Proceedings of the 2025 Winter Simulation Conference
E. Azar, A. Djanatliev, A. Harper, C. Kogler, V. Ramamohan, A. Anagnostou, and S. J. E. Taylor, eds.

ENHANCED UPPER CONFIDENCE BOUND PROCEDURE FOR LARGE-SCALE RANKING
AND SELECTION

Song Huang!, Guangxin Jiang!, Chenxi Li', and Ying Zhong?

School of Management, Harbin Institute of Technology, Harbin, CHINA
2School of Management and Economics, University of Electronic Science and Technology of China,
Chengdu, CHINA

ABSTRACT

With the rapid advancement of computing technology, there has been growing interest in effectively solving
large-scale ranking and selection (R&S) problems. In this paper, we propose a new large-scale fixed-budget
R&S procedure, namely the enhanced upper confidence bound (EUCB) procedure. The EUCB procedure
incorporates variance information into the dynamic allocation of simulation budgets. It selects the alternative
with the largest upper confidence bound. We prove that the EUCB procedure has sample optimality; that is,
to achieve an asymptotically nonzero probability of correct selection (PCS), the total sample size required
grows at the linear order with respect to the number of alternatives. We demonstrate the effectiveness of
the EUCB procedure in numerical examples. In addition to achieving sample optimality under the PCS
criterion, our numerical experiments also show that the EUCB procedure maintains sample optimality under
the expected opportunity cost (EOC) criterion.

1 INTRODUCTION

Ranking and selection (R&S) is a classical and widely studied problem in the field of simulation optimization,
where the goal is to identify the alternative with the largest mean performance from a finite set of alternatives
by conducting simulation experiments and analyzing the resulting stochastic outputs. To address this problem,
various procedures have been developed, which can be classified into two main categories. The first category
is the fixed-precision procedure, which aims to guarantee a user-specified probability of correct selection
(PCS) while minimizing the total simulation budget. Notable works in this category include the procedures
proposed by Bechhofer (1954), Paulson (1964), Rinott (1978), Kim and Nelson (2001), and Hong (2006),
among others. The second category is the fixed-budget procedure, which aims to optimally allocate a
predetermined simulation budget across all alternatives—either statically or sequentially—to maximize
a specific criterion, such as the PCS or expected opportunity cost (EOC). Prominent procedures in this
category include those by Chen et al. (2000), Chick and Inoue (2001), and Frazier et al. (2008), among
others. For more R&S procedures and applications, see (Kim and Nelson 2006; Chen et al. 2015; Hong
et al. 2021; Fan et al. 2025) for surveys.

Traditionally, R&S procedures were developed to address small-scale problems, e.g., kK < 1,000. This
limitation arose because obtaining a reliable estimate of the best alternative required simulating each
alternative many times. With a large number of alternatives, the computational constraints of a single
processor made it impractical to solve such problems within a reasonable amount of time. However, in
recent years, there is a growing need to solve large-scale R&S problems in practice. For example, in supply
chain network design, each production or distribution stage may involve hundreds of participating firms,
leading to an enormous number of possible network configurations (Farahani et al. 2014). Similarly, in
reinforcement learning, the effectiveness of policies often relies on the values assigned to hyperparameters.
When these hyperparameters are discretized, each combination of values can be considered an alternative.
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When the number of hyperparameters increases, the potential combinations grow rapidly (Luo et al. 2022).
Therefore, developing efficient procedures for large-scale R&S problems has become increasingly important.

With the rapid advancement of computing technology, parallel computing environments are becoming
increasingly prevalent and accessible to ordinary users. Consequently, designing efficient procedures to
solve large-scale R&S problems in parallel computing environments has become a key focus in recent
research. Several parallel fixed-precision procedures have been proposed, including the asymptotic parallel
selection (APS) procedure by Luo et al. (2015), the good selection procedure (GSP) by Ni et al. (2017), the
parallelized paulson’s procedure (PPP) by Zhong et al. (2022), the knockout-tournament (KT) procedure by
Zhong and Hong (2022), and the parallel adaptive survivor selection (PASS) procedure by Pei et al. (2024),
etc. In the context of fixed-budget R&S problems, Hong et al. (2022) introduced the knockout-tournament
framework and proposed the fixed-budget knockout-tournament (FBKT) procedure, which, for the first time,
scaled the number of alternatives to the order of millions under the fixed-budget formulation. Moreover, Li
et al. (2025) developed the explore-first greedy (EFG) procedure based on greedy principles, demonstrating
superior performance in large-scale fixed-budget R&S problems.

