
Proceedings of the 2025 Winter Simulation Conference
E. Azar, A. Djanatliev, A. Harper, C. Kogler, V. Ramamohan, A. Anagnostou, and S. J. E. Taylor, eds.

IHEAP: GENERALIZED HEAP MODULE WITH CASE STUDIES IN MARKETING AND
EMERGENCY ROOM SERVICES

Aniruddha Mukherjee1, and Vernon J. Rego1

1Department of Computer Science, Purdue University, West Lafayette, IN, USA

ABSTRACT

We introduce a novel iheap module, a flexible Python library for heap operations. The iheap module
introduces a generalized comparator function, making it more flexible and general compared to the heapq
that is commonly used. We demonstrate that the iheap module achieves parity in terms of time complexity
and memory usage against established standard heap modules in Python. Furthermore, the iheap module
provides advanced methods and customization options unavailable in its counterparts, which enable the user
to implement the heap operations with greater flexibility and control. We demonstrate the iheap module
through two case studies. The first case study focuses on the efficient allocation of funds across marketing
campaigns with uncertain returns. The second case study focuses on patient triaging and scheduling in
the emergency rooms of hospitals. The iheap module provides a powerful and easy-to-use tool for heap
operations commonly used in simulation studies.

1 INTRODUCTION

The heap data structure is fundamental to many computational applications, including discrete event
simulation (Schriber et al. 2017), network-based simulation (Kanezashi and Suzumura 2015), reinforcement
learning (Ma et al. 2024), multi-arm bandit problems (Rinciog and Meyer 2021), and routing algorithms
(Gutenschwager et al. 2012). The heap is an efficient data structure for creating and performing operations
like push, pop, remove, replace, and merge on past, current, and future event lists for a discrete-event
simulation (Liu et al. 2017). The heap data structure allows for O(1) access to the top-priority event and
O(log n) insertion and deletion of events (Cormen et al. 2022). Therefore, maintaining and updating a
scheduler for simulation is fundamentally a heap operation. The most common heap data structure that is
used currently is the min-heap from the heapq library in Python programming language (Hannon et al.
2018). The current solution of building schedulers for simulation has several shortcomings. First, the
current packages only support min-heap, and max-heap is achieved by negating the objects in a heap. This
solution introduces additional steps in coding, makes code error-prone, and works only for alphanumeric
values. Often in simulations, non-numeric values of objects are encountered such as triaging of patients
in healthcare where negative values are meaningless. Second, the heapq does not provide an easy
way to update priorities of objects in a heap. Third, and most importantly, the current solutions do not
provide custom comparators for the simulation of objects with complex attributes or values, such as patient
conditions and triages, and aircraft control with multi-dimensional priority rankings. For simulating objects
with multiple weighted ranking fields, such as investment decisions with uncertain returns and risks and
patients with severity, urgency, and deterioration possibilities, a general comparator that can work with
flexible data-types and functions is required.

Therefore, we propose the package called iheap that addresses the shortcomings of existing packages
by supporting both min- and max-heaps, user-defined comparator functions, several native heap property
implementations, and flexible merge, replace, and remove functions. We have demonstrated the iheap
package using two cases on funding marketing projects with uncertain rewards and risks, and dynamic
scheduling of patients in an emergency room with patient triage and waiting. Both examples require
comparisons of vector-valued functions and dynamic updates of the queues. The proposed iheap provides

979-8-3315-8726-0/25/$31.00 ©2025 IEEE 2159

Mukherjee and Rego

advantages over other heap implementations by supporting these functions at a native level. We provide
a time and space complexity comparison of the proposed heap data structure with respect to the existing
solutions. Researchers can use the package to conduct simulation experiments based on objects with
composite attributes and general-purpose comparators. In Section 2, we describe the methods in detail. In
Section 3, we analyze the two case studies. Finally, in section 4, we provide concluding remarks.

