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ABSTRACT

High-fidelity simulation models of variable frequency drives often incur expensive computation due to high
granularity, complex physics and highly stiff components, hindering real-time Digital Twin Industry 4.0
applications. Surrogate models can outperform simulation solvers by orders of magnitude, potentially
making real-time virtual drives feasible within practical computational limits. Despite this potential, current
surrogate models suffer from limited generalizability and robustness. In this paper, we present an industrial
case study exploring the combination of deep learning with surrogate modeling for simulating variable
frequency drives, specifically replacing the induction motor high-fidelity component. We investigate the
performance of Long-Short Term Memory-based surrogates, examining how their prediction accuracy and
training time vary with synthetic datasets of different sizes, and how well the induction motor surrogates
generalize across different motor resistances. This initial study aims to establish a foundation for further
development, benchmarking and automation of surrogate modeling workflow for simulation enhancement.

1 INTRODUCTION

Dynamical systems theory aid in understanding the temporal evolution in physical systems (Legaard et al.
2023), essential for controlling advanced systems that depend on electronic circuits, fluid dynamics, and
more. Engineering simulations facilitate decision-making in design optimization by virtually representing
these complex systems and offering a cost-effective alternative to empirical analyses (Koziel and Yang
2011). Simulation-based design allows engineers to gain a deeper understanding of systems by exploring a
wider range of design parameters and operating conditions in much shorter timeframes, without the need
for expensive prototyping or testing facilities (Alizadeh et al. 2020).

Numerical simulations often incur significant computational costs across many research domains
(Anantharaman et al. 2020; Rackauckas et al. 2022; Alizadeh et al. 2020). This high expense is largely due
to the use of high-fidelity (HF) simulations during the design and development of complex dynamical
systems. HF models typically involve large-scale representations consisting of nested or interconnected
components, requiring high granularity and complex nonlinear physics to accurately capture behaviors of
the modeled systems (Sun and Wang 2019). While lower-fidelity simulations are more cost-efficient, HF
simulations are essential for capturing intricate dynamics and interactions within systems, ensuring that
simulation models meet precision and accuracy requirements of the target application.

Moreover, the Industry 4.0 transformation, centered around digitalization and automation, demands
computationally efficient HF models to enable real-time Digital Twins (DTs) (Rasheed et al. 2020). These
HF models allow DTs to truly reflect real-world conditions and behaviors of their physical counterparts,
thereby directly enhancing systems’ representations in DTs and benefitting from most DTs’ applications,
like predictive maintenance and decision-making. Despite more computing power, advancements in
simulation software, parallel computing, parametrization and downscaling of critical variables,

979-8-3315-8726-0/25/$31.00 ©2025 IEEE 522



Sturek, and Lazarova-Molnar

computational overhead associated with HF simulation models remains a significant concern, preventing
their use in real-time DTs (Anantharaman et al. 2020; Alizadeh et al. 2020; Koziel and Yang 2011).

Surrogate modeling (SMing) alleviates this computational burden by offering a possibility to trade
fidelity for reduced simulation runtimes, aspiring to achieve fast yet reasonably accurate approximations of
HF models, known as surrogate models (SMs) or “surrogates” (Rackauckas et al. 2022). SMing aims to
accelerate simulations by replacing simulation solvers with simplified, data-driven representations. SMs
are typically trained on a finite set of HF simulation outputs and encapsulate complex first-principles
models in a black-box form, without explicitly solving the underlying equations (Koziel and Yang 2011).

Coupling SMing with the widespread success of machine learning (ML) across diverse domains, such
as speech recognition, image classification, and natural language processing (Legaard et al. 2023), prompts
exploration of ML's role in advancing the field of SMing and simulation to further enhance accuracy,
efficiency and adoption of SMs. Recent research highlights the benefits of fusing knowledge and data-
driven approaches by integrating physics expert knowledge into ML to enforce physical constraints in the
models, enhance out-of-sample generalization (Karniadakis et al. 2021), allow for coarser datasets (Raissi
et al. 2019) and increase models’ interpretability (von Rueden et al. 2021).

Current research on SMs often yields domain-specific solutions, lacks robustness and automation.
These deficiencies, combined with the widespread success of ML, motivate us to explore how SMing can
be automated, generalized and integrated with ML to enhance physics-based HF simulation models.

