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ABSTRACT

In semiconductor manufacturing, Statistical Process Control (SPC) ensures that products meet the Electrical
Wafer Sort (EWS) tests performed at the end of the manufacturing flow. In this work, we model the EWS
tests for several products using inline SPC data from the Front-End-Of-Line (FEOL) to the Back-End-
Of-Line (BEOL). SPC data tend to be inherently sparse because measuring all wafers, lots, and products
is both costly and can significantly impact the throughput. In contrast, EWS data is densely collected
at the die level, offering high granularity. We propose to model the problem as a regression task to
uncover interdependencies between SPC and EWS data at the lot level. By applying two learning strategies,
mono- and multi-target, we demonstrate empirically that leveraging families of EWS tests enhances model
performance. The performance and practical relevance of the approach are validated through numerical
experiments on real-world industrial data.

1 CONTEXT, MOTIVATIONS, AND RELATED BACKGROUND

Semiconductor manufacturing can be broadly divided into front-end processing (design and wafer fabrication)
and back-end processing (assembly, packaging, and testing of chips). Modern wafer fabrication involves
hundreds or even more than one thousand steps, many of which can be performed by multiple tools.
The number and complexity of the product routes are increasing significantly with the advancement of
semiconductor nodes. To prevent yield losses, these processes are statistically monitored and controlled
through advanced process control frameworks (Moyne and Iskandar 2017). As illustrated in Figure 1,
throughout the manufacturing flow, SPC techniques are employed to monitor and maintain process stability.
Inline metrology tools measure critical process parameters and detect defects at various steps, while EWS
performs electrical testing of chips on the wafer prior to packaging to guarantee the satisfaction of customer
specifications, alongside other effectiveness-related evaluations (e.g., assembly and associated defectivity
tests, final test) (Furnari et al. 2021). More specifically, EWS, also known as probing, consists of hundreds
or more than a thousand electrical conformance tests, including short-circuit tests, leakage current detection,
and parasitic capacitance measurements (Sarpietro et al. 2022; Rundo et al. 2023).

Despite tight process control, any excursion in front-end tools can still result in yield loss, caused by a
variety of issues (Di Palma et al. 2005). Effectively linking electrical wafer sort data with process steps via
associated parameters can contribute to yield enhancement and rapid root-cause identification (Di Palma et al.
2007). Visual analysis at the EWS stage is one of the most used approaches to characterize wafer defects
and to detect early warning signs of issues originating in upstream manufacturing stages (Sarpietro et al.
2022; Rundo et al. 2024). Existing research in this area has primarily focused on the pattern recognition,
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Figure 1: Statistical Process Control (SPC) and Electrical Wafer Sorting (EWS) measurement events.

semantic segmentation, and classification of EWS defect maps or defect patterns using approaches such
as supervised learning approaches (Kim et al. 2020; Sarpietro et al. 2022), unsupervised deep learning
approaches (Di Palma et al. 2005; Park et al. 2021), and hybrid-learning-based approaches (Yu et al. 2019).
However, there is still limited research on leveraging EWS data to proactively support process optimization
across the entire manufacturing flow, i.e., from FEOL to BEOL.

The early identification of process steps responsible for electrical drifts, which are monitored by SPC, is
critical for enhancing yield and accelerating root-cause analysis. Motivated by that, this paper investigates
the following research questions: Are there any relationships between EWS and SPC data? If yes, how and
to what extent can these relationships be leveraged to optimize semiconductor manufacturing processes?
The main contributions of this work are as follows:

• Modeling the full production flow, from FEOL to BEOL, using SPC and aligning it with EWS data;
• Instead of relying on defect pattern-matching EWS maps to identify root causes, as done in the

related literature, we apply a regression-based modeling approach to uncover interdependencies
between SPC and EWS data at the lot level per product and without cross-product learning;

• Demonstrating how leveraging families of electrical wafer sorting tests during wafer sorting can
enhance model performance;

• Conducting numerical experiments on real-world data and empirically evaluating the proposed
approach;

• Providing a comprehensive overview of the manufacturing processes by connecting data from early
stages (FEOL, tracked by SPC) to a later stage (BEOL, measured via EWS). This integrated view
supports decision-makers in identifying process steps that may contribute to electrical performance
issues, thereby guiding targeted process optimization.