2 METHODS

The iheap module implements a robust and flexible binary heap data structure that supports both min-heap
and max-heap heap properties. Emphasis is placed on a comprehensive set of configurable parameters,
allowing for the user to have granular specification over heap properties, or the user can opt to rely on
the default settings. Furthermore, the iheap module also allows for on-the-fly customization of the
arrangement of the elements in the heap through the use of custom comparator functions. The iheap
module provides the below set of operations available to the user: (i) heapify: Constructing a heap
from any list, (ii) push: Inserting a new element to the heap while maintaining the heap property, (iii)
pop: Removing the root element of the heap while maintaining the heap property, (iv) merge: Combining
iterables which individually do not have to be arranged into a single heap, (v) replace: Updating any
number of arbitrary elements while maintaining the heap property, and (vi) remove: Removing any number
of arbitrary elements while maintaining the heap property.

2.1 Implementation of the iheap Module

The iheap module leverages the Sift Down, Sift Up, and Find Index routines as described in the Algo-
rithms 1, 2, and 3. The primary purpose of the Sift Down routine is to restore the heap property after
an element has been removed or altered near the top of the heap. Starting from a designated node, this
procedure examines the node’s children to ensure that the parent-child ordering follows the rules of the
heap. For a max-heap, the parent must be larger than its children; for a min-heap, the parent must be
smaller. If a user has supplied a custom comparator, the routine uses the comparator to decide the relative
ordering. At each step, the procedure first checks whether the current element has the left child. If a right
child is also available, the routine selects the child that should take precedence according to the heap’s
ordering. If swapping is necessary, determined by comparing the current element with the selected child,
the elements are interchanged, and the routine continues from the child’s position until the heap property
is fully restored.

Algorithm 1 Sift down procedure for heap reordering.

1: procedure SIFTDOWN(heap, start, end, max_heap, cmp)
2: i← start
3: while (2i+1)< end do
4: child← 2i+1
5: if child +1 < end then
6: if (cmp(heap[child])< cmp(heap[child +1])) equals max_heap then
7: child← child +1
8: if (cmp(heap[i])< cmp(heap[child])) equals max_heap then
9: Swap(heap[i], heap[child])

10: i← child
11: else
12: break

The Sift Down routine performs one comparison and a possible swap per level of the heap, resulting in a
time complexity of O(logn) for a heap with n elements. This procedure operates in-place and requires O(1)

2160

Mukherjee and Rego

additional memory. The Sift Up procedure manages upward reordering when an element’s key is modified
or a new element is appended at the bottom of the heap. At each iteration, a comparison is performed
between the current node and its parent. As described previously, if a comparator function is supplied by
the user, then the comparator function is used to compare the current node and the parent node. When
the ordering between the node and its parent is inconsistent with the heap property, the node positions are
exchanged and the process continues from the parent node’s position. The operation terminates when the
element reaches a specified boundary or its relative ordering is compliant.

Algorithm 2 Sift up procedure for heap reordering.

1: procedure SIFTUP(heap, index, limit, max_heap, cmp)
2: while index > limit do
3: parent← ⌊(index−1)/2⌋
4: if (cmp(heap[parent])< cmp(heap[index])) equals max_heap then
5: Swap(heap[parent], heap[index])
6: index← parent
7: else
8: break

The Sift Up routine performs at most one comparison and corresponding swap per level, resulting in a
time complexity of O(logn). This procedure operates in-place and requires O(1) additional memory. The
Find Index routine in Algorithm 3 implements a recursive search to identify the index of a target element
within a heap. The routine first checks if the current index is within the bounds of the heap. If an index
falls outside the heap, the search on that branch terminates. When a user-supplied comparator is provided,
the routine applies it to both the current element and the target element to determine their relative ordering.
The routine stops searching along a subtree if the current node’s ordering indicates that the target cannot
be present in that subtree. Once an equality condition is detected between the current node and the target,
the routine returns the target node’s index. If no match is found at the current node, the routine recursively
searches the left child followed by the right child node.

Algorithm 3 Find index procedure in a heap data structure.

