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ABSTRACT

Generative-Al models offer powerful capabilities for learning complex dynamics and generating high-fidelity
synthetic data. In this work, we propose Conditional Temporal Diffusion (CTD) models for generating
wafer fabrication time-series trajectories conditioned on static factory configurations. The model is trained
using data from a Parallel Discrete Event System Specification (PDEVS)-based MiniFab benchmark model,
which simulates different steps of a semiconductor manufacturing process and captures the wafer processing
dynamics (e.g., throughput & turnaround time). These simulations incorporate multiscale, realistic behaviors
such as preventive maintenance and wafer dispatching under both uniform and sinusoidal generation patterns.
CTD models are conditioned on static covariates, including wafer composition, lot sizes, repair type, and
wafer generator mode of the factory. Experimental evaluations demonstrate that the synthetic outputs
achieve high fidelity with average errors below 15% while significantly reducing data generation time. This
highlights CTD’s effectiveness as a scalable and efficient surrogate for complex manufacturing simulations.

1 INTRODUCTION

Simulation-based modeling is essential for analyzing complex manufacturing systems. In semiconductor
fabrication, high-fidelity discrete-event simulation (DES) models like Intel’s MiniFab (Sarjoughian et al.
2023), developed using the Parallel DEVS (PDEVS) formalism (Chow and Zeigler 1994), capture wafer
processing dynamics across stages such as Diffusion (not to be confused with Conditional Temporal Diffusion
(CTD) Model), Implantation, and Lithography. While accurate, these simulations are computationally
expensive and scale poorly with diverse factory configurations or long time horizons. To address these
limitations, we propose a data-driven alternative based on Conditional Temporal Diffusion (CTD) models.
In this work, we explore Conditional Temporal Diffusion (CTD) models (Meijer and Chen 2024) as an
application of generative Al for semiconductor manufacturing. Rather than proposing a new diffusion
algorithm, we adapt the existing conditional diffusion model framework as surrogate models to capture
domain-specific temporal dependencies and process variability in MiniFab simulations. Our CTD model is
inspired by denoising diffusion approaches (Ho et al. 2020), and adapts the idea of progressive denoising
to the time-series domain. It conditions the generation process on static manufacturing covariates such as
wafer composition, repair type, and lot size, enabling context-aware trajectory synthesis. Unlike traditional
time-series forecasting approaches, where we predict future values using a historical look-back window of
the same trajectory (Pendyala et al. 2024), CTD models generate entire trajectories from random noise by
learning to reverse a diffusion process. The reverse process is implemented using a TCN-based denoiser
that captures long-range dependencies efficiently. Our approach targets two key manufacturing metrics -
throughput (TH) and turnaround time (7'A). The dataset, derived from PDEVS simulations, consists of time
series paired with conditional static covariates. During training, Gaussian noise is added to clean profiles
following a predefined schedule, and the model learns to reconstruct the signal from noise, conditioned
on the static covariates. Once trained, the CTD model generates realistic 7H and TA trajectories for new
configurations without re-running the simulation. Importantly, CTD offers constant-time execution across
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varying lot sizes and configurations, as shown in Figure 4, whereas PDEVS simulation time increases
significantly with configuration complexity. This makes CTD highly scalable and computationally efficient
for use in real-time or high-throughput scenarios. In extensive evaluations, CTD models achieve average
errors below 15% for TH and 10% for TA, while offering a high acceleration of the execution time. We
further assess the model’s interpretability based on the influence of the input on the generated outputs,
generalizability across unseen lot sizes, long-horizon drift behavior, and provide insights into the capabilities
and limitations of CTD models for scalable simulation-free data generation in manufacturing systems.