Notice that the performance of fixed-budget procedures is typically evaluated by fixing the number
of alternatives k and analyzing how quickly the PCS approaches 1 (or the probability of false selection
decreases to 0) as the total sampling budget N — oo (Wu and Zhou 2018a; Wu and Zhou 2018b). However,
for large-scale fixed-budget R&S problems, an alternative evaluation framework has been proposed to better
demonstrate the scalability and efficiency of procedures. Hong et al. (2022) introduced the concept of the
minimal growth rate required for the total simulation budget N to ensure that the PCS does not diminish to
zero as the number of alternatives k increases. This growth rate, termed the rate for maintaining correct
selection (RMCS), serves as an important performance metric in large-scale problem settings, and a lower
RMCS indicates a more efficient procedure. The authors further showed that the optimal lower bound for
RMCS is O (k).

Building on this framework, Li et al. (2025) developed a remarkably simple greedy procedure for
large-scale R&S problems, which allocates each new simulation budget to the alternative with the largest
observed sample mean. Remarkably, the authors found that this simple procedure achieves the optimal
RMCS 0O '(k), and defined procedures that attain this optimal RMCS as exhibiting sample optimality. Despite
its simplicity and sample optimality, the greedy procedure is inconsistent; that is, its PCS does not converge
to one as k — oo, even when the total sampling budget grows faster than the order of k (e.g., on the order of
klogk). To address this issue, the authors incorporated an equal-allocation phase, inspired by (Hong et al.
2022), into the greedy framework, and proposed the explore-first greedy (EFG) procedure. In this procedure,
a fixed proportion of the sampling budget is equally allocated to each alternative before implementing the
greedy procedure, leading to substantial empirical improvements. However, the EFG procedure overlooks
important statistical information from the simulation samples, such as the sample variance. In contrast,
classic fixed-budget R&S procedures, such as Optimal Computing Budget Allocation (OCBA) procedure,
have shown that effectively using variance information can significantly enhance performance. This raises
a critical research question: how can variance information be reasonably and effectively incorporated into
the EFG framework to enhance the PCS?

To bridge this gap, in this paper we propose a new large-scale fixed-budget procedure—the enhanced
upper confidence bound (EUCB) procedure—by integrating the EFG procedure with the classic upper
confidence bound (UCB) algorithm from the multi-armed bandit problem. The main challenge associated
with integrating the UCB algorithm into the EFG framework is that UCB algorithm always allocate samples
to underperforming alternative. Similar to the EFG procedure, EUCB begins by allocating a fixed portion of
the total simulation budget equally across all alternatives. The remaining budget is then allocated sequentially
according to a specific allocation rule. The key distinction lies in this rule: the EUCB procedure replaces
the sample mean with the upper confidence bound of the sample mean. This adjustment allows for a
better exploration-exploitation balance, as the procedure considers both the current average performance
of each alternative and the potential opportunities from alternatives with greater uncertainty. Consequently,
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alternatives exhibiting either high average performance or significant uncertainty are prioritized for further
sampling, thereby enhancing the exploration of high-potential alternatives.

The remainder of this paper is organized as follows. Section 2 presents the problem formulation and
details of the EUCB procedure. The sample optimality of the proposed procedure is established in Section 3.
Section 4 presents numerical experiments to validate the theoretical findings and evaluate the performance
of our procedure for large-scale R&S problems, followed by conclusions in Section 5.