In this paper, we contribute to this exploration by presenting a practical application of ML-enhanced
SMing through an industrial case study that involves first-principle simulations of variable frequency drives
(VEDs). Our focus is on an induction motor (IM) component within a larger power conversion and control
(PCC) model. The PCC model, a key contributor to the overall VFDs simulations during application
development for controlling fans, extruders, pumps, conveyor belts and more, presents a significant
computational bottleneck due to several HF components. The HF simulation model of the IM component
serves as a suitable testbed for our initial case study due to limited complexity and the challenge it presents:
the surrogate model must generate predictions that feed directly into subsequent simulation steps,
effectively replacing the IM simulation in a black-box fashion.

This case study investigates the trade-offs involved in combining ML with SMing. We focus on
component level SMs that can substitute HF IM simulation model in the broader PCC simulation of VFDs.
We demonstrate that our data-driven SMs can accurately predict the transient behaviors of the IM
component with total root mean squared error as little as 0.1446. While larger datasets lead to significant
improvements in SM predictions, they come at the cost of prolonged trainings, leaving room for future
work. We believe our findings provide a meaningful step towards the integration of ML with SMs for
simulation acceleration and scalability.

The remainder of this paper is structured as follows: We first provide the necessary background
concerning VFDs simulations complemented by introduction into surrogate modeling and deep learning
for simulation enhancement and detailed description of our IM case study component (Section 2).
Subsequently, we present our experimental setup followed by case study results and benchmarks (Section
3). Finally, we draw conclusions and provide an outlook on our future work (Section 4).

2 BACKGROUND AND RELATED WORK

2.1 Simulation of Variable Frequency Drives

VFDs control the speed and torque of electric motors by adjusting the power supply’s frequency and voltage
(Mohan et al. 2003). Industry 4.0 transformation, particularly with emerging DTs, is shaping VFDs research
and development. This technological evolution is driving enhancements in operational efficiency and
energy management. To meet sustainability goals in industry, the green transition and electrification require
improved electricity distribution management in the transmission grid to provide stable and reliable supply.

VFDs contribute to analyzing different scenarios in the electricity grid, such as new consumers, energy
sources, electricity demand patterns or network upgrades. To assess the impact of these scenarios and
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monitor grid evolution, transmission system operators like Energinet in Denmark demand various
simulation models of VFDs. These include stationary models for steady-state analysis, harmonic models
for frequency response, electromagnetic transient models for dynamic behavior, and root mean square
models that trade fidelity for faster computation (Commission Regulation (EU) 2016/1388, 2016, Article
21). This necessitates efficient HF simulation models of VFDs, deployable within DTs, known as virtual
drives. Utilizing virtual drives is essential for both enhancing the design process with increased flexibility,
reliability, and faster testing speed, as well as streamlining commissioning processes, improving energy
efficiency, and ensuring safety during testing, thereby contributing to overall sustainability.

Our case study uses VFDs simulation model implemented in Simulink (Simulink 2024b User's Guide),
a causal modeling environment, where (1) several configurations of software components can be tested in
a controlled environment with specified input conditions and support infrastructure; and (2) the concept of
model-based design is employed, which includes automatic generation of C++ code for control algorithms
tailored to the targeted architecture. This concept allows simulation models to follow physical VFDs one-
to-one in terms of application and control software. Additionally, the Functional Mockup Interface (FMI)
(Blochwitz et al. 2011) standard allows each dynamic model to be exported as a component implementing
FMI called Functional Mockup Unit (FMU), for execution of hardware-in-the-loop simulations or exchange
with relevant stakeholders for classic or co-simulations. However, the HF requirements of some VFD
applications significantly increase computational demands. The resulting simulation slowdowns are caused
by highly stiff models in systems with oscillating behavior like insulated-gate bipolar transistors. Therefore,
alternative execution models with at least real-time simulation speed are needed.

Current approaches in industry for accelerating VFDs’ HF simulations primarily rely on reduced-order-
models of components like converters or IMs (Thiringer and Luomi 2001). Faster simulations can also be
achieved by limiting control choices, disabling unnecessary features, and later redefining component
interfaces to pre-built nested component FMUs with their own solvers. While these approaches accelerate
VFDs simulations, they sacrifice some of the detailed knowledge or functionality behind HF models which
opens possibilities to employ SMing for simulation enhancement, on which we elaborate in the following.