2 RELATED WORKS

In smart connected semiconductor manufacturing, simulation models are important for analyzing key
performance indicators such as throughput and turnaround time (Kopp et al. 2020). Throughput and
turnaround time trajectories can be viewed as time series, where traditional forecasting methods attempt to
predict future values from past trends using a look-back window (Pendyala et al. 2024). However, while
forecasting models can predict future points, they cannot generate entirely new trajectories. In contrast,
Generative-Al models can synthesize realistic time-series data that closely mirrors training data patterns (Guo
and Chen 2024). Generative-Al has shown significant success across domains such as time-series (Rasul
et al. 2021; Kollovieh et al. 2023)and natural language processing (Hakansson and Phillips-Wren 2024).
Recent techniques like Generative Adversarial Networks (GANs) and Diffusion Models enable realistic
simulation data synthesis, reducing reliance on expensive simulations. In the modeling and simulation
space, Generative-Al has been used for simulating human interactions (Gao et al. 2024) and preparing for
extreme climate events (McCormack and Grierson 2024). Inspired by such work, we explore Generative-Al
models to synthesize throughput and turnaround time series for semiconductor manufacturing settings. Our
research focuses on developing a Generative-Al model that can generate time series trajectories based on
factory-specific static conditions. As per the categorization of Temporal Diffusion models highlighted in
(Meijer and Chen 2024), this can be categorized as conditional generation. Conditional time-series data
generation involves the process of generating time-series profiles based on specific conditions or inputs,
like textual prompts or labels, allowing for more controlled and targeted data generation (Zhan et al. 2024).
Rather than running numerous simulations, we train our Conditional Temporal Diffusion (CTD) model to
generate throughput and turnaround time profiles conditioned on conditional settings including wafer lot
configuration, repair type, and uniform/sinusoidal wafer generation patterns.

3 BACKGROUND

Parallel Discrete Event Simulation (PDEVS) models have been developed and used for machine learning
(Sarjoughian et al. 2023; Pendyala et al. 2024), where machine learning models utilize simulation-derived
data. The efficiency of the manufacturing process (e.g., factory throughput) depends on the specification of
each model, such as repair mode and parameterization (e.g., transportation times). It also depends on the
wafer lots that have different configurations, frequencies, and patterns (e.g., uniform), entering the factory.

3.1 PDEVS Semiconductor Fabrication Model

Single-stage and multi-stage semiconductor fabrication factory models are constructed using the Parallel
Discrete Event System Specification (PDEVS) formalism (Chow and Zeigler 1994) and executed through
the DEVS-Suite simulator (ACIMS 2023), following the MiniFab benchmark model (Spier and Kempf
1995). The factory is represented as a coupled system comprising Diffusion (not to be confused with
Conditional Temporal Diffusion (CTD) Model), Implantation, and Lithography machines. Each machine
processes wafer lots through a series of fixed, non-preemptive phases—Iloading, processing, unloading, and
transportation—with configurable stochastic durations. Machines may enter a repair mode after processing
a predefined number of lots or based on the mean time between failures. Coordinators manage the formation
and dispatching of wafer lots/batches to the appropriate machines. The diffusion (not to be confused with
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Conditional Temporal Diffusion (CTD) Model) stage features a dispatcher with a queue feeding two identical
processing machines. Similarly, the implantation and lithography stages consist of machines that process
wafer lots and pass them downstream, adhering to specified timing constraints. These stages are linked in a
sequential cascade factory setting to model multi-stage fabrication systems. Wafer lots undergo six distinct
processing steps—two each in Diffusion, Implantation, and Lithography—within a feedforward-feedback
loop. Transducers collect data from the machines and coordinators without affecting system behavior. The
simulation operates with a time resolution in minutes and includes 10% stochastic variability in wafer
processing times. An 8-stage fabrication system is created by cascading eight single-stage factories, where
each stage’s output becomes the input to the next. The factory handles three wafer types—Product a
(Pa), Product b (Pb), and Test wafer (Tw)—which are grouped into batches/lots of three (wafer batch/lot
formation rules are applied at every stage. E.g., at most one Tw wafer in a batch/lot of size three) at each
stage and process them chronologically in a 6-step process. For each stage, we have the diffusion (not
to be confused with Conditional Temporal Diffusion (CTD) Model) machines A and B perform steps 1
and 5, implantation machines C and D perform steps 2 and 4, and lithography machine E handles steps 3
and 6 as shown in the Figure 1. Wafer lots are generated by atomic models at fixed intervals: Pa every 8
hours, Pb every 16 hours, and Tw every 24 hours. Each of the sinusoidal wafer generators has sequenced
amplitudes 1, 2, 3, 2, and 1.
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Figure 1: Component-based PDEVS model (Sarjoughian et al. 2023).