2 PROBLEM STATEMENT

Suppose that there are k alternatives, indexed by the set K = {1,2,...,k}. Let the random variable X;
denote the performance of each alternative i € K. Suppose that the best alternative is defined to have the
largest mean performance, that is,

the best alternative = arg ma]}é(E Xi] .
e
Typically, we assume X; follows a normal distribution with unknown mean g; and variance ¢, and
the observations {X; ;: j=1,2,...} sampled from each alternative i € K are independent and identically
distributed (i.i.d.). Furthermore, without loss of generality, we assume that alternative 1 is the best alternative
in the rest of this paper, which means y; > y;, Vi € K\{1}. We further define
1 & _

1 & ~2
X; (n;) = ;in,j and 5" (i) = —— Y (X=X (m))°
ij=1 i

J=1

as the sample mean and the sample variance of the first n; observations of alternative i, and set Siz(l) =
0, Vi € K. Following the convention in the fixed-budget R&S literature, our goal is to identify the best
alternative, given a user-specified fixed total budget N. Then we further adopt iy as the alternative ultimately
selected by the procedure 7. Therefore, the PCS of procedure 7 can be writen as

PCS;=Pr{iz=1}.

Following the definition of Hong et al. (2022) and Li et al. (2025), we present the following definition
of the sample optimality.

Definition 1 A fixed-budget R&S procedure is sample optimal if there exists a positive contant ¢ > 0
such that
lilgninf PCS > 0 for N = ck. (D)
—»00

This is a crucial metric for large-scale fixed-budget R&S procedures, as classical OCBA-type procedures
require the total simulation budget to grow at least on the order of klogk to guarantee an asymptotically
nonzero PCS, which becomes inefficient for large-scale problems. Definition 1 indicates that sample-optimal
procedures only require the total budget N to grow linearly with & to maintain a non-zero PCS. The FBKT
procedure (Hong et al. 2022) and EFG procedure (Li et al. 2025) are two representative sample-optimal
fixed-budget procedures. In this paper, we introduce the EUCB procedure, a new sample-optimal algorithm
that improves upon EFG by explicitly incorporating variance information to enhance selection efficiency
and further improve PCS.

When addressing R&S problems, there is typically a trade-off to resolve before allocating samples. On
the one hand, alternatives with larger sample means naturally deserve more samples to prioritize potential
optimal solutions. On the other hand, alternatives with higher variances also require additional samples
to improve estimation accuracy. However, none of these three sample-optimal procedures take variance
into account in their sample allocation strategies. To address this, the EUCB procedure adopts a upper
confidence bound that combines the sample mean with its sample standard deviation as an indicator for
sample allocation, while the EFG procedure only relies on the sample mean for decision-making.
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Building on this idea, the EUCB procedure, as detailed in Algorithm 1, requires three key inputs:
the number of alternatives k, represented as Xi,Xs,...,X, the total sampling budget N, and a first-stage
sample size ng (ng > 2). The process starts by collecting ny independent observations from each alternative
i€l,... .k denoted as X;1,X;,,...,X;,,. For each alternative i, the sample mean X,-(no) and the sample

. 42 . .
variance S;” (ng) are calculated based on the first ny observations. Using these, the upper confidence bound

of sample mean for each alternative is defined as U;(ng) = X;(n9) + 1/ §i2(no) /ng. The number of samples
allocated to each alternative, n;, is then initialized accordingly.

Following the first stage, the EUCB procedure enters an iterative sampling phase (Stage 2) that continues
until the total number of samples allocated across all alternatives reaches the budget N. In each iteration,
the alternative b with the highest upper confidence bound is selected, where b = argmax;—;
single additional observation is then sampled from alternative b. After that, the sample mean Xb(nb +1),

the sample variance §b2(nb + 1) and the upper confidence bound Ub(nb + 1) are updated. This process
repeats, allocating one sample at a time to the alternative with the highest U;(n;), until the budget N is
exhausted.

Once the sampling budget is fully utilized, the EUCB procedure concludes by selecting the alternative
with the highest final sample mean as the best alternative.

