessment had the lowest accuracy at this stage (Table 5). This 
suggests that even ABSS users with strong statistical backgrounds may find it difficult to reason through 
the Apply stage in ABSS contexts. Therefore, those who present ABSS outputs must recognize that many 
ABSS users may face challenges here, regardless of how carefully visualizations are selected. This 
challenge may stem from the need to understand the causal dynamics resulting from changes in simulation 
settings. Simplifying the visuals alone is insufficient; it is likely necessary to incorporate narrative elements 
that explain cause-and-effect changes more explicitly. 
 Finally, at the Analyze stage, although the challenge is not as severe as in Apply, it remains difficult to 
predict effective visualization techniques based solely on statistical literacy. However, Table 5 shows that 
over half of the participants with 12 or more correct answers on the literacy assessment were able to answer 
Analyze items correctly. This suggests that when ABSS users possess a high level of statistical literacy, 
effective visualization selection may still be possible. Furthermore, items Q1 to Q4, covering fundamental 
statistical concepts such as averages and distributions, were found to be important for selecting appropriate 
visualizations. Therefore, assessing ABSS users’ comprehension of these basic concepts may help 
determine whether certain visualization techniques are suitable. 
 In summary, this study suggests that selecting visualization techniques for ABSS outputs can benefit 
from an awareness of ABSS users’ statistical literacy levels and the cognitive stages involved. However, 
existing visualization techniques may be insufficient to support comprehension at the Apply stage. Thus, 
supporting ABSS user comprehension in such cases likely requires additional methods beyond visualization 
alone, such as narrative explanations or other forms of cognitive support. 

6 CONCLUSION 

This study proposed a structured analytical framework for evaluating the comprehension of ABSS 
visualizations, grounded in ABSS users’ statistical literacy and cognitive stages. It then applied this 
framework in an empirical study to explore how different visualization techniques support comprehension 
at various cognitive stages. In particular, the study focused on four stages of cognitive processing, 
Remember, Understand, Apply, and Analyze, and examined the effectiveness of different visualization 
techniques at each stage and their relationship with statistical literacy.  
 The results revealed that certain cognitive stages allow for the prediction of effective visualization 
techniques based on ABSS users’ statistical literacy. This suggests that it is possible to design visualizations 
that better support comprehension when ABSS user literacy levels are known. However, in the Apply stage, 
even ABSS users with high statistical literacy had difficulty interpreting the visualizations, indicating the 
need for supplementary methods beyond traditional visual representation. 

6.1 Contributions 

This study is the first in ABSS to incorporate insights from educational psychology to structure visualization 
comprehension into four cognitive stages, Remember, Understand, Apply, and Analyze, and to 
systematically assess comprehension at each stage. In doing so, it provides a novel theoretical and empirical 
foundation for evaluating the “intelligibility” of visualizations, traditionally discussed in subjective terms. 

From a practical perspective, the study offers actionable insights to support the selection of 
visualization techniques when explaining ABSS outputs to ABSS users, based on their levels of statistical 
literacy. These findings can serve as a foundational framework for designing effective visualizations 
tailored to ABSS user capabilities. In fact, the application of ABSS has been expanding across various 
domains, including business fields such as finance, consumer markets, supply chains, and energy (Macal 
and North, 2010). Additionally, a wide range of tools is now available to support ABSS modeling and 
analysis (Abar et al., 2017). 
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In such contexts of social implementation, it becomes increasingly important to understand how ABSS 
users interpret simulation outputs derived from models and tools, and how these interpretations inform 
decision-making. Thus, beyond technical visual representation itself, this study highlights the necessity of 
considering how information can be presented in ways that support human comprehension and decision 
support. In Japan, Societal Prototyping Design (SPD) initiatives based on ABSS have already begun in 
several municipalities under national-level projects (JST, 2024). In these efforts, it is a growing challenge 
for local government staff and residents to correctly interpret the simulation results. 
 In this broader context, the present study provides practical knowledge for designing more effective 
communication of ABSS outputs to diverse ABSS users. It also contributes to the field of science 
communication, particularly research on knowledge transmission through data visualization (Zallio, 2021; 
Yang et al., 2019), by offering insights into how expert-generated knowledge can be effectively conveyed 
to non-expert users. 

6.2 Future Directions 

This study suggests three major directions for further development. First, empirical validation in specific 
domains is essential. While this study adopted Schelling’s segregation model as a domain-independent 
simulation to minimize the influence of prior knowledge, real-world contexts such as policy decision-
making and business environments often involve domain-specific expertise that can significantly affect the 
ABSS users’ comprehension. Future research should use ABSS outputs grounded in real-world problems 
to evaluate how ABSS users with different roles or interests interpret visualizations, thereby identifying 
specific barriers to comprehension. 

Second, new visualization methods need to be designed based on user characteristics. This study 
evaluated the effectiveness of existing visualization techniques, but going forward, it will be essential to 
develop adaptive visualization approaches tailored to ABSS users’ levels of statistical literacy. In particular, 
for higher-order cognitive processes such as Apply and Analyze, interactive features or narrative-based 
visualizations that explain changes in simulation settings as coherent stories (Hullman and Diakopoulos, 
2011; Botsis et al., 2020) may be especially effective in enhancing comprehension among ABSS users. 

Third, it is important to integrate these insights into a practical guideline for selecting appropriate 
visualization techniques. As the social implementation of ABSS continues to expand, there is a growing 
need for comprehensive design principles that address the question of which types of visualizations should 
be presented to ABSS users with varying levels of statistical literacy and domain knowledge. The present 
study represents a first step toward that goal. Future work should aim to establish a support framework for 
visualization design that is both empirically grounded and theoretically robust, enabling practical 
application in real-world decision-making contexts. 
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