3.2 Conditional Temporal Diffusion Models

Conditional Temporal Diffusion (CTD) models work by establishing a Markov process (Kemeny and Snell
1960) that progressively introduces noise into a clean data sample in D number of forward diffusion steps,
where entire trajectories are corrupted to capture both temporal dependencies and the underlying data
distribution (Lin et al. 2024). A noise variance schedule, {B,}7_,, where B; € [0,1] determines the
noise addition for D steps of the forward diffusion process. The cumulative noise factor is computed as
Qg = Hle (1 — By), representing the fraction of the original signal preserved up to step d. For a clean
time series y, the noisy data at step d is generated by y¢ = /@y ++/1 — @y €, where ¢ is sampled from
a noise distribution p(€). During training, a neural network ¥ (parameterized by 0) is trained to predict
the denoised output via § = % (y,c), where ¢ represents conditional static covariate, by minimizing the
loss - Z(y,$). For N number of time-series trajectories {(y;,¢;)}?_,, where y; corresponds to a time-series
trajectory and ¢; corresponds to the respective conditional static variables, the training procedure is as
mentioned in Algorithm 1. This allows the model to denoise trajectories across varying noise levels.
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Algorithm 1 Conditional Temporal Diffusion (CTD) model training procedure.

1: Input: Time-series profiles - {(y,c;)}Y.; where y; represents a time-series profile and ¢; represent its
corresponding Conditional Static Covariates, Number of Diffusion Steps D
2: for each epoch do

3 for each time-series profile (y;,¢;) do

4 Sample a random diffusion step d € {1,...,D}
5: Sample noise € ~ p(¢)

6: Compute @y = Hle (1—py)

7 Generate noisy input: y¢ = /@y ++/1— 0y €
8 Predict denoised output: y; = % (y?, ci)

9 Compute loss: £ (yi, %)

10: Update model parameters 8 to minimize loss
11: end for

12: end for

In the generation phase, starting from a noisy signal y? ~ p(yP), the trained model %y model iteratively
refines the signal using the reverse update. This iterative reverse process gradually removes the noise,
ultimately reconstructing a clean time-series y°, and the model applies the learned reverse diffusion process
to generate new time-series trajectories as described in Algorithm 2. This general framework for training
and testing temporal diffusion models provides a flexible and scalable approach for generating high-fidelity
synthetic time series conditioned on static variables. This can be extended to generate time-series profiles,
which can be computationally intensive to generate using simulation models.

Algorithm 2 Conditional Temporal Diffusion (CTD) model time-series profile generation procedure.

1: Input: Trained Model ¥y, Conditional Static Covariates ¢, Number of Diffusion Steps D, Noise
Schedule {B4}5_,
Initialize y© ~ p(y”)
ford=D...,1do

Predict denoised signal: 7/~! = %, (y?,c) Set value:

yi=1 g1
end for
Apply smoothing: y° = GaussianFilter(y’,c =1)
return )°

4 METHODOLOGY

The process of generating throughput and turnaround time profiles of a semiconductor manufacturing
factory involves the transformation of noise signals into valid time-series data for faster computation than
the simulation models. Hence, we define our problem statement as -

Problem Statement: Let dataset 2 = {(y;,c;)}Y.,, where each y; € R is a time-series trajectory for T
time steps and ¢; € R¥ is a vector of conditional static covariates of size k that define y;. Define a generative
model %, : RT x R¥ — R” | such that, for a noise vector n ~ p(n) with p(n) being a suitable prior distribution
on R?, the synthetic time series is given by ; = % (n,c). We determine the optimal parameters 6* for %

by solving 8" = argming E(y, .)~2 n~p(n) [X(yi,gg (n,c))], where .7 is a loss function.