2.2 Enhancing Simulations through Surrogate Modeling

SMing has emerged as an effective and highly popular tool for performing HF simulations within
inexpensive timeframes (Alizadeh et al. 2020). This work aims to enhance simulation efficiency by
enabling execution of substantially more simulations with the same computational resources, excluding
other SM applications such as uncertainty quantification or feasibility analysis. According to Tahkola et al.
(2020) and references therein, SMs are classified into three types: (1) hierarchical models that preserve the
physics-based nature of the original HF models and trade execution speed for coarser meshes or neglecting
some physical phenomena (often demanding years of expertise to fully grasp); (2) projection-based models,
reducing the model order by iteratively projecting HF model onto subspaces which is intrusive and often
insufficient in real-time applications; and (3) data-driven models, providing input-output mapping without
knowing the underlying system. As presented in our recent review (Sturek and Lazarova-Molnar 2025),
data-driven SMing includes various approaches relying on interpolation (radial basis functions and kriging);
polynomials (surface regression or chaos expansion); and neural networks (support vector regression or
artificial neural networks). Modern data-driven SMing combines SMs with machine/deep learning (DL)
into architectures like Long Short-Term Memory (Hochreiter and Schmidhuber 1997), Continuous Time
Echo State Networks (Anantharaman et al. 2020), Physics-Informed Neural Networks (Raissi et al. 2019),
or Neural Ordinary Differential Equations (Chen et al. 2018) etc. In these approaches, the main idea is to
forgo a large up-front cost associated with the model training to achieve rapid inference later. Subsequently,
we discuss data-driven SMs that utilize deep learning (DLSMs) in more detail.
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2.3  Deep Learning with Surrogate Models

Blending DL with simulations can help bridge the knowledge gap between these techniques by combining
causal relationships from physics-based simulation models with DL’s capability to uncover hidden
dependencies that might still be present even in HF models. This way, simulation results can be given
broader contexts, facilitate selective SMing, and more efficient parameter studies (von Rueden et al. 2020).
Moreover, data-driven SMs empowered by DL provide predictions at a fraction of time (Legaard et al.
2023) and improve prediction performance with large scale problems and complex data patterns.
Leveraging the universal approximation theorem, stating that there exists a neural network that can
approximate any continuous function to the desired accuracy, research has explored different fields where
DLSMs can be employed to advance HF simulations. These include fluid dynamics (Sun et al. 2020),
gravitational wave astronomy (Khan and Green 2021), aerodynamic design applications (Sun and Wang
2019) or 340-fold acceleration with less than 4% error in dynamics of heating and air conditioning systems
(Rackauckas et al. 2022). Additionally, DLSMs have also been used to accelerate simulations of solid
mechanics (Haghighat et al. 2021), exothermic heat transfer (Amini Niaki et al. 2021), or finite element-
based permanent magnet synchronous machines with 2000x speed up factor (Tahkola et al. 2020).

These successful applications motivate us to develop DLSMs for enhancing VFDs simulations.
Electrical motors, as one of the several components contributing to VFDs simulations, have been the focus
of research exploring the use of DL. Approaches in this area primarily target condition monitoring or
detection and diagnostics of electrical or mechanical faults in stator, rotor and bearings (Zhang et al. 2020;
Gangsnar and Tiwari 2020; AlShorman et al. 2020). From SMing perspective, a common objective is to
optimize motor designs at reduced computation cost (Cheng et al. 2024) by predicting torque and current
transients from finite element analysis simulation data (Kerdnen et al 2020; Takhola et al. 2022). In the
following subsection, we outline the underlying network architecture used for DLSMs in this case study.

2.3.1 Surrogate Model Architecture

When selecting an appropriate DL architecture, we consider three key criteria: (1) the multivariate
regression nature of the problem; (2) industry requirements on software toolchain allowing integration of
SMs into existing VFDs simulation models; and (3) suitability and scalability of the architecture when
automating SMing workflow in the future. For this exploratory case study, we choose Long Short-Term
Memory (LSTM), a class of recurrent neural networks originally introduced in (Hochreiter and
Schmidhuber 1997) and further improved in (Graves 2013). We select the LSTM architecture due to its
capacity to retain temporal dependencies across sequences. This is achieved through its internal memory
cells and specialized gating mechanisms, including input, output, and forget gates. These components
enable LSTM networks to effectively capture long-term dependencies. Furthermore, they help mitigate
common training issues such as vanishing and exploding gradients (Shiri et al. 2024).