1: procedure FINDINDEX(heap, target, max_heap, cmp, i)
2: if i≥ length(heap) then
3: return None
4: current_cmp← heap[i]
5: target_cmp← target
6: if cmp ̸= None then
7: current_cmp← cmp(current_cmp)
8: target_cmp← cmp(target_cmp)
9: if ((not max_heap) and (current_cmp > target_cmp)) or ((max_heap) and (current_cmp <

target_cmp)) then
10: return None
11: if current_cmp = target_cmp then
12: return i
13: res← FINDINDEX(heap, target, max_heap, cmp, 2 · i+1)
14: if res ̸= None then
15: return res
16: return FINDINDEX(heap, target, max_heap, cmp, 2 · i+2)

2161

Mukherjee and Rego

In the worst case, Find Index traverses every node, resulting in O(n) time complexity. Since the heap
is a complete binary tree, the recursion stack is limited to O(logn) space. The Heapify procedure in the
Algorithm 4 reorders an input array to satisfy the heap property. It processes elements either from the
last non-leaf node to the root (using Sift Down) when in bottom-up mode or from the beginning upward
(using Sift Up) when in top-down mode. In bottom-up mode, the Heapify procedure runs in O(n) time.
in top-down mode, it runs in O(n logn) time. The Heapify procedure operates in-place and requires O(1)
additional memory. The Pop procedure removes the root element of the heap by replacing it with the last
element. It then restores the heap property by applying Sift Down or Sift Up as required.

Algorithm 4 Heap construction procedure (heapify).

1: procedure HEAPIFY(heap, max_heap, cmp, bottom_up)
2: n← length(heap)
3: if bottom_up is true then
4: for i← ⌊n/2⌋−1 down to 0 do
5: SIFTDOWN(heap, i, n, max_heap, cmp)
6: else
7: for i← 1 to n−1 do
8: SIFTUP(heap, i, 0, max_heap, cmp)

Algorithm 5 Removal procedure of first element in the heap.

1: procedure POP(heap, max_heap, cmp, bottom_up)
2: if heap is empty then
3: return None
4: else if heap contains only one element then
5: return Pop the single element from heap
6: else
7: f irst← heap[0]
8: Replace heap[0] with the last element and remove the last element
9: if bottom_up is true then

10: SIFTDOWN(heap, 0, length(heap), max_heap, cmp)
11: SIFTUP(heap, new_index, 0, max_heap, cmp)
12: else
13: SIFTDOWN(heap, 0, length(heap), max_heap, cmp)
14: return f irst

The extraction run in O(logn) time with O(1) additional space as in Algorithm 5. The Push procedure
in the Algorithm 6 appends a new element to the heap and restores the heap ordering. In bottom-up mode,
it performs a Sift Up from the new element’s position. In top-down mode, it triggers a complete heap
reordering by employing the Heapify function shown previously. When using Sift Up, the insertion takes
O(logn) time. When using Heapify, the operation may take O(n) time. Both approaches require O(1)
extra space. The Remove in the Algorithm 7 procedure locates occurrences of a specified target within the
heap, replaces each found element with the last element, and ensures the heap ordering is maintained after
the removal of the occurrences of the specified target through Sift Down and Sift Up.

The Replace procedure in the Algorithm 8 scans the heap for instances of a given element, substitutes
each instance with a new element, and maintains the heap property through the function calls to Sift Down
and Sift Up. The Merge-unsorted procedure in the Algorithm 9 consolidates multiple unsorted iterables
into a single list and then organizes that list into a heap using a bottom-up Heapify process. The merging

2162

Mukherjee and Rego

Algorithm 6 Insertion procedure of an element into the heap.

1: procedure PUSH(heap, item, max_heap, cmp, bottom_up)
2: Append item to heap
3: n← length(heap)
4: if bottom_up is true then
5: SIFTUP(heap, n-1, 0, max_heap, cmp)
6: else
7: HEAPIFY(heap, max_heap, cmp, bottom_up = false)

Algorithm 7 Removal procedure of n elements from the heap.