The model ¢y employs a two-phase procedure: a training phase that learns to reverse a forward diffusion
process and a testing phase that generates new trajectories from random noise as described in Section 3.2.
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4.1 PDEVS Simulation Dataset

The PDEVS-based semiconductor fabrication model described in Section 3.1 is used to generate throughput
(TH) and turnaround time (T'A) trajectories. Since these are discrete-event outputs with a continuous-time
base and sparse value changes, the trajectories’ time bases must be pre-processed into discretized time
bases for ML-based analysis. We convert each discrete-event trajectory into a discrete time series by
keeping the time interval fixed to one minute. Forward-filling is applied to fill missing values, reflecting the
piecewise-constant nature of DEVS atomic model outputs for throughput and turnaround time. Figure 3
illustrates the TH and TA profiles after this transformation for an 8-stage cascade MiniFab factory. Each
time-series trajectory is defined by its conditional static covariates: wafer types (Pa, Pb, Tw), lot size,
repair type- Mean Time Between Failure (MTBF) or Processing-steps based, and wafer generation pattern-
Uniform or Sinusoidal (Pendyala et al. 2024). The simulation experiments span over six factory scenarios as
summarized in Table 2, each combining a repair strategy with a wafer generator type. Wafer lots are grouped
into small (60—108 wafers), medium (120-156), and large (168-204). For training, 9 lot configurations (3
from each lot size group) were used per scenario, resulting in a total of 54 TH and TA profiles. Testing was
performed using 3 new configurations (1 per lot size group) for each scenario, totaling 18 test profiles. All
configurations are detailed in Table 1. Each trajectory spans 30,000 time steps (minutes), corresponding
to the upper bound on simulation duration across all configurations. Additionally, to assess scalability and
computational efficiency (discussed in Section 5.2), we generated TH and TA profiles for 93 distinct wafer
configurations, varying Pa, Pb, Tw, and lot size.

Table 1: Simulation Wafer Configurations.

Train Configurations Test Configurations Table 2: Simulation Scenarios.
Lot Size Category Pa Pb Tw Lot Size Pa Pb Tw Lot Size
0 54 18 72 Scenario Repair Type Wafer Generation
Small 0o 72 0 72 3 42 15 60 A No Repair Sinusoidal
6 51 3 60 . .

73 30 12 120 B No Repair Uniform

Medium 9 18 36 144 72 45 27 144 c MTBF Uniform

93 24 39 156 D Processing Steps  Uniform
120 30 30 180 E MTBF Sinusoidal
Large 1470 33 180 150 24 18 192 F Processing Steps  Sinusoidal

168 9 15 192

4.2 Model Architecture

The dataset described in Section 4.1 consists of time-series profile y € R” paired with static covariates
¢ € R¥, which is further normalized using MinMax scaling for training stability (Pedregosa et al. 2011). As
discussed in Section 3.2, the ¢ predicts denoised ¥ trajectory from a noisy trajectory conditioned on static
covariates to reconstruct TH & TA profiles. The model employs a forward diffusion process to corrupt
inputs and a reverse process to generate clean sequences.

4.2.1 Training Procedure

Training involves teaching the model to reverse a forward diffusion process as shown in Figure 2(a) and
discussed in Algorithm 1. Given a pre-processed simulation time-series y € R” (e.g., TH or TA), noise is
added based on a predefined schedule {f,}2_,, where we trained our model with T = 30,000, D = 2,000
and B linearly ranging from 0.01 to 0.1. The cumulative noise factor is computed as &; = [T, (1 — ),
representing the preserved proportion of the original signal up to diffusion step d. The noisy signal at step
d is y! = /gy ++/T— d4¢€, where € ~ .#(0,1) is a Guassian Noise. The use of zero-mean, unit-variance
Gaussian noise ensures stochasticity while preserving differentiability, hence suitable for training the reverse
denoising model via gradient-based optimization. We have used a Temporal Convolutional Network (TCN)
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Figure 2: Model ¥y architecture for generating time-series profiles (TH/TA vs time).

(Bai et al. 2018) model as ¥ since it is designed to capture long-range dependencies. The model takes the
noisy time-series y?, and static covariates c as inputs and outputs the denoised profile $/~! =% (y?,c). The
final output layer of the model employs a Softplus Activation to ensure non-negative values. The training
objective is to minimize the composite loss function (.Z’), for which we have used the Mean Squared Error
(MSE) and Mean Absolute Error (MAE), to reduce overall error by balancing the smoothness and sharpness
of the generated trajectory. The model parameters 6 are updated using the Adam Optimizer (Kingma and
Ba 2014), and we trained our model for 50 epochs.