LSTM-based surrogates are particularly well-suited to our application for several reasons: (a) they were
shown to effectively handle multivariate regression problems across several tasks (Shiri et al. 2024); (b)
they facilitate automation of SMing workflow with, e.g., automated ML (Baratchi et al. 2024), as they do
not incorporate inductive biases from encoded physics, although doing so could enhance their fidelity and
interpretability (Karniadakis et al. 2021; von Rueden et al. 2021) especially if used as component level
SMs; and (c) they can seamlessly be integrated into the existing VFDs simulation workflow utilizing model-
based design in the industry in the future (Simulink 2024b User's Guide).

Our SMs process batched sequences of multivariate input features matching the IM interface from the
PCC model, which are passed through subsequent hidden layers. Specifically, we use SM architecture that
stacks 4 LSTM hidden layers with hyperbolic tangent activation function, chosen for its support for cuDNN
optimizations (Keras LSTM documentation). With deeper architecture, we aim to enable the learning of
hierarchical representations, enhancing the understanding of intricate sequences. The first three LSTM
layers contain 128 neurons each, while the final layer comprises 64 neurons, distilling essential information
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from data. For generating predictions, our LSTM surrogates employ a fully-connected regression output
layer, with a size corresponding to the number of outputs in IM component, on which we elaborate next.

2.4 Induction Motor Component Basics

The IM model is one out of several power conversion and control (PCC) model subsystems shown in Figure
1(a), representing different functionalities like power conversion, motor and grid control, protections etc.
Thus, setting up inputs of the PCC model from application software allows adjustment of the underlying
control algorithms to control the plant model (compressor, fan, hydraulic pump etc.) or simulated load
profiles connected to the IM model outputs. In our case study, we use a basic Simulink model of a three-
phase IM as presented in (Holtz 1996), rated at 7.5kW, 50Hz, 400V, 14.6A, 1450Nm with power factor
cos @ = 0.83 and motor resistance Ry = 0.7531 that operates according to the mechanical speed input w,y,
on three-phase pulse width-modulated stator voltages Us,,;,, from converter.

From a control perspective, modeling IMs as direct current machines avoids time-varying steady state
values in energy transfer. Thus, our HF IM model utilizes the well-known Clarke and Park transformations
for three-phase stator voltages Us,,,, and currents Ig,,,,, among three-phase stationary (abc), two-axes
fixed (af) or rotating (dq) relative to stator, reference frames as illustrated in Figure 1(b). We refer the
Interested readers to (O’Rourke et al. 2019) and references therein for more details on these transformations.

Our IM model further comprises calculations yielding stator currents and mechanical torque outputs,
utilizing some intermediate results for monitoring purposes. These intermediate calculations are also shown
in Figure 1(b) and include back electromotive force E,,,, electromechanical torque T,, motor fluxes in af3
and their corresponding vector argument 6,. We use the "s" and "r" subscripts throughout this paper to
distinguish between motor's stator and rotor respectively. Following this notation, the three-phase stator
and rotor currents are given by Equation (1) with the motor fluxes by Equation (2), where mutual
magnetization inductance L,, contributes to magnet coupling between stator and rotor to facilitate energy
transfer. In the next section, we provide a detailed description of our VFDs case study.
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Figure 1: (a) A simplified block diagram of power conversion and control model with (b) a detail on
calculations inside high-fidelity induction motor case study component not accounting for phenomena like
magnetic saturation or temperature losses present in real induction motors.