1: procedure REMOVE(heap, target, max_heap, cmp, n)
2: count← 0
3: while count < n do
4: idx← FINDINDEX(heap, target, max_heap, cmp, start=0)
5: if idx is None then
6: break
7: if idx equals length(heap) - 1 then
8: Remove the last element from heap
9: else

10: Replace heap[idx] with the last element and remove the last element
11: SIFTDOWN(heap, idx, length(heap), max_heap, cmp)
12: SIFTUP(heap, idx, 0, max_heap, cmp)
13: count← count +1

and heapification process executes in O(n) time relative to the total element count and requires O(n) space.
The Merge-sorted in the Algorithm 10 consolidates multiple sorted iterables, all of which follow the same
heap property. The sorted merge generates a sorted list in O(n logk) time for k sorted lists with n total
elements.
Algorithm 8 Replacement procedure of n elements from the heap.

1: procedure REPLACE(heap, old, new, max_heap, cmp, n)
2: count← 0
3: while count < n do
4: idx← FINDINDEX(heap, old, max_heap, cmp, start = 0)
5: if idx is None then
6: break
7: Set heap[idx]← new
8: SIFTDOWN(heap, idx, length(heap), max_heap, cmp)
9: SIFTUP(heap, idx, 0, max_heap, cmp)

10: count← count +1

2.2 Comparative Analysis with Existing Modules

Overall, the iheap module strikes a careful balance between versatility, performance, and ease of use.
Below, a comparison of functionalities of iheap with well-known Python module is provided: (i) heapq.
The standard heapq module offers functions for heapify, heappush, and heappop. However, it is inherently
restricted to min-heap structures and does not allow custom comparator functions. In contrast, iheap enables

2163

Mukherjee and Rego

Algorithm 9 Merge unsorted lists into a sorted min-heap or max-heap.

1: procedure MERGE(iterables, max_heap, cmp)
2: Initialize empty list merged_heap
3: for each iterable in iterables do
4: for each item in iterable do
5: Append item to merged_heap
6: HEAPIFY(merged_heap, max_heap, cmp, bottom_up = true)
7: return merged_heap

Algorithm 10 Merge sorted min-heaps or max-heaps into a single heap.

1: procedure MERGE SORTED(iterables, max_heap, cmp)
2: Initialize empty list merged_heap
3: Initialize empty list entries
4: for each iterable in iterables do
5: let it← ITER(iterable)
6:

7: if there is a next element item in it then
8: let key← (cmp(item) if cmp else item)
9: if max_heap then

10: key←−key
11: Append tuple (key, item, it) to entries
12: if entries ̸= [] then
13: HEAPIFY(entries, max_heap = f alse, cmp = λx.x[0], bottom_up = true)
14: while entries ̸= [] do
15: let (key, item, it)← entries[0]
16: let last← remove last element of entries
17: if entries ̸= [] then
18: entries[0]← last
19: SIFTDOWN(entries, max_heap = f alse, cmp = λx.x[0], start = 0, end = |entries|)
20: Append item to merged_heap
21:

22: if there is a next element nxt in it then
23: let new_key← (cmp(nxt) if cmp else nxt)
24: if max_heap then
25: new_key←−new_key
26: Append tuple (new_key, nxt, it) to entries
27: SIFTUP(entries, max_heap = f alse, cmp = λx.x[0], start = |entries|−1, end = 0)
28: return merged_heap

both min-heap and max-heap configurations and incorporates user-defined comparators. Moreover, iheap
extends functionality to include merge, replace, and remove operations, which are not directly supported by
heapq. (ii) queue.PriorityQueue. While queue.PriorityQueue builds upon heapq to provide thread-safety,
this comes with locking overhead that can be detrimental in high-performance simulation contexts. iheap
is optimized for single-threaded scenarios common in simulation studies, where minimizing latency and
maximizing throughput are essential. (iii) heapdict. The heapdict module offers a heap-based dictionary

2164

Mukherjee and Rego

that efficiently supports key-based priority updates. Its design is tailored to scenarios requiring rapid
reassignment of priorities based on dynamic keys. Although efficient in its domain, its specialized structure
limits general applicability. In contrast, iheap is a general-purpose implementation, allowing arbitrary
element comparison through customizable criteria, making it more adaptable to a variety of simulation
and optimization problems. (iv) fibonacci-heap. Fibonacci heap implementations, such as those provided
by the fibonacci-heap module, provide excellent amortized performance on operations like decrease-key.
However, the complexity and higher constant factors associated with Fibonacci heaps often render them
impractical for discrete-event simulations, where binary heaps are sufficient.