Algorithm 1 Enhance Upper Confidence Bound (EUCB) procedure

Require: k alternatives X, ..., X, the total sampling budget N, and the first-stage sample size ny, where
ng > 2.
1. Stage 1
2: Foralli=1,... k, take ng independent observations X; 1,...,X; ,, from alternative i, compute Xi(no) =
Z’}OZIX,'J/HQ and Siz(l’lo) = Z?OZI(X,"]‘ —Xi(no))z/(no — 1), then let Ui(l’lo) = Xi(l’lo) + \/ §i2(l’lo)/n0, set
n; = ng.
3: Stage 2
4: while Y5 n; <N do
5: Let b = argmax;—; kU (n,) and take one observatlon Xpn,+1 from alternative b;
6: Update Xp(n, +1) = an (6 Xp (1) + Xp ny 1], S;, (mp+1) = Z””+1(X;,J — Xp(np +1))?/n, and

Up(np+1) = Xp(np +1) + \/Si (np+1)/(np+1), and let np, = np+1;
7: end while

8: Select argmax;c(; k}X( n;) as the best.

.....

3 ANALYSIS OF THE ENHANCED UPPER CONFIDENCE BOUND PROCEDURE

In this section, we will show that the EUCB procedure is sample optimal, and all the proofs of the following
lemmas and the theorem are included in Huang et al. (2025). First, we make the following assumption,
which is usually used in the R&S procedure.

Assumption 1. There exist constants § > 0 and 62 > 0 such that |1, — max;— 2,
62 even though k — oo.

In Assumption 1, the constant § is only required to exist, and its precise value may be challenging for
users to specify. This contrasts with the traditional indifference-zone formulation, where J is presumed to
be known. Therefore, in the R&S literature, the assumption regarding the constant § is a relatively weak
condition. The presence of &2 is to prevent the variance from becoming infinite as k — co. And we prove
the sample optimality of EUCB procedure in the following.

LetZ;,Z,,... be a sequence of normal random variables with mean y and variance 62, Z(n) =Y, Z;/n
be the sample average and S (n) = Y\, (Z,— Z(n))?/(n— 1) be the sample variance of the firstn observations.

k62§

.....
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Denote {Z(n),n=1,2,...} as the running-average process and {U(n) = Z(n) ++/S?(n)/n,n=1,2,...}
as the running-average-upper-bound process. Besides, we let S?(1) = 0. We will adapt two lemmas in Li
et al. (2025) to prove the boundary-crossing time of the running-average process.
Lemma 1. (Li et al. 2025) The running-average process {Z(n),n =1,2,...} reaches its minimum in a
finite number of observations almost surely, that is, Pr{argmin,> Z(n) < e} = 1.

We will establish the sample optimality using the boundary-crossing time. To simplify the notation,
we let N(x) =inf{n:Z(n) < g +x} and Ny (x) = inf{n: U(n) < p +x}.
Lemma 2. (Li et al. 2025) For any x > 0, Pr{N(x) < oo} = 1 and

E [N (x)] = exp @1}1@ (—@))

and furthermore, E[N(x)| is continuous and strictly decreasing in x € (0,00), where ®(-) denotes the
cumulative distribution function of the standard normal distribution.
For any x < 0, E[N(x)] = o and

Pr{N(x) <o} =1—exp (— i 1c1> <‘<fx)> , (2)

n=1 n

and furthermore, Pr{N(x) < oo} is continuous and strictly increasing for x € (—o0,0).

When x = 0, Pr{N(x) < e} = 1 and E[N(x)] = oo.

Lemma 1 provides the guarantee that the running-average process will reach its minimum in a finite
number of observations almost surely and Lemma 2 provides the boundary-crossing time of the running-
average-upper-bound process. By integrating these two lemmas, we derive the following boundary-crossing
probability for the minimum of the running-average process.

Lemma 3. For any negative number x,

Pr{TZi?Z(n) > U —l—x} > exp <— y lo (@)) | 3)

n=1 n

After getting the boundary-crossing probability, we relay the Chernoff bound of normal random variable
and chi-squared random variable in Lemma 4 to get an the boundary-crossing time of running-average-
upper-bound process in Lemma 5.