The remainder of this paper is structured as follows. Section 2 defines the problem under study Section 3
presents the proposed modeling framework. Section 4 discusses the results of the numerical experiments
conducted on real-world industrial data. Finally, Section 5 concludes the paper and outlines potential
directions for future research.

2 PROBLEM STATEMENT

Let P• represent a given product. Each product follows a specific production route J• = {o•1,o
•
2, . . . ,o

•
n}, i.e.,

a fixed sequence of n process steps (i.e., manufacturing operations). The production sequence is illustrated
in Figure 1. SPC data is collected at every process step in the product route P•.

After each operation o•i in the production route, one of the qualified machines measures a lot-
representative subset of randomly selected dies from one or several wafers in selected lots to collect
SPC parameters. These lot-level SPC parameters, denoted as Πi,∀i ∈ {1,2, . . . ,n}, are obtained based on
a predefined set of recipes Ri

j specific to each parameter π i
j ∈ Πi. To provide the conditions under which
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a wafer is processed, each SPC entry is uniquely defined by the following triplet:

< o•i ,π
i
j,ρ

i
k, j >

where:

• o•i ∈ J• represents the process step,
• π i

j ∈ Πi denotes the measured parameter associated with process step o•i , and
• ρ i

k, j ∈ Ri
j specifies the measurement recipe applied to parameter π i

j.

With a higher number of process steps per product, SPC entries grow in a combinatorial way, leading to
the so-called problem of the curse of dimensionality (Susto et al. 2015; Korabi et al. 2021).

Downstream of the manufacturing line, the electrical performance of every die (i.e., device) is measured
in terms of m parameter families E•

1 ,E
•
2 , . . . ,E

•
m. In contrast to SPC measurements, EWS data are dense,

providing comprehensive die-level information across the entire set of manufactured wafers (see Figure 1).
To optimize the semiconductor manufacturing processes, this paper explores the relationships between EWS
and complete-line SPC data based on a regression-based modeling approach. In what follows, parameters
expressing electrical performance are referred to as targets, i.e., the variables of interest to be explained
via SPC data.

3 MODELING EWS DATA VIA SPC DATA: REGRESSION MODELING APPROACH

Considering a given product, let us assume that there are interdependencies between the SPC and EWS
data. To identify them, we propose two regression modeling strategies formalized in Algorithm 2 and
Algorithm 3. The proposed approach includes two main stages:

1. SPC and EWS data alignment at the lot level (see Algorithm 1),
2. Model fitting: Two regression modeling strategies are applied in this paper, namely (i) mono-target,

denoted by model_mono (see Algorithm 2), and (ii) multi-target, denoted by model_multi (see
Algorithm 3).

Algorithm 1 : Modeling SPC data via EWS data.

Input:

Notation Description
ℓ Number of lots
J• Product route
Πi Sets of parameter associated with process steps o•i ∈ J•
Ri

j Measurement recipe set applied to parameter π i
j ∈ Πi,∀i ∈ {1,2, . . . ,n},∀ j ∈ {1,2, . . . , |Πi|}

E•
1 ,E

•
2 . . . ,E

•
m EWS target families of product P•

s Number of SPC entries defined by < o•i ,π
i
j,ρ

i
k, j >, ∀o•i ∈ J•,∀π i

j ∈ Πi,∀ρ i
k, j ∈ Ri

j
p Number of relevant tester-related parameters
t Total number of EWS targets t = ∑

m
i=1 |E•

i |

1: Aggregate EWS targets at the lot level yℓ×t

2: Extract matrix of SPC features Fℓ×s

3: Extract EWS tester-related categorical features Cℓ×p

4: Consolidate the set of baseline features X ℓ×(s+p) = [Fℓ×s Cℓ×p], by concatenating SPC and EWS
tester-related features

In addition to the mono-target baseline strategy, the multi-target strategy is designed to predict multiple
targets concurrently to enable the revealing of latent relationships across EWS targets and SPC features
during model training. This is achieved by identifying a partition of the EWS target set into nonempty
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subsets that maximize the predictive performance of the regression model. It is important to note that
the underlying set partitioning step is NP-hard (Balas and Padberg 1976). In this study, we address this
combinatorial optimization challenge using a greedy heuristic that exploits target similarity. We assume that
targets within the same electrical test family exhibit inherent similarity, and group them by EWS parameter
family E•

j . In the case of multi-modality in the distribution of targets, the family is split per mode.