2.3 Time and Memory Complexity Comparison

Table 1 provides a comparison of the time and memory complexities of iheapwith other modules described
above. In Table 2 we provide a list of method-features available in iheap that are not available in existing
modules. In Figure 1, we provide a simulation of the time complexities of the different functions in iheap
using hardware with the follwoing specifications: Intel(R) Core(TM) i5-7267U CPU @ 3.10GHz, number
of processors: 1, total Number of Cores: 2, L2 Cache (per Core): 256 KB, L3 Cache: 4 MB. The graphs
in Figure 1 demonstrate the near-linear complexity of each of the operations in the iheap package.

Table 1: Time and space complexity of selected heap operations (n = number of elements; k = number
of sorted inputs; m = number of arbitrary elements).

Operation variant iheap heapq PriorityQueue heapdict Fibonacci-heap

Time Space Time Space Time Space Time Space Time Space

Heapify, min-heap O(n) O(1) O(n) O(1) N/A N/A N/A N/A N/A N/A

Heapify, max-heap O(n) O(1) O(n)
1

O(1) N/A N/A N/A N/A N/A N/A

Push, min-heap O(logn) O(1) O(logn) O(1) O(logn) O(1) O(logn) O(1) O(1)
2

O(1)

Push, max-heap O(logn) O(1) O(logn)
1

O(1) O(logn)
1

O(1) O(logn)
1

O(1) O(1)
1,2

O(1)

Pop, min-heap O(logn) O(1) O(logn) O(1) O(logn) O(1) O(logn) O(1) O(logn)
2

O(1)

Pop, max-heap O(logn) O(1) O(logn)
1

O(1) O(logn)
1

O(1) O(logn)
1

O(1) O(logn)
1,2

O(1)
Peek, min-heap O(1) O(1) O(1) O(1) N/A N/A O(1) O(1) O(1) O(1)

Peek, max-heap O(1) O(1) O(1)
1

O(1) N/A N/A O(1) O(1) O(1)
1

O(1)
Merge sorted O(n logk) O(n) O(n logk) O(k) N/A N/A N/A N/A O(1) O(1)
Merge unsorted O(n) O(n) N/A N/A N/A N/A N/A N/A N/A N/A

Replace root O(logn) O(1) O(logn) O(1) O(logn)
3

O(1) O(logn) O(1) O(logn)
2

O(1)

Replace arbitrary 1 O(n) O(1) N/A N/A N/A N/A O(logn) O(1) O(logn)
2

O(1)

Replace arbitrary m O(mn) O(1) N/A N/A N/A N/A O(m logn) O(1) O(m logn)
2

O(1)

Remove arbitrary 1 O(n) O(1) N/A N/A N/A N/A O(logn) O(1) O(logn)
2

O(1)

Remove arbitrary m O(mn) O(1) N/A N/A N/A N/A O(m logn) O(1) O(m logn)
2

O(1)
*

Please note that the Merge, Replace, and Remove functionality have native support for both max-heap and min-heap.
This distinction is not shown in the above table as it does not affect the time or space complexity.
1

Emulation of max-heap by negating comparator keys.
2

Amortized time complexity for Fibonacci-heap operations.
3

Emulation of replacing the root element by employing the pop functionality followed by the push functionality.

2165

Mukherjee and Rego

Table 2: Advanced feature support across Python heap modules.

Feature iheap heapq PriorityQueue heapdict Fibonacci-heap

Custom key on all operations ✓ ✗ ✗ ✗ ✗

Sorted-return option on all operations ✓ ✗ ✗ ✗ ✗

Multiple algo. impl. on relevant operations ✓ ✗ ✗ ✗ ✗

Figure 1: Run time graphs with increasing number of objects in the heap. The figures show that the practical
time complexity is generally in-line with theoretical time complexities. The horizontal axis represents the
number of objects. The vertical axis represents time in seconds. The perturbations in the graphs arise from
hardware limitations.