Lemma 4 (Chernoff Bound). Let X1,Xs,...,X, be a sequence of independent random variables, and let
Y be a single random variable. The Chernoff bound provides the following tail probability bounds for
specific distributions:

(a) If X1,X,...,X, are normal random variables with mean | and variance 6% and X = %Z?ZIX,- is
their sample average, then for any t > 0,
Pr{X >pu+i}<e n @)
xp| —=— |-
Hu SEXP\ 7552
(b) If Y follows a chi-squared distribution Y ~ x,?, where k is the degrees of freedom, then for any
£>0,
Pr{Y > (1+&)k} < ((1+&)e )", )
Lemma 5. Let X;,Xo,...,X, be a sequence of normal random variables with mean | and variance ¢,
let X be the sample average and S* = Y |(X; —X)?/(n— 1) be the sample variance of these n random
variables. For any t > 0,when n > max{35, 1?32 }, we have:
PriX+/S2/n>pttb<2 n ©6)
r n exp| ——— | -
H S 2P| 7252
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Building on Lemma 5 and some theorems in counting processes, we establish Lemma 6 as follows.
Lemma 6. For any t > 0, Pr{Ny(t) <} =1 and

E[fy (1] < |5 e T4 )

5 [1601 2¢°/80°

Getting the above lemmas, we can prove the sample optimality of the EUCB procedure. We let
Ny (t;ng) = inf{n > ng : U(n) < p+t}. We will introduce the relationship between Ny (¢) and Ny (x;n),
it is easy to know that Ny (¢;n0) = Ny (t) when ng = 1, and for any ng > 1, we have

+no+4

_ 1662 2¢1%/80°
E [NU (t,n())] S ’7 f2 —‘ 612/862 — 1

Theorem 1 Suppose that Assumption 1 holds, if the total sampling budget N satisfies N = ck and
12 /852
c> (1662} + 20 . +np+4. The PCS of EUCB procedure satisfies:

2/862 _
i% (f«%)) 0.

n=1

liminfPCS > Pr{m>i€12(n) > Uy — } = exp <

k—>oo

where &y is a positive constant satisfying 0 < & < 6.

Theorem 1 demonstrates that EUCB procedure achieves sample optimality provided that the total
sampling budget grows linearly with some constant factor.

4 EXPERIMENTS

In this section, we conduct some experiments to examine our theoretical results and test the performance of
the proposed procedures. In Section 4.1, we show the sample optimality of the EUCB procedure. Besides,
comparison with other procedures demonstrate the performance superiority of the EUCB procedure. In
Section 4.2, we show the consistency of EUCB Procedure. Furthermore, we show the impact of the rate
of samples in the first stage on the procedure’s performance. Lastly, in Section 4.3, we test the sample
optimality of EOC for existing large-scale fixed-budget procedures.

In this section, we adopt the same experimental setups as Li et al. (2025), including the four problem
configurations.

» The slippage configuration of means with a common variance (SC-CV) under which
w =0.1, 4;=0,i=2,....kand 6? =1, i=1,... .k
* The configuration with equally spaced means and a common variance (EM-CV) under which
w =01, yi=—(G—1)/k, i=2,....kand 67 =1, i=1,... k.
* The configuration with equally spaced means and increasing variances (EM-IV) under which
w =01, gi=—@G—1)/k, i=2,....kand 67 =1+ (i—1)/k, i=1,... k.
* The configuration with equally spaced means and decreasing variances (EM-DV) under which

w =01, ui=—(G—1)/k, i=2,....kand 67 =2—(i—1)/k, i=1,... k.
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In all four configurations, Alternative 1 is always the best alternative. In order to capture the sample
optimality of R&S procedures, we set the number of alternatives as k = 2! with [ ranging from 2 to 16,
and for each k, we set the total sampling budget as N = ck, where c is a specific constant. In addition,
we evaluate the performance of each procedure on a particular R&S problem based on 1,000 independent
macro replications. We compare the EUCB procedure with the OCBA (Chen et al. 2000), ROCBA (Chen
and Lee 2010), EFG (Li et al. 2025), FBKT, and FBKT" (Hong et al. 2022) procedures. Unless otherwise
specified, we adopt the following parameter configurations in experiments. For the EUCB procedure, we
allocate 80% of the total sample budget to the initial phase, setting nyp = 0.8c, to estimate both the sample
mean and sample variance. The remaining 20% of the budget is then distributed sequentially, guided by the
maximum upper confidence bound criterion. In the ROCBA procedure, we assign 20 samples per round
according to the OCBA rule, continuing this process until the entire sample budget is depleted. For the EFG
procedure, we follow the original configuration from Li et al. (2025), dedicating 80% of the total sample
budget to uniform exploration and the remaining 20% to the greedy phase. The FBKT procedure adheres
to the settings outlined in its original paper, with the allocation rule parameter ¢ fixed at 3. Similarly, for
the FBKT™ procedure, 9% of the total sample budget is evenly distributed across all alternatives for initial
estimation, while the remaining parameters are consistent with those of the standard FBKT procedure.