4.2.2 Time-series Profile Generation

The generation process, or reverse diffusion as shown in Figure 2(b), begins with a random noisy signal
yP? ~ p(y”) (typically sampled from a standard Gaussian distribution). The model then progressively
removes noise using the learned reverse update. For each denoising step d (iterating backward from D
to 1), the model predicts the denoised trajectory $¢~! from the current noisy input y¢ (conditioned on ¢
and d). To further smooth the generated trajectory and remove any residual high-frequency artifacts, a
Gaussian filter (Gonzalez and Woods 2002) is applied along the time axis to smooth high-frequency noise.

The final output y° is the generated, denoised time-series profile.

S EXPERIMENTAL RESULTS

Experiments were conducted for the CTD models based on the scenarios described in Table 2 for wafer
configurations mentioned in Table 1. Every TH and TA profile for our experiments is defined by their
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conditional static variables: Pa, Pb, Tw, Lot Size, Repair Type, and Wafer Generator. The CTD models
are evaluated on their capability to generate 18 different TH & TA time-series profiles as mentioned
in Section 4.1, compared to the actual PDEVS simulation time-series profiles. To quantitatively assess
performance, we employ standard regression evaluation metrics—Mean Squared Error (MSE), Coefficient
of Determination (R?), and Mean Absolute Percentage Error (MAPE)—which provide insight into the
accuracy, fit quality, and relative deviation of the generated profiles from the ground truth (Kim et al. 2025).

5.1 Throughput & Turnaround Time Profile Generation

After training the Conditional Temporal Diffusion (CTD) model, we evaluated it on 18 test configurations
across all simulation scenarios defined in Table 1 and Table 2. Figure 3 compares the generated throughput
(TH) and turnaround time (TA) profiles against the ground truth from preprocessed PDEVS simulations.
The CTD model accurately reconstructs full-length TH and TA trajectories with minimal deviations. Unlike
traditional forecasting approaches (Pendyala et al. 2024), which predict one step at a time using historical
data, CTD generates the entire sequence from noise, conditioned only on static covariates. Zoomed-in
plots highlight the model’s ability to reproduce local fluctuations based solely on static input, as shown in
Figure 3 and discussed in Section 3.2. Quantitative results in Table 3 show that CTD achieves an average
MAPE below 15% for TH and below 10% for TA. The MSE values for TH & TA are in the range of
1078 & 108 because of TH and TA values being in the range of 10* & 10* respectively. Turnaround
time is easier to predict due to its stable nature, while throughput, being sensitive to factory dynamics,
shows more variation. Scenario B (no repair, uniform generator) yields the best 7H accuracy due to its
simplicity, while Scenarios E and F exhibit higher errors (14.29% for TH and 6.10% for TA) due to
preventive maintenance and sinusoidal input patterns. Despite these challenges, CTD consistently captures
temporal trends, offering a reliable and efficient surrogate for complex manufacturing simulations.

Table 3: Average MSE, MAPE, and R?> Scores on Test Configurations for CTD Model.

Throughput Turnaround Time
Scenario MSE  R°Score  MAPE ~ MSE  R>*Score MAPE
8.07E-08 0970 10.69% 1.25E+06 0970 3.38%
3.66E-08  0.970 717% 127E+06  0.967 5.50%
1.26E-07 0958 14.20% 1.40E+06 0.963  6.21%
9.58E-08 0.968 12.88% 1.07E+06 0971 4.96%
1.43E-07  0.951 1429% 1.20E+06  0.968  5.74%
1.03E-07 0.965 13.20% 1.27E+06 0.966  6.10%

T AW

5.2 Computational Efficiency

An important advantage of Conditional Temporal Diffusion (CTD) models over traditional PDEVS-based
simulation is their superior computational efficiency. To empirically evaluate this, we compare execution
times for both approaches under identical conditions. The experiment involves 93 unique wafer configurations
(Pa, Pb, Tw, and Lot Size), using a uniform wafer generator with no repair (Scenario B), and measures
the time to generate complete throughput (7 H) and turnaround time (7A) profiles. As shown in Figure 4,
the execution time for the simulation model (Figure 4a) scales non-linearly with lot size, increasing from
approximately 100 seconds at a lot size of 60 to over 1000 seconds at a lot size of 204. This increase stems
from the discrete event simulation’s intrinsic step-wise execution, where complexity grows with the number
of wafers, machines, repair cycles, and stochastic delays, resulting in an approximate time complexity of
O (n-m-d)—where n is the number of wafer events, m is the number of machines, and d is the number of
delays per wafer. In contrast, CTD model generation time remains nearly constant across configurations
(Figure 4b), averaging around 0.05 seconds per configuration. Since the model generates an entire time
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Figure 3: TH and TA profile generation for 8 stage MiniFab cascade factory (Pa=72, Pb=45, Tw=27).