Algorithm 2 : Mono-target regression modeling.

1: Fit t regression models: ȳℓ×1
k = f (X ℓ×(s+p)),∀k = {1,2, . . . , t}

In this work, the greedy heuristic applied in Step 1 of Algorithm 3 clusters targets as follows:

1. Group EWS targets by electrical test families E•
1 ,E

•
2 , . . . ,E

•
m;

2. Split any E•
i where the associated data distribution exhibits multimodality, ∀i ∈ {1,2, . . . ,m}.

By design, the proposed greedy approach is intended to support cross-target learning within each electrical
test family. Further generalizations can be explored and are left for future research.

Algorithm 3 : Multi-target regression modeling.

1: Cluster targets into g groups Gq,q = {1,2, . . . ,g}
2: Fit g regression models
3: Let T (ℓ×u)×1 be categorical features related to test-specific characteristics

ȳ(ℓ×u)×1
q = f ([X (ℓ×u)×s T (ℓ×u)×1]),

where u = ∑
g
j=1 |Gq|,q = {1,2, . . . ,g}

The proposed approach confronts and addresses several intrinsic complexities of semiconductor man-
ufacturing, as follows:

• Redundant machines: SPC and EWS parameters of interest can potentially be processed/measured
by different qualified metrology or tester machines. To address this, the EWS tester-related context
information has been explicitly considered in this paper.

• Low-Volume: Little historical data may be compatible and applicable to support approaches dedicated
to process optimization. In response to low-volume regimes, a multi-target strategy is proposed.

• Data characteristics: Operating in sensor-rich environments, semiconductor facilities generate vast
amounts of data at every stage of manufacturing. However, despite this abundance, applying
machine learning in the semiconductor manufacturing domain remains highly challenging due to
multiple inherent data characteristics (Migueláñez et al. 2005; Clain et al. 2021), including: (i)
Data fragmentation, high-dimensionality: To confront this, high-dimensional SPC data with EWS
outputs are aggregated at the lot level (ii) Non-Gaussian distributions and multi-modal data, and
temporal dependencies: These distribution characteristics are explicitly handled by the design of
the Algorithm 3 and EWS categorical features.

4 COMPUTATIONAL EXPERIMENTS

This section presents an empirical evaluation of the proposed modeling approach under both mono-target and
multi-target strategies. The industrial relevance of the approach is assessed through numerical experiments
conducted on representative industrial data, as described in Section 4.1. The experimental settings and
design are detailed in Section 4.2. A comparative performance analysis of the two strategies, model_mono
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and model_multi, is provided in Section 4.3. Finally, Section 4.4 discusses the industrial implications of
the identified relationships between EWS and SPC data.

4.1 Dataset Description

Numerical experiments have been carried out on three products {P1,P2,P3} and described in Table 1. The
SPC data includes more than 8,708,300 observations and has been collected over two years. Given the
severe sparsity of the SPC data, columns with more than 60% missing values have been removed. As a
result, data related to over 50% (80% in the case of product P3) of the process steps in the product routes
(see the fifth column in Table 1) have been excluded. Regarding the EWS data, numerical experiments
have been conducted on three products, each associated with tens to hundreds of EWS targets, organized
into between 6 and 36 families.

Table 1: Description of the considered dataset.

Product # EWS targets # EWS groups # Lots # Kept (# Total) process steps # Baseline features
P1 25 6 490 42 (306) 228
P3 70 16 135 119 (306) 1,200
P2 223 36 164 149 (306) 1,444

4.2 Experiments: Settings and Design of Experiments

Numerical experiments were conducted in Python using the CatBoost library1, an advanced gradient boosting
framework optimized for handling categorical features (Prokhorenkova et al. 2018). CatBoost employs
ordered boosting to prevent target leakage and ordered target statistics to encode categorical variables
through unbiased estimates of conditional target probabilities. These mechanisms mitigate prediction shift
and substantially reduce overfitting.