3 CASE STUDY: VARIABLE FREQUENCY DRIVES

Our case study on VFDs begins with an investigation into the performance of the PCC model. Through
several exemplary simulations, we observe the following: (1) The PCC model, when executed as co-
simulation FMU, runs approximately 6 to 10 times slower than real-time. This significant slowdown
prevents the efficient deployment of VFD simulation models inside near-real-time DTs (virtual drives). The
slowdowns are primarily due to several HF model subsystems, such as inverters, rectifiers, loads, and fault
detection mechanisms. (2) The control component, which includes pulse-width modulation responsible for
controlling IGTBs, has the most significant impact on the overall model performance, surpassing the power
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conversion, load, and IM components, respectively. (3) The IM component allocates the majority of its
execution time to numerical integrations for calculating motor fluxes. Thanks to the simplicity of the IM
component within the entire VFD simulation of HF, we selected this component for our initial case study
analysis and benchmarking and proceed by presenting an experimental setup.

3.1 Experimental Setup

With experimental setup, we describe the development of LSTM-based DLSMs for our IM case study
component within VFD simulations. In the following, we outline the methodologies that we used to train
the SMs and the techniques we used to generate synthetic datasets.

3.1.1 Synthetic Data Generation

Recognizing the inextricable link between DL and data, we first generate a synthetic dataset to represent
the systematic behavior of the VFD. Thanks to the application of model-based design concept in HF
simulations, any generated datasets exhibit a high degree of accuracy in representing the control
performance of the real VFD. In this scenario, an IM is attached to a conveyor belt used for goods
transportation in the food and beverage industry. We run forward simulations in MATLAB/Simulink, acting
as black-boxes to produce data for our data-driven SMs. To ensure consistency, we keep IM-related
parameters constant while varying only those influencing the IM operating conditions.

We define this variation in systematic behavior as a basic VFD motor control scenario, illustrated in
Figure 2(b), as follows: (1) The VFD initially ramps up the motor to the reference frequency fr..s at zero
load within the acceleration time t,., relative to the nominal motor speed. (2) Next, we simulate 10 step
mechanical loads, applied in random order, with amplitudes ranging between 10% and 100% of the nominal
mechanical torque T,,,. The exact step torque profile is highlighted in green. (3) After the application of the
last step load, the VFD ramps down the IM to zero speed within deceleration time ¢ ;.

To reduce the computational cost of HF simulations while still covering the design space uniformly,
we employ Latin Hypercube sampling for design of experiments which offers high accuracy with less
computation time invested (Alizadeh et al. 2020). We utilize 256 simulation sample runs instead of grid
sampling, as shown in Figure 2(a). Note that the solutions of these simulations are obtained using a 4" and
5™ order Runge-Kutta integration scheme with an adaptive step size. The number of samples obtained from
each simulation varies due to the total adaptive simulation length determined by the reference speed at
which the step loads are applied, and acceleration and deceleration times obtained from the design of
experiments based on the design space from Figure 2(a).
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Figure 2: (a) Design of experiments (DOE) using 256 Latin Hypercube samples for determining reference
speed w,,, acceleration t,.. and deceleration t,4,. times for induction motor control. (b) A systematic
behavior of induction motor case study component (blue) controlled with variable frequency drive and
applied exemplary mechanical torque T, load profile (green) used to generate synthetic data.

To construct the dataset, we log time series data at regular intervals from each simulation run associated
with the IM, consisting of simulation time stamps, values of voltages and currents in three phases, speed
reference, and mechanical torque, visualized in exemplary simulation result in Figure 3. In total, the dataset
comprises 64,514,048 data points for each logged variable. We refer to this dataset as D,5¢ and use it for
training and validation of our SMs throughout this paper unless stated otherwise.

527



Sturek, and Lazarova-Molnar

To gain insight into how the prediction accuracy of SMs scales with data, we generate three additional
synthetic datasets, each representing the IM's response to step loads. Using the same design space ranges
from Figure 2(a), we systematically reduce the number of sample points in 25% decrements, yielding
datasets D;95, D123, Dgs, Where the subscript denotes the number of simulation runs.

Finally, we examine how prediction accuracy of SMs generalizes across different motor resistances and
load profiles. To this end, we simulate conditions with £20% motor resistance relative to the IM's rated
value, using the last point from the design space covered by 256 simulations (Dgs). In VFD applications
controlling fans, the load profile is characterized by a quadratic relationship, where a small torque at zero
speed progressively builds up to nominal torque at nominal speed. To simulate the fan conditions, we retain
the original 256 sample points but apply a single fan load profile instead (Dg,,). All features in the five
datasets are scaled between zero and one, a method proven to reduce training data size requirements,
enhancing prediction accuracy, and improving training stability (Sun and Wang 2019). Subsequently, we
proceed with training the SMs, which we elaborate on next.
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Figure 3: Exemplary simulation result of variable frequency drive controlling induction motor to the
reference speed w,, (a) by adjusting three-phase stator voltages U, (b) to obtain corresponding stator
currents I, (c), and mechanical torque T, (d) responses to the applied step load torques.