series in a single forward pass through a neural network, its time complexity is &(T'), where T is the fixed
length of the output sequence (e.g., 30,000 time steps). This complexity is independent of the internal logic
of wafer movement or lot configuration, yielding scalable and efficient inference irrespective of simulation
conditions.

5.3 Impact of Conditional Static Covariates

Static covariates play a crucial role in shaping throughput and turnaround time profiles and generating these
profiles using CTDs. In this experiment, the CTD model was trained on various configurations involving
wafer composition (Pa, Pb, Tw), Lot Size, Repair Type, and Wafer Generator, and we checked the impact
of each of these static covariates on the CTD model. As shown in Figure 5, feature importance was
assessed using Integrated Gradients (IG) (Sundararajan, Taly, and Yan 2017), which computes attributions
by integrating output gradients with respect to input features along a baseline path. For throughput (T H), the
Tw (Test wafer) variable had the largest influence, contributing 34.93%, highlighting its role in creating valid
wafer lots and directly impacting throughput as mentioned in Section 3. Lot Size had smaller contributions
of 5.42% as it is just the sum of total number of Pa, Pb & Tw wafers. For turnaround time (TA), Pb
had the highest impact with 43.52%, followed by Tw (14.78%) and Repair Type (10.46%). These results
further demonstrate the significant role of wafer types in both TH and TA profile generation, crucial for
valid wafer lot formation (Pendyala et al. 2024). Static covariates were normalized using MinMax scaling
to ensure stable and equal contributions during training. The importance of each feature was calculated
over 50 samples, and average attribution percentages were plotted.
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Figure 5: Conditional Static Covariate Attribution.

5.4 Cross-Process Transferability

To evaluate the generalizability of the Conditional Temporal Diffusion (CTD) model, we conduct a cross-
process transferability test by training separate models on small (M), medium (Mpedium), and large
(Myarge) lot sizes, as defined in Section 4.1. These are compared to the original model trained on the
full dataset (Moriginal)- As shown in Figure 6(a), MAPE for TH exceeds 60% for Mgy, indicating poor
generalization. Medium and My perform better, with MAPE in the range of 35-40% and 25-30%,
respectively. In contrast, Morigina achieves MAPE below 15% across all scenarios. For TA, which is
less sensitive to process variations, all models generalize well, with MAPE under 6%. Since TA reflects
average processing time per wafer or lot, its temporal profile is more stable. However, the overall accuracy
reduces when model is trained with less data even for TA profiles. These results highlight the CTD model’s
sensitivity to training diversity, particularly for volatile metrics like throughput.
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5.5 Long-Term Stability & Drift Analysis

To assess long-horizon stability, we conduct a drift analysis comparing CTD-generated trajectories against
PDEVS ground truth. As shown in Figure 7, CTD accurately follows initial 7H and T'A patterns but gradually
diverges over time. This drift stems from its non-autoregressive formulation: the entire sequence is generated
from a single noisy input yp, conditioned on static covariates ¢, producing output y° = % (y?, c). Without
temporal correction, small deviations accumulate, especially over long durations. While trends are well
captured, smoothing via Gaussian filters can suppress key transitions, especially in throughput—highlighting
the need for autoregressive or corrective extensions for improved long-term fidelity. Additionally, the
diffusion model is configured to generate TH and TA profiles up to a fixed horizon of 30,000 minutes.
However, the actual simulation end-time varies with factory configurations, and without this contextual
information, the model may overshoot or undershoot the actual length, and incorporating dynamic end-time
awareness could prevent this.
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Figure 7: TH and TA profile generation for 8 stage MiniFab cascade factory (Pa=150, Pb=24, Tw=18).
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6 CONCLUSION & FUTURE SCOPE