To train and validate the regression models in Algorithm 1, a 10-fold cross-validation approach has
been used to ensure robust performance evaluation. To do this, data are divided into ten equal-sized
parts, referred to as folds. Training and evaluating models across these ten different data splits allow us
to capture any variations in the model performance that may arise due to differences in training and test
data distribution. This is particularly important when data distribution affects model quality, as each split
can expose the model to different characteristics of the target variable. At the end of the cross-validation
process, the models are compared, and the best one is selected.

4.3 Analysis of the Performance of the Proposed Approach

Let us analyze the performance of the proposed approach under both mono-target and multi-target strategies.
For validation, we use multiple evaluation metrics: Root Mean Squared Error (RMSE), Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE), Symmetric Mean Absolute Percentage Error (SMAPE),
and the coefficient of determination (R2). Most of these metrics are presented in Figure 4. Among these
metrics used for validation, we focus mainly on the R2 and MAPE, due to their consistent behavior relative
to others across experiments. While R2 focuses on capturing general patterns by measuring how well the
model explains the variability in the actual data, MAPE quantifies the average deviation of the predictions
as a percentage, providing an intuitive measure of precision. Furthermore, R2 and MAPE are often easier
to interpret, as they are scale-free and unit-independent.

Figure 2 compares the performance of model_mono and model_multi strategies in terms of R2 and
MAPE. The X-axis (resp., Y-axis) represents the performance of the mono-target (resp., multi-target)
strategy for a given evaluation metric. The diagonal line indicates parity between models for the selected
metric. Figure 2 reveals that the multi-target model generally demonstrates a slight advantage in accuracy,

1https://catboost.ai
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(c) Product P3

Figure 2: Performance of mono-target versus multi-target models: R2 and MAPE.

as measured by MAPE. While this difference may seem insufficient to justify adopting the multi-target
approach, a closer look at the R2 plots reveals a more pronounced improvement in favor of the multi-target
model. Several factors contribute to this performance behavior: (i) The ability of the multi-target to
learn from multiple targets simultaneously enables it to capture interactions between targets and better
understand the underlying processes. This results in a more comprehensive representation of the data and,
consequently, a better ability to generalize. (ii) In some cases, the distribution of a target may cause the
associated mono-target model to converge toward predicting average values. While this strategy can yield
reasonable predictive accuracy in terms of MAPE, it often reflects a limited capacity to explain the data and
uncover the underlying patterns, as indicated by lower R2 scores. The multi-target model avoids this pitfall
by leveraging information from the joint distribution of multiple targets, enhancing both its explanatory
power and predictive performance. At the same time, it is worth mentioning that the multi-target model
can still benefit from improving the quality of the EWS target grouping.
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Figure 3: Performance of mono-target model versus multi-target model: R2, MAPE, and RMSE.

To measure how close a strategy is to the best one in relative terms, the performance of strategies has
also been compared in terms of relative gaps, as follows:

∆
rel
KPI =

KPI(model_mono)−KPI(model_multi)

best
{

KPI(model_mono), KPI(model_multi)
}
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A consistent trend emerges across different products and EWS targets, as illustrated in Figure 3. The negative
(resp., positive) part of boxplots represents that the multi-target model outperforms the mono-target one for R2

(resp., MAPE, RMSE). Despite minor differences in precision, the multi-target model consistently demonstrates
superior explanatory power. It reveals patterns that provide deeper insight into the relationships between features
and the physical phenomena driving the manufacturing processes. This makes it not only a robust predictive tool
but also a valuable asset for understanding and interpreting the system’s inner mechanisms.

Let us examine the difference in the ability of models to predict data for the training and test sets, illustrated
in Figure 4a and Figure 4b. In the training set, the performance of both models appears similar, indicating that
they are equally capable of learning the underlying patterns. However, when extending the analysis to the test set,
differences in their prediction capacity become apparent. While both models maintain high predictive accuracy as
measured by the MAPE, a closer inspection of the residuals indicates that the mono-target model tends to regress
toward the mean. This behavior is reflected in a lower R2 score, indicating that, while the model is effective in
reducing overall error, it does not capture the full variance of the data as well as the multi-target model. Such
a behavior to predict average values suggests that the mono-target model may be less responsive to the nuances
present in the test data, potentially resulting in underfitting for complex patterns.