3 CASE STUDIES

3.1 Marketing Campaigns

The first case study deals with the allocation of company funds from a limited budget to different marketing
campaigns from a portfolio of possible campaigns. Each potential campaign in the portfolio is associated
with an uncertain return. Accordingly, each campaign is characterized by two parameters, representing
the scale and shape parameters of the Beta distribution. Additionally, the objective of the fund allocation
process is to maximize a risk-weighted return from the investments, subject to the budget constraint. The
mathematical problem formulation is as follows. Let ri denote the expected return from campaign ID i, σi
denote the standard deviation or risk of the campaign, B denote the total budget, λ denote the risk-aversion,
n denote the total number of possible campaigns, and ci denote the cost associated with each campaign.
Let us define the decision variable as xi ∈ {0,1}, which is 1 if the campaign i is selected, else 0. The
problem is defined by a mean-variance objective function as in 1.

max
x

(
n

∑
i=1

rixi−λ

n

∑
i=1

σ
2
i xi

)
; s.t.,

n

∑
i=1

cixi ≤ B. (1)

The above problem is a binary knapsack problem and is NP-hard. The problem can be solved using
the Dynamic Program (DP) formulation as in 2.

2166

Mukherjee and Rego

Sel[i][b] =

{
Sel[i−1][b] if ci > b,
max{Sel[i−1][b],Sel[i−1][b− ci]+ (ri−λσ2

i)} otherwise.

Sel[0][b] = 0∀b ∈ [0,B]

(2)

where, Sel[i][b] is the maximum risk-adjusted return using the first i investments and budget b. The DP
can be time-consuming to solve for large problems. Rather, we use a branch-and-bound-based simulation
algorithm that utilizes the iheap implementation, specifically a max-heap, which is only available in
the current implementation. We construct a score that is the ratio of the risk-weighted returns and costs,
Si =

ri−λσ2
i

ci
, that prioritizes campaigns with high return-to-cost ratios. We score each campaign using the

score function and store the campaigns in a max-heap. Then, we evaluate each item at a time starting from
the root node and doing a breadth-first search. Each node indicates one campaign, and at each node, we
either select the node or not. Our implementation approach begins by modeling each marketing campaign
with the MarketingCampaign class. Each instance encapsulates: (i) ID and Name: Unique identifiers
and labels for each campaign. (ii) Score: A two-element list representing parameters (sampled from a
uniform distribution) that define the shape parameters for a Beta distribution. These scores model the
inherent variability in campaign performance. (iii) Cost and Revenue: Financial measures where cost
represents the marketing investment while revenue represents the expected return.

A secondary class, MarketingCampaignSimulation, simulates each campaign’s performance.
Key aspects include: (i) Weight (MCS_WEIGHT): A factor balancing emphasis between revenue and cost.
A higher weight gives greater importance to revenue. (ii) Risk Weight (MCS_RISKW): A penalty factor
applied to the standard deviation of the gain, reflecting the manager’s risk aversion. (iii) Number of
Samples (n): The total number of simulation runs to statistically assess performance. The key parameters
used in the heapify function are: (i) max_heap: Set to True, ensuring that campaigns with the highest
heuristic values appear first. cmp: The custom comparator extracts the key metric from each simulation
object. (ii) sort_: When True, the module performs an in-place heap sort to output a fully sorted list. (iii)
bottom_up: Enables the bottom-up construction of the heap for increased efficiency. Figure 2 shows the
different campaign selections under different risk weights. We can observe that the risk tolerance affects
the campaigns that get selected. This process can be used for any project selection and appraisal scenario.

(a) MCS_WEIGHT = 0.5, MCS_RISKW = 0.9. (b) MCS_WEIGHT = 0.5, MCS_RISKW = 0.1.

Figure 2: Scatter plots of 150 marketing campaigns under different risk settings. The revenue-to-cost weight
(MCS_WEIGHT) is fixed at 0.5 while the risk adjustment factor (MCS_RISKW) varies. Green markers
indicate campaigns selected under a fixed budget constraint, whereas red markers denote non-selected
campaigns.