We proposed Conditional Temporal Diffusion models as fast, data-driven surrogates to simulate semicon-
ductor fabrication manufacturing systems. Trained on 54 configurations and evaluated on 18 test cases, CTD
achieved mean absolute percentage errors of less than 15% for throughput (TH) and 10% for turnaround
time (TA), while reducing execution time by a factor of 10° compared to the DEVS-Suite simulator.
Unlike step-ahead time-series forecasting, CTD models generate the entire time-series trajectories from
noise, conditioned only on finite prior simulation data sets and static covariates. While CTD produces high-
fidelity trajectories, it is sensitive to training diversity — cross-process experiments. For example, it shows
accuracy drops when trained on limited lot-size configurations, revealing its dependence on representative
data. Nevertheless, CTD models are promising as surrogate simulation. This study provides a demonstration
of the role of conditional covariates like wafer type, wafer lot size/configuration, wafer generation pattern,
and repair type. Future work will explore the robustness of the models as the patterns and durations of
the simulated MiniFab data trajectories are varied. Additionally, we will focus on addressing long-horizon
drift and improving model robustness. This involves expanding the space of conditional variables (e.g.,
changing routing patterns) and data trajectories (e.g., durations vary from a few weeks to months) to better
capture real-world complexity that governs manufacturing operational scenarios.

ACKNOWLEDGMENTS
This research is funded by Intel Corporation, Chandler, Arizona, USA.

REFERENCES

ACIMS 2023. “DEVS-Suite Simulator, version 7.0”. https://acims.asu.edu/devs-suite/, accessed 15% March 2024.

Bai, S., J. Z. Kolter, and V. Koltun. 2018. “An Empirical Evaluation of Generic Convolutional and Recurrent Networks for
Sequence Modeling”. In Proceedings of the 35th International Conference on Machine Learning (ICML). July 101-15t,
Stockholmsmaéssan, Sweden, 732-740.

Chow, A. C. H., and B. P. Zeigler. 1994. “Parallel DEVS: A Parallel, Hierarchical, Modular Modeling Formalism”. In 7994
Winter Simulation Conference (WSC), 716-722 https://doi.org/10.1109/WSC.1994.717419.

Gao, C., X. Lan, N. Li, Y. Yuan, J. Ding, Z. Zhou, et al. 2024. “Large Language Models Empowered Agent-Based Modeling
and Simulation: A Survey and Perspectives”. Humanities and Social Sciences Communications 11(1):1-24.

Gonzalez, R. C., and R. E. Woods. 2002. Digital Image Processing. New Jersey, USA: Prentice-Hall, Inc.

Guo, X., and Y. Chen. 2024. “Generative Al for Synthetic Data Generation: Methods, Challenges and The Future”. arXiv
preprint arXiv:2403.04190.

Hakansson, A., and G. Phillips-Wren. 2024. “Generative Al and Large Language Models - Benefits, Drawbacks, Future and
Recommendations”. Procedia Computer Science 246:5458-5468.

Ho, J., A. Jain, and P. Abbeel. 2020. “Denoising Diffusion Probabilistic Models”. Advances in Neural Information Processing
Systems 33:6840-6851.

Kemeny, J. G., and J. L. Snell. 1960. Finite Markov Chains. New Jersey, USA: D. Van Nostrand Company.

Kim, J., H. Kim, H. Kim, D. Lee, and S. Yoon. 2025. “A Comprehensive Survey of Time Series Forecasting: Architectural
Diversity and Open Challenges”. arXiv preprint arXiv:2411.05793.

Kingma, D. P, and J. Ba. 2014. “Adam: A Method for Stochastic Optimization”. arXiv preprint arXiv:1412.6980.

Kollovieh, M., A. F. Ansari, M. Bohlke-Schneider, J. Zschiegner, H. Wang, and Y. Wang. 2023. “Predict, Refine, Synthesize:
Self-Guiding Diffusion Models for Probabilistic Time Series Forecasting”. Advances in Neural Information Processing
Systems 36:28341-28364.

Kopp, D., M. Hassoun, A. Kalir, and L. Monch. 2020. “SMT2020—A Semiconductor Manufacturing Testbed”. IEEE Transactions
on Semiconductor Manufacturing 33(4):522-531.

Lin, L., Z. Li, R. Li, X. Li, and J. Gao. 2024. “Diffusion Models For Time-series Applications: A Survey”. Frontiers of
Information Technology & Electronic Engineering 25(1):19-41.