3.1.2 Training of Surrogate Models

As for the toolchain, we train our DLSMs in Python, leveraging TensorFlow 2.18.0 and Keras 3.7.0 APL
To accelerate the execution of training algorithms, we exploit the parallel processing capabilities of an
NVIDIA Tesla T4 GPU. Through experimentation with batch sizes and careful monitoring of GPU memory
usage, we find an optimal batch size of 128, which we apply consistently across all SM trainings.

Besides Dy, which only serves for validation purposes, we split all remaining synthetic datasets into
85% training and 15% validation HF data, ensuring its distribution across the entire design space. We then
proceed to training of LSTM surrogates on Dg, to D56, considering three distinct sequence lengths of 10,
32 and 64 samples denoted as LSTMqq, LSTM35, LSTMg,. The training procedure utilizes the Adam
optimizer with an initial learning rate of le-3 to minimize the mean squared error loss function for 50
epochs. To enhance training stability and mitigate overfitting, we employ a series of callbacks including:
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(1) dynamic learning rate reduction, lowering learning rate of the optimizer by a factor of 0.25 when the
validation loss plateaus for consecutive 4 epochs, subject to a minimum learning rate of 1e-6; (2) early
stopping, terminating the training if validation loss doesn't improve for 5 consecutive epochs and restoring
the best weights observed; and (3) training checkpoints, saving the model weights after each epoch if the
model exhibits validation loss improvement, allowing us to retain the best-performing model. Next, we
present the experimental results and benchmarks associated with our VFDs case study.

3.2 Experimental Results and Benchmarking

When benchmarking DLSMs and evaluating case study results, we base our analysis on the following key
performance indicators: (1) the duration required to train the SMs; (2) the degree of accuracy retained in
the surrogate predictions; (3) the impact of unseen data on the predictive performance of the SMs.

We first examine the implications of sequence length and dataset size on the associated training times
as shown in Table 1. For example, utilizing 64 training sequences, as opposed to 10, resulted in nearly a
two-fold increase in training duration when trained on the largest dataset. However, this trend diminishes
in significance as the dataset size decreases. Training with less data thus allows for greater flexibility in
enhancing the prediction accuracy of LSTM-based SMs by extending sequence length, while incurring
smaller penalty in training duration. Examining the training times further reveals that doubling the dataset
size results in a substantial increase in training duration but the relationship is not strictly linear. In the
future, we intend to gather additional data to continue exploring its impact on the SM training duration.

Table 1: Experimental results for Long Short-Term Memory surrogates of an induction motor with different
sequence lengths. The table details training times (subject to early stopping “ES”) and root mean squared
errors (RMSE) calculated for synthetic validation data and distinct motor resistances. We only show the
first phase if stator current predictions are similar across all three phases.

Surrogate | Training | Training RMSE on D,s¢ R RMSE on Dgg
Model Dataset | Time (h) T Isu Total s T | Igy | Iy, | I
De, | 791ES | 6.0738 | 1.7093 | 3.3835
D, 33.85 | 3.7757 | 1.0624 | 2.1012
LSTM,, Dyop 4593 | 22706 | 0.6478 | 1.2705
20% | 0.5297 | 0.6022 | 0.4403 | 0.5297
Dyse 60.99 | 1.0896 | 0.3332 | 0.6162 | rated | 02735 | 0.2762 | 0.2704 | 0.2735
+20% | 0.4730 | 0.5118 | 0.4181 | 0.4730
De, | 6.78ES | 33779 | 0.9676 | 1.8982
[ 4043 | 2.6796 | 0.8173 | 1.5408
LSTM Dy, 64.18 | 2.6290 | 0.7673 | 1.4771
32 -20% | 0.6150 | 0.4919 | 0.5672 | 0.4095
Dyse 75.44 | 0.5480 | 0.1778 | 03143 | rated | 0.1849 | 0.1876 | 0.1884 | 0.5842
+20% | 0.4006 | 0.4623 | 0.3621 | 0.8377
Des | 8.68ES | 3.5745 | 1.1006 | 2.0316
Dy,g 54.92 | 39922 | 1.1951 | 2.2368
LSTM Dyo, 84.16 | 1.6007 | 0.5277 | 0.9087
64 -20% | 0.4599 | 0.4702 | 0.5537 | 0.3860
Dyse 110.77 | 02419 | 0.0911 | 0.1446 | rated | 02516 | 0.0872 | 0.0860 | 0.0933
+20% | 0.3943 | 03520 | 0.4169 | 0.3127