4.1 The Sample Optimality of EUCB procedure

We implement the six fixed-budget R&S procedures, setting the total budget N = 100k across all four
configurations and show the results in Figure 1. The experimental results validate the PCS sample optimality
of the EUCB procedure while also confirming the efficacy of its variance-aware extension.

sc-cv ] ) ) EM-CV

100 100

EY 20

80 80

70 70

60 60

A
501, 50

PCS (%)

408 40

PCS (%)

A
e e
Number of alternatives Number of alternatives

Figure 1: A comparison between EUCB, OCBA, ROCBA, EFG, FBKT, and FBKT™ procedures.

From the results depicted in Figure 1, we observe that the estimated PCS of the EUCB procedure
remains above non-zero levels despite exponential increase in the number of alternatives (k ranging from 22
to 2'9) across all configurations, demonstrating its sample optimality. Besides, under the EM-CV, EM-DV
and EM-IV settings, as k increases, the PCS of the EUCB procedure consistently surpasses the PCS of the
other five procedures by more than 10%.

The underlying insights derived from these results are straightforward. In the EUCB procedure, we
address the uncertainty of sample mean by using its upper confidence bound as the criterion to allocate
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the simulation budget. This allocation strategy improves the overall accuracy of estimates in the set of
alternatives. However, in the SC-CV configuration, when the total simulation budget is N = 100k, each
alternative is allocated an average of 100 samples. Given a performance gap of 0.1 between the optimal and
suboptimal alternatives and a uniform variance of 1 across all alternatives, the sample standard deviation
of the mean estimates becomes the dominant factor influencing budget allocation. Consequently, this leads
to the the inferior performance of the EUCB procedure compared to the EFG procedure. As the simulation
budget increases, however, the impact of the sample standard deviation progressively diminishes, enabling
the inherent algorithmic strengths of EUCB to become more pronounced.

Additionally, we observe a counterintuitive yet rational phenomenon: in the SC-CV configuration,
the FBKT procedure consistently outperforms the FBKT™ procedure. This discrepancy arises because the
FBKT™ procedure is designed to reserve a portion of the budget for estimating "seed candidates" and thereby
prevent superior alternatives from being prematurely eliminated during early-stage encounters. However, in
the SC-CV configuration, where all non-optimal alternatives are identical, such budget reservations become
unnecessary. Consequently, the performance loss incurred by FBKT™ becomes unjustifiable under this
specific setting.

4.2 Additional Properties comparison between the EFG Procedure and EUCB Procedure

4.2.1 The consistency of EUCB Procedure

In this subsection, we verify the consistency of the EUCB procedure and the EFG procedure in Figure 2.
We consider a fixed number of alternatives k = 2'> = 4096 and we vary the value of ¢ from 100 to 900 for
the total sampling budget N = ck to conduct this experiment.

SC-CV (k=4096)

EM-CV (k=4096)

100

901

PCS (%)
«
=)

900 200 300 400 500 600 700 800 900 900 200 300 400 500 600 700 800 900

EM-DV (k=4096)
100 -i ______ g Se— R . - 100
90 O 1

801 ,,".'

700"
_ 601 601 .
IS g
o 50 50
o
4

40 40

30 30

20 20

104 -@- EUCB 10/ -@- EUCB

i EFG i EFG

900 200 300 400 500 600 700 800 900 QDO 200 300 400 500 600 700 800 200
[ [

Figure 2: Estimated PCS of the EUCB procedure and the EFG procedure for different c.