2167

Mukherjee and Rego

3.2 Emergency Room

The emergency room (ER) simulation case study illustrates how the iheap module can be effectively
employed in critical healthcare operations research. This simulation uses discrete event methods to model
patient arrivals, dynamic severity updates, and service processes in an ER setting. The framework is designed
to demonstrate that with minimal programming expertise, researchers and industry professionals can build
high-fidelity simulation models. The iheap module simplifies the management of priority queues, which
are central to scheduling patient treatment and discharge events under stochastic conditions.

In this study, an ER environment is modeled by representing patients as objects with attributes such
as arrival time, initial severity, and signal-based severity updates. Industry professionals are provided
with a modular framework: (i) Patient Generation and Scheduling: Patient entities are instantiated
with randomly generated interarrival times (exponentially distributed) and a severity level that evolves
over time. This reflects real-world variations in patient flows. (ii) Priority Queue Management: Two
distinct event queues are maintained using the iheap module. One queue orders patients awaiting
treatment (sorted by a custom severity-then-arrival criterion) while the other processes patients in service.
The module’s functions—heapify, push, and pop—ensure efficient event scheduling. (iii) Dynamic
Severity Updating: The model incorporates a mechanism whereby each patient’s severity is periodically
updated. This dynamic aspect underscores changing clinical priorities that influence queue order.

In scenarios with high arrival variability, the dynamic update of patient severity and the responsiveness
of the heap-based event selection mechanism both contribute to a reduction in overall patient waiting
times and improved utilization of available treatment capacity. To substantiate our findings, we provide a
series of graphical analyses that delineate the impact of service capacity on emergency room performance.
These figures, generated with the aid of the iheap module, reveal critical trends in patient waiting times,
severity levels at service initiation, and overall queue dynamics under varying capacity constraints. As
illustrated in Figure 3, increasing the service capacity leads to significant improvements in emergency
room performance. Notably, higher capacity results in reduced waiting times and lower waiting queue
lengths while simultaneously preserving patient condition through earlier and more timely service initiation
and patients’ initial severity at start of treatment (Refer to Figure 4). The exponential increase in waiting
time for patients with lower severity under limited capacity scenarios underscores the need for dynamic
resource allocation in emergency departments. Finally, Figure 5 illustrates a box plot analysis of patient
severity at service start for varying capacities. The subplots clearly show that reduced capacities lead to
significant patient severity deterioration at service initiation, while enhanced capacity minimizes variability
and maintains baseline patient condition.

4 CONCLUSION

In conclusion, we present theiheapmodule developed for providing a flexible data-structure implementation
for advanced simulation applications. The flexible and general heap implementation is aimed towards
enabling simulation application developments that require a general comparator and scheduling interface.
Accordingly, the module supports both min-heap and max-heap configurations with user-defined comparator
functions. Also, the module provides a comprehensive set of utilities such as push, pop, heapify,
remove, replace, and merge. The complete Python source code, documentation, and development
history of the iheap module are hosted in a dedicated GitHub repository (iHeapPythonModule 2025)We
have demonstrated the usage of these utilities in two case studies related to funding marketing campaigns and
patient scheduling in emergency rooms. Our work contributes to simulation literature and applications by
expanding the operational scope of heap data structures by providing a relatively more general and flexible
implementation. We provide a robust and convenient tool for researchers and practitioners by streamlining
the development of priority queue operations and handling arbitrary element updates efficiently. In the
future, we will extend the current implementation by incorporating multi-threading support.

2168

Mukherjee and Rego

(a) Waiting time vs. service capacity. (b) Severity at service start vs. service capacity.

(c) Severity deterioration vs. service capacity. (d) Waiting queue length vs. service capacity.

Figure 3: Impact of service capacity on key emergency room metrics.

Figure 4: Impact of ED capacity (2 to 7) on average waiting time. The plot reveals that patients with lower
initial severity experience markedly longer waiting times when capacity is constrained.