Next, we evaluate the capability of SMs to mimic the HF behaviors. To enhance the interpretability of
the results, we preserve the units of the original data by computing the root mean squared error (RMSE)
metric between HF validation data from the IM component and LSTM surrogate predictions. As shown in
Table 1, increased sequence length yields more accurate SMs, albeit at the cost of prolonged training times.

For all sequence lengths and the models trained on D,s¢, we conducted an analysis comparing worst
and best-case simulation validation runs. Our findings revealed that these models had a common worst case
simulation, with a 10-20% higher total RMSE compared to the second worst. Notably, the design
parameters used for executing this simulation were not located at the corners of the design space depicted
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in Figure 2(a). We attribute this performance discrepancy to resonance within the system, where the control
algorithms attempt to compensate through voltage drops, thereby inducing additional torque oscillations in
the IM. These oscillations further challenge the prediction capabilities of the SMs.

Short sequences might lead to high frequency oscillations in SM predictions, particularly in regions
where the IM undergoes load torque steps as illustrated in Figure 4(a-b). We speculate this can be attributed
to the solver taking steps as low as 2e-14 around these locations to accurately capture the dynamics while
we only log the simulation data at 1e-4 rate. Consequently, lower sequences may not provide the SMs with
long-term memory needed to stabilize the predictions.

As the dataset size scales from 64 to 256 simulations, the design space becomes covered more densely,
resulting in higher-fidelity LSTM SMs independently from sequence length, as shown in Table 1. However,
each model enhancement in SMing incurs computation when evaluating HF model. In Figure 4(c), we show
the encountered trade-off when aiming to improve fidelity of DLSMs. Each heatmap element shows the
RMSE improvement percentage relative to the baseline at the smallest dataset size, where the risk of
overfitting is highest due to constant validation data, evidenced by early stoppings. Negative RMSE
improvement for LST Mg, trained with 128 simulations indicates overfitting, potentially capturing broader
patterns better suited to the validation set. Mitigation strategies could include simpler models, adjusted
training or, e.g., logarithmic re-sampling of reference speed input to emphasize load step torque regions.
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Figure 4: A comparative detail on high-fidelity solution and predictions from the surrogates where lower
sequence lengths models exhibit oscillatory performance and struggle to accurately capture transitions
immediately following load torque step in both currents (a) and mechanical torque (b). (c) Trade-off
associated with training of surrogates with percentage improvement on total RMSE annotating heatmap
elements and (d) logarithmic training history for LST Mg, surrogate trained on 192 simulations.

While our IM surrogates could further benefit from more data points before RMSE improvement would
plateau, we emphasize that these results will serve as a basis for our future work on developing SMs for
VFD systems, rather than concentrating on individual components. The findings highlight the critical role
of training data in SMs, enabling them to capture intricate relationships and boost fidelity. While Kaplan et
al. (2020) demonstrated that increasing compute, model size and training data in tandem could further
improve the prediction performance of DL-based Large Language Models, we leave an analogous analysis
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for SMs, also based on DL, to future work. We will also investigate automation of surrogate modeling
simulation enhancement workflow for VFDs through generative artificial intelligence represented in multi
agent-based framework such as AutoGen (Qingyun et al. 2023).

Building on the aforementioned insights, we evaluate the out-of-sample performance of our SMs under
varying motor resistances and load torque profiles. Table 1 presents the key results of this analysis. Higher
motor resistance due to temperature rise or load increase in IMs, affects mechanical torque build-up by
reducing the efficiency of energy conversion. This often leads to slower torque response, which the IM may
compensate for by increasing stator currents, thereby drawing more power and generating additional heat.