(a) Prediction of Target 0. (b) Prediction of Target 24.

Figure 4: Prediction results for both mono- and multi-target models for train and test sets.

Moreover, the differences in performance between the two models become more significant when considering
the practical implications of these metrics. A high MAPE value may indicate that the model performs well in
terms of relative error. However, the lower R2 of the mono-target model implies that it fails to account for the
variability inherent in the data. This could be critical in applications where understanding the spread and distribution
of predictions is essential. This discrepancy underscores the importance of employing multiple complementary
evaluation metrics when assessing model performance and highlights the potential benefits of using a multi-target
approach in scenarios where data complexity is high.

4.4 Industrial Implications

Until now, the focus has been on applying predictive models across the entire manufacturing process flow, from
FEOL to BEOL, to evaluate the relationships between SPC and EWS data quantitatively. In what follows, let us
discuss how the proposed approach can support decision-makers in identifying the process steps responsible for
electrical drifts.
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To analyze the relationship between SPC and EWS stages, we use SHapley Additive exPlanations (SHAP)
values to interpret the model’s predictions (Lundberg and Lee 2017). This approach quantifies the contribution of
each input feature for every sample to the predicted EWS values. Given sufficient predictive performance, SHAP
offers a robust and interpretable way to reveal the interdependencies between SPC parameters and EWS outcomes.

SHAP beeswarm plots in Figure 5 and Figure 6 illustrate the impact of each feature on the output of the models
across all instances. Each point represents a single instance (i.e., row in the dataset ) for a given feature. Features
are sorted on the Y-axis by their overall importance. The X-axis displays SHAP values, indicating whether the
feature increased (positive) or decreased (negative) the prediction. The color of each dot reflects the actual feature
value (blue for low, red for high). A wide horizontal spread means the feature strongly affects predictions. The
joint analysis of color and SHAP value reveals how the magnitude of a feature relates to its effect on predictions.

Figure 5 and Figure 6 illustrate the ten most important features for both models concerning the two targets
discussed previously. Notably, the most important features include both SPC-related variables and EWS target-specific
features, highlighting the key factors influencing the testing process.

Let us focus on the features presented in Figure 5. Some features correspond to the same process step but
involve different measured parameters or even the same parameter measured under different conditions. For the
mono-target model, one of the most influential features belongs to process step process31, along with parameters
108 and 308. These parameters appear across different recipes and process steps, with process31 recurring twice
as a critical procedure. A similar pattern is observed in the multi-target model, where the most important process
steps are process31 and process0. The fact that process31 is important for both models, despite their structural
differences, further reinforces its significance. Comparing multiple models and identifying common influential
features is essential for pinpointing important predictors for a given electrical target, and thus enhancing the model’s
explanation robustness.

Figure 5: Shap values of Target 0 for mono-target and multi-target strategies.

Figure 6: Shap values of Target 24 for mono_target and multi_target strategies.
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Figure 6 reveals a significant influence of the categorical EWS-related features. A comparison of the SHAP
values shows that these parameters largely determine the main characteristics of the two different distributions
presented for the respective target. In addition to the categorical features related to test types, the target name is
also observed. This feature is unique to the multi-target model and helps to group features and highlight their main
differences, such as the average value of the distribution.

Categorical features are prioritized over SPC parameters in both strategies. During training, the associated model
first establishes a general, rough representation of the distribution, with categorical features defining the number of
modes and other characteristics. Subsequently, SPC data refines these predictions to provide more accurate results.
Certain process steps are repeated with different parameters, emphasizing their importance. For instance, process73
is consistently among the most significant in both models, and parameters such as 404 and 308 appear multiple
times across the models.

Figure 7: Process steps of interest and associated numbers of relevant SPC parameters to model EWS data
for a given EWS family via multi-target strategy: Product P1. Boxes in the X-axis represent EWS groups.