McCormack, J., and M. Grierson. 2024. Building Simulations with Generative Artificial Intelligence, 137-150. Switzerland:
Springer Nature.

Meijer, C., and L. Y. Chen. 2024. “The Rise of Diffusion Models in Time-Series Forecasting”. arXiv preprint arXiv:2401.03006.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, et al. 2011. “Scikit-learn: Machine Learning in
Python”. The Journal of Machine Learning Research 12:2825-2830.

2585


https://acims.asu.edu/devs-suite/
https://doi.org/10.1109/WSC.1994.717419

Pendyala, Sarjoughian, and Yellig

Pendyala, V. K., H. Sarjoughian, B. S. Potineni, and E. Yellig. 2024. “A Benchmark Time Series Dataset for Semiconduc-
tor Fabrication Manufacturing Constructed using Component-based Discrete-Event Simulation Models”. arXiv preprint
arXiv:2408.09307.

Pendyala, V. K., H. S. Sarjoughian, and E. J. Yellig. 2024. “Generating TCN Models from Parallel DEVS Models: Semiconductor
Manufacturing Systems”. In 2024 Winter Simulation Conference (WSC), 2265-2276 https://doi.org/10.1109/WSC63780.
2024.10838759.

Rasul, K., C. Seward, I. Schuster, and R. Vollgraf. 2021. “Autoregressive Denoising Diffusion Models for Multivariate
Probabilistic Time Series Forecasting”. In Proceedings of the 35th International Conference on Machine Learning (ICML),
8857-8868. PMLR.

Sarjoughian, H. S., F. Fallah, S. Saeidi, and E. J. Yellig. 2023. “Transforming Discrete Event Models To Machine Learning
Models”. In 2023 Winter Simulation Conference (WSC), 2662-2673 https://doi.org/10.1109/WSC60868.2023.10407348.

Spier, J., and K. Kempf. 1995. “Simulation of Emergent Behavior in Manufacturing Systems”. In Proceedings of SEMI Advanced
Semiconductor Manufacturing Conference and Workshop, 90-94. November 13t-15t%, Cambridge, MA, USA, 90-94.

Sundararajan, M., A. Taly, and Q. Yan. 2017. “Axiomatic Attribution for Deep Networks”. In International Conference on
Machine Learning (ICML), 3319-3328. August 6"-11", Sydney, Australia, 3319-3328.

Zhan, Z., D. Chen, J.-P. Mei, Z. Zhao, J. Chen, C. Chen, et al. 2024. “Conditional Image Synthesis with Diffusion Models:
A Survey”. arXiv preprint arXiv:2409.19365.

AUTHOR BIOGRAPHIES

VAMSI KRISHNA PENDYALA is a Ph.D. student in the Computer Science program in the School of Computing and
Augmented Intelligence (SCAI) at Arizona State University (ASU), Tempe, AZ, USA. He can be reached at vpendya2 @asu.edu

HESSAM S. SARJOUGHIAN is an Associate Professor of Computer Science and Computer Engineering in the School of
Computing and Augmented Intelligence (SCAI) at Arizona State University (ASU), Tempe, Arizona. His research interests include
model theory, poly-formalism modeling, machine learning, collaborative modeling, simulation for complexity science, and M&S
frameworks/tools. He is the co-director of the Arizona Center for Integrative Modeling and Simulation https://acims.asu.edu.
He can be contacted at hessam.sarjoughian @asu.edu.

EDWARD J. YELLIG is the director of Operational Decisions Support Technology at Intel Corporation. He has been with
Intel for 26 years and has a Ph.D. in Operations Research with an emphasis on discrete event modeling of large-scale systems.
His focus has been on developing fab models for determining capital requirements and is also responsible for the real-time
digital twin tactical models. He can be contacted at edward.j.yellig@intel.com.

2586


https://doi.org/10.1109/WSC63780.2024.10838759
https://doi.org/10.1109/WSC63780.2024.10838759
https://doi.org/10.1109/WSC60868.2023.10407348
mailto://vpendya2@asu.edu
https://acims.asu.edu.
mailto://hessam.sarjoughian@asu.edu
mailto://edward.j.yellig@intel.com

	214-con179s3-file1-aa