2169

Mukherjee and Rego

Figure 5: Box plot analysis of patient severity at service start across different service capacities. The results
indicate that when capacity is lower (1 and 2), patients are more prone to an increase in severity.

REFERENCES

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein. 2022. Introduction to Algorithms. 4th ed.
Cambridge, MA, USA: MIT Press.

Gutenschwager, K., S. Völker, A. Radtke, and G. Zeller. 2012. “The Shortest Path: Comparison of Different
Approaches and Implementations for the Automatic Routing of Vehicles”. In Proceedings of the 2012
Winter Simulation Conference (WSC), 1–12 https://doi.org/10.1109/WSC.2012.6465023.

Hannon, C., D. Jin, N. Santhi, S. Eidenbenz, and J. Liu. 2018. “Just-in-Time Parallel Simulation”. In 2018
Winter Simulation Conference (WSC), 640–651 https://doi.org/10.1109/WSC.2018.8632357.

iHeapPythonModule 2025. “iheap”. https://github.com/iHeapPythonModule/iheap. GitHub repository.
Kanezashi, H., and T. Suzumura. 2015. “Performance Optimization for Agent-Based Traffic Simulation by

Dynamic Agent Assignment”. In 2015 Winter Simulation Conference (WSC), 757–766 https://doi.org/
10.1109/WSC.2015.7408213.

Liu, W., S. Gao, and L. H. Lee. 2017. “A Multi-Objective Perspective on Robust Ranking and Selection”. In
2017 Winter Simulation Conference (WSC), 2116–2127 https://doi.org/10.1109/WSC.2017.8248226.

Ma, X., Z. Zhong, Y. Li, D. Li, and Y. Qiao. 2024. “A Novel Reinforcement Learning Based Heap-Based
Optimizer”. Knowledge-Based Systems 296:111907 https://doi.org/10.1109/ACCESS.2021.3087449.

Rinciog, A., and A. Meyer. 2021. “Fabricatio-rl: a Reinforcement Learning Simulation Framework for
Production Scheduling”. In 2021 Winter Simulation Conference (WSC), 1–12 https://doi.org/10.1109/
WSC52266.2021.9715366.

Schriber, T. J., D. T. Brunner, and J. S. Smith. 2017. “Inside Discrete-Event Simulation Software: How it
Works and Why it Matters”. In 2017 Winter Simulation Conference (WSC), 735–749 https://doi.org/
10.1109/WSC.2010.5679165.

AUTHOR BIOGRAPHIES

ANIRUDDHA MUKHERJEE earned an Undergraduate degree in Computer Science from UIUC, and
a Graduate degree in Computer Science from Purdue University. His graduate thesis focuses on emotion
diffusion in dynamic networks using transformer architectures. His work integrates computer vision, neural
radiance fields (NeRF), and simulation methods. Email: mukher66@purdue.edu.

VERNON J. REGO is a Professor of Computer Sciences at Purdue University. He is an experimental
scientist with interests in high-performance distributed computing (Gordon Bell Prize), parallel stochastic
simulation, network protocols, security, and software systems. His work includes systems for parallel
simulation (EcLiPSe/ParaSol), architectures for distributed computing (Aces/Clam), and thread systems
supporting homogeneous and heterogeneous thread migration. He was an Editor for the IEEE, and was on
the advisory board of the DoD Advanced Distributed Simulation Consortium. Email: rego@purdue.edu.

2170

https://doi.org/10.1109/WSC.2012.6465023
https://doi.org/10.1109/WSC.2018.8632357
https://github.com/iHeapPythonModule/iheap
https://doi.org/10.1109/WSC.2015.7408213
https://doi.org/10.1109/WSC.2015.7408213
https://doi.org/10.1109/WSC.2017.8248226
https://doi.org/10.1109/ACCESS.2021.3087449
https://doi.org/10.1109/WSC52266.2021.9715366
https://doi.org/10.1109/WSC52266.2021.9715366
https://doi.org/10.1109/WSC.2010.5679165
https://doi.org/10.1109/WSC.2010.5679165

	179-con177s3-file1