The experiment yields the following findings. First, both the EFG procedure and the EUCB procedure
are consistent. As shown in Figure 2, under each configuration, as the total sampling budget increases from
100k to 900k, the PCS of both the EFG procedure and the EUCB procedure rise to nearly 100%. Second,
we find that under the SC-CV configuration, although the PCS of the EUCB procedure is lower than that
of the EFG procedure when N is small, it surpasses the PCS of the EFG procedure as N increases. This
experimental result further validates the explanation presented in Figure 1 regarding the inferior performance
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of the EUCB procedure compared to EFG under SC-CV configuration. In this setting, the PCS of the
EUCB procedure converges to 100% more rapidly than that of the EFG procedure.

4.2.2 Budget allocation between the first stage and second stage

To understand the impact of budget allocation between the first and second stages on the PCS of both the
EUCB and EFG procedures, we use the proportion of samples allocated in the first stage relative to the
total sample size, defined as p = ng/c, to measure the budget allocation. In the following experiment, we
let k =2'2 = 4096, N = 200k, and vary the value of p from 0.05 to 1. Then, we plot the estimated PCS
against different p for four different settings in Figure 3.
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The value of p The value of p

Figure 3: Estimated PCS of EUCB procedure and EFG procedure for different p = ng/c.

From Figure 3, we get some findings regarding the PCS. Beyond the SC-CV configuration, the EUCB
procedure demonstrates superior performance to the EFG procedure at any identical p-value across other
configurations, further substantiating its advantages in R&S problems. Moreover, under other configurations,
the EUCB procedure exhibits enhanced robustness as the p-value varies, demonstrating superior performance
stability compared to EFG procedure. Besides, a small value of p seems a good selection for EUCB procedure
since the EUCB procedure with a sufficiently small p achieves comparable performance to the optimal
performance of the EFG procedure.

4.3 The sample optimality of EOC

Unlike the PCS, which employs the probability of correctly selecting the best alternative as the evaluation
criterion, EOC adopts the expected difference between the true mean of the ultimately selected alternative
and that of the actual best alternative as its assessment standard. This approach bears conceptual similarity
to the notion of regret in multi-armed bandit problems. In this paper, we define the EOC of procedure 7
as follows:

EOCr =E[u — ;|-
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While the experiments in Section 4.1 have demonstrated the PCS sample optimality of the EUCB
procedure, we further investigate its EOC sample optimality. In this subsection, we conduct empirical
evaluations of the EOC sample optimality for four procedures previously identified as PCS sample-optimal.
The experimental results are illustrated in Figure 4.

As demonstrated in Figure 4, the R&S procedures with PCS sample optimality also exhibit sample
optimality under the EOC metric, closely aligning with the PCS results presented in the previous subsection.
Moreover, the EUCB procedure maintains a significant performance advantage over other sample-optimal
procedures.

SC-cv EM-CV

EOC (x1072)

-@- EucB
- EFG

4 FBKT
-@- FBKT*

EOC (x1072)

) 33 31 35 36 37 38 38 20 U a7 23 i 255 g6 95 33 34 35 36 37 38 38 6 i 35 21 B ok
Number of alternatives Number of alternatives

Figure 4: A EOC comparison between EUCB, EFG, FBKT, and FBKT" procedures.

S CONCLUSION

In this paper, we introduce the EUCB procedure to address the challenges of large-scale R&S problems
by incorporating variance information into the dynamic allocation of simulation budget. We establish the
sample optimality of EUCB through a boundary-crossing perspective. Compared to the EFG procedure, the
EUCB procedure explicitly accounts for the variance of alternatives, which only increases the computation
of the sample sum of squares, leading to a significant improvement in the PCS as demonstrated in our
numerical experiments. Furthermore, simulation results show that EUCB achieves sample optimality not
only in terms of PCS but also with respect to EOC. The numerical experiment also suggests that EUCB is
consistent and exhibits robustness to the proportion of budget allocated during the initial exploration phase.

There are some interesting directions for future research. One promising direction is to extend the
analysis to the Probability of Good Selection (PGS), which could provide deeper insights into the procedure’s
performance in scenarios where selecting near-optimal alternatives is acceptable. Additionally, while this
paper establishes sample optimality with respect to PCS, a formal proof of sample optimality for the EOC
metric remains an open question that merits further investigation. Besides, we will test the robustness and
efficiency of the EUCB Procedure in real-world scenarios.
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