There are 218 remaining features for the mono-target model and 219 for the multi-target model, ranked by
explanatory power. The process steps responsible for electrical drifts become apparent only when the models
demonstrate sufficient accuracy.

The analysis of the top ten most important features is summarized in Figure 7 for the multi-target model.
Figure 7 reports how often SCP features associated with a given process step appear among the top ten most
important features for each EWS target. Let us start by examining how to identify the most important process steps
for each group (i.e., family) of EWS targets. For the first group of targets, the most important processes (31, 46, 69,
etc.) are easily identifiable because they are the same for each target in the group. This also indicates the similarity
of the targets that constitute the group. However, this does not hold for all groups, as can be seen with the 4th and
6th groups.

Some process steps, such as 69 and 46, appear as important across multiple families. When a process step
significantly impacts more than one group, it further emphasizes its critical role in the manufacturing process.
The analysis of Figure 7 enables the identification of relevant SPC entries from among thousands of possibilities,
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specifying both the SPC parameters and the process steps in which they occur. As a result, it gives the ability to
optimize specific manufacturing processes, thereby improving both control and quality.

The results of the proposed regression-based modeling approach have been discussed with process engineers
for one product and found industrially relevant. Further in this direction, Fault Detection and Classification (FDC)
will be shared to enable wafer-level alignment with SPC data and will help us identify which process parameters
need to be adjusted to achieve efficient quality production settings.

5 CONCLUSIONS AND PERSPECTIVES

This paper investigates the interdependencies between EWS and SPC data across the entire semiconductor manufac-
turing flow, from FEOL to BEOL, with the aim of optimizing production processes. To this end, a regression-based
modeling approach is proposed, incorporating two strategies: mono-target and multi-target learning. Experimental
results on industrial data confirm the existence of interdependencies between EWS and SPC measurements. Building
on these findings, the paper discusses several industrial implications to support decision-makers in identifying the
main process steps that contribute to electrical deviations.

Following our first promising findings, future research efforts will be dedicated to improving the proposed
approach in several directions:

• Partitioning of the set of EWS targets: Target grouping is performed using a greedy heuristic that exploits the
similarity of EWS parameters at the family level. However, it was observed that not all EWS measurements
are compatible within the considered families using the current strategy, and in some cases, combining them
can degrade model performance. We have not yet investigated whether targets with different characteristics
could positively influence each other when modeled together. Future work will explore methods for
identifying efficient EWS target groupings by analyzing the characteristics and interactions between targets.

• Imputation: Our findings indicate that denser data representations lead to a more reliable model. This, in
turn, improves the consistency in identifying the most influential process steps for a given electrical test
and product. We aim to include an imputation process by incorporating and modeling FDC and SPC data.
This would enable wafer-level modeling and support product-specific process optimization.

• Outlier removal: Outliers can be broadly categorized into two types: (i) those that may result from
measurement errors, and (ii) those that contain valuable information by reflecting meaningful departures
from standard process control. The latter are informative outliers that can provide deeper insights into the
manufacturing process. One of our perspectives is to distinguish between these two types of outliers, which,
in contexts with small sample sizes and fragmented data, can enhance model quality. In addition, we aim
to develop approaches that mitigate model degradation when outliers are identified as true, non-systematic
errors.

• Cross-product learning and transferability: Each product has different electrical performance requirements,
and these requirements are affected differently by each process step. This makes learning across multiple
products challenging when there are no intersecting EWS characteristics. While our current study focuses
on within-product learning, exploring cross-product generalization and transferability remains a promising
direction for future work.

• Validation of the relevance of the results in real-life settings: We aim to extend the analysis to a larger set
of products and share the results with relevant process owners to assess the validity and applicability of the
proposed approach under real-life high-mix manufacturing conditions. Note that SPC data includes not only
the products of interest but also other products that share the same process steps. This broader coverage is
valuable for identifying and investigating real-world interactions between products (e.g., machine memory
effects, cross-product contamination, or batch-related influences) that may impact electrical performance.

• Development of decision-support dashboards: The analysis conducted in this paper will be extended to
provide decision-makers with informative dashboards, such as matrices of critical process steps, machines,
or other context-related settings.
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