Generally, we observe that the predictive performance of our SMs on stator currents is more sensitive
to lower motor resistances, with variations particularly impacting I, and I, rather than I, predictions
across all SMs. This underscores that designers need to be notified when using data-driven SMs outside
their reliability region as the observed relationships can change drastically. Due to the lower frequency and
amplitude of torque transients at higher resistances, LSTM-based SMs with longer sequences generalize
better in these scenarios. Conversely, capturing the more oscillatory relationships induced by lower motor
resistances is advantageous with SMs using shorter sequences.

In industry, VFDs are employed in a wide range of applications with unique operational demands,
necessitating IM surrogates performing across different load profiles. Without exposing our SMs to any
data associated with fan loads, we investigated if the surrogates trained on conveyor belt mechanical loads
can generalize to fan load profiles. Although the SMs still could track the main behavior of stator currents,
the associated RMSEs were notably higher. However, the SMs failed to capture the fan loads below
approximately half the nominal speed during both phases when VFD either ramps down or decelerates the
fan. To draw more meaningful conclusions and increase the scope of SMs for several VFDs applications,
further work is needed in generating HF synthetic data across various load profiles and motor types. Hereby,
we plan to reduce bias in SMs by drawing validation and test data from other design of experiment methods.

In future work, we will continue validating our SMs by coupling them inside existing VFDs simulation
framework and running them alongside other HF components in PCC Simulink model to evaluate their
predictive performance within a larger system. A key challenge to address is that the IM surrogates must
provide predictions to be used as inputs for the control algorithms inside the PCC at each subsequent
simulation step. This means minor prediction errors can be amplified through error accumulation across
other VFD simulation components, potentially leading to substantial deviations in control algorithm inputs,
thereby affecting the overall VFD control performance. To facilitate this investigation, we created a
variation point in the PCC model structure, allowing seamless switching between HF and surrogate IM
components, thereby enabling development, verification and validation of SMs in parallel to the original
HF components inside the PCC model. Furthermore, we will determine speed up factors to explore whether
our SMs can enable real-time VFDs simulations. We will export our SMs as FMUs and benchmark their
execution speed against their HF counterparts. We dedicate the next Section to discussing potential avenues
for future work and summarizing our main findings.

4 SUMMARY AND OUTLOOK

This industrial case study paper explores the combination of surrogate models (SMs) and deep learning
(DL) for enabling real-time Digital Twin applications. We target high-fidelity (HF) induction motor (IM)
component in larger power conversion and control model of variable frequency drives (VFDs) simulations.

We generated synthetic datasets using Latin Hypercube sampling to represent IM’s behavior in
conveyor belt applications. Next, we trained Long Short Term Memory-based SMs with varying sequence
lengths and dataset sizes, analyzing prediction accuracy, training duration, and out-of-sample
generalization. Our findings show that: (1) SMs achieve prediction accuracy with a total root mean squared
error as low as 0.1446, while being sensitive to oscillations from suboptimal performance of control
algorithms at specific operation points; (2) training duration exhibits a nonlinear relationship with dataset
size, leading to significant improvements in accuracy; (3) SMs generalize well to varying motor resistances
where lower values predominantly affect current and higher values torque predictions; and (4) SMs fail to
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capture mechanical torque transients when generalizing to fan load profiles unless more synthetic data is
generated, indicating a need for further work.

These preliminary findings lay the groundwork for our future research, highlighting several key
avenues for further development. Our future work will focus on coupling SMs in place of HF components
to evaluate speed up factors, while generalizing the achievements from this case study by developing
additional SMs, including architectures like Nonlinear Autoregressive Exogenous Gaussian Process or
Neural Ordinary Differential Equations. Rather than creating multiple component specific SMs in VFDs
simulations, we will prioritize system-level SMs, where the entire VFD is black-boxed and strictly
parametrized in application software to serve specific applications under well-defined settings.
Additionally, we plan to explore the automated creation of DL-based SMs, implemented in cloud-based
workflow querying HF data from executing VFDs Functional Mockup Units. Developing this workflow
will involve examining scaling laws related to model size, dataset size, and computation. Moreover, we
will explore the use of generative artificial intelligence within an agent-based framework to automate the
simulation enhancement workflow with SMs for VFDs.
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