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ABSTRACT

This work develops a simulation engine to create a digital twin that will monitor a gambler’s betting
behavior when playing games. The digital twin is designed to perform simulations to compare outcomes
of different betting strategies, under various assumptions on the psychological profile of the player. With
these simulations it then produces recommendations to the player aimed at mitigating adverse outcomes.
Our work focuses on efficient simulation and the creation of the corresponding GUI that will become the
interface between the player and the digital twin.

1 INTRODUCTION

Gambling has long been a popular recreational activity, providing thrill and entertainment through games
of chance. However, it also poses significant risks to financial and psychological well-being particularly for
players who lack a disciplined approach or become overly reliant on gambling for emotional or monetary
rewards.

In fact, gambling as an online experience is becoming easier to access (including on mobile phones)
to more people, and at an earlier age, leading to projected increases in the population exposed to risks for
gambling addiction (Sohn 2023). In this study we focus on the American roulette as a case study. Roulette,
a staple of casino culture, epitomizes this duality: it is simple to understand but deeply complex in its
mathematical underpinnings and behavioral implications. The goal of this research is to create a digital
twin that interacts with the player suggesting recommended betting strategies (Barricelli, Casiraghi, and
Fogli 2019). While aiming to prevent financial ruin, the recommendations should recognize the behavioral
patterns of players in order to be successful.

A pilot study provided a proof of concept for our digital twin. In that work we simulated three gambler’s
profiles: high, moderate and low risk players. That simulation revealed key aspects of the edge dynamics.
Our preliminary study shows that low-risk players sustain final bankrolls of $5.24 on average, often reaching
the maximum 100 rounds, when their initial bankroll is $100. Moderate-risk players bankrupt before the
100 rounds with (approximate) probability 0.8, while high-risk players bankrupt within 20 rounds on all
30,000 replications that we made of the pilot simulation. This observation, while not surprising, motivates
our idea to help gamblers adapt their strategies in order to improve the final outcome. The simulation
of gambler’s strategies was compared to a simulation of a digital twin that uses a different exit strategy
(explained in more detail below), with the aim at stopping the gambler from continuing if the current state
has high risk of falling below a certain acceptable loss. Implementing bankroll-based exit mechanisms
drastically reduced high-risk player losses (from $100 expected loss to $3.33–$6.67), demonstrating the
benefits of adaptive strategies. Following this pilot study we develop here a more detailed model for the
digital twin, aiming at keeping losses at a certain “acceptable” level, while acknowledging the nature of
addictive gambling.

A risk theoretical approach has been proposed to model gambling behavior (Schnytzer and Westreich
2010), where utility functions model the “satisfaction” of the player, in an attempt to explain how a “rational”
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player gambles even when it is known that the expected loss is positive. Barberis (2012) recognizes that
the usual economic utility theory is not consistent with observed gambling behavior with respect to risk
taking and uses “prospect theory” to model non-concave utility functions, which then determines betting
behavior. Building on this research, Blavatskyy (2024) studies various utility models to describe different
betting behaviors for just one single round. Although they do not mention the psychology of gambling, it
is apparent that different mathematical models of behavior may be related to what we will call the profiles
of the players. Hales, Clark, and Winstanley (2023) present a comprehensive study of the “Gambling
Disorder”, a psychological condition that has been well identified, but which still eludes definite treatments.
Mathematical models have been developed in order to gain insight into the cognitive process that leads
to addictive gambling. Among the methods, reinforcement learning, bayesian models and drift diffusion
models have been used to model a gambler’s behavior.

None of the above research papers dwell on the question of mitigation of the adverse effects of gambling
as an addiction, which we propose here. Moving beyond the existing research, in this paper we account
for the gambler’s behavior to build a reasonable “agent” in the form of a digital twin that will interact with
the player in the form of recommended actions.

2 MODEL FORMULATION

2.1 American Roulette: Model

Figure 1 shows the 38 possible outcomes, assumed equally likely. As well, the various possible placements
of the bets are illustrated.

Figure 1: The possible outcomes and placements in American Roulette.

A betting strategy consists of three parts: the placement, the wager amount and a stopping time.
Placement Strategy and corresponding Payout (s):

1. Single-number: The player chooses one of the 38 possible outcomes. Payout is 36 : 1.
2. Dozens: The player chooses one of the three possible “boxes” of a dozen numbers. Payout is 3 : 1.
3. Binary: The player chooses one of two choices (black or red, even or odd, first half or second half).

Payout is 2 : 1.

Call R(s) the payout ratio and P(s) is the corresponding winning probability of placement strategy s,
that is:

P(s) =
(

1
38

,
12
38

,
18
38

)
.

The house edge is the expected amount of money that the player loses (relative to the bet amount). It
is calculated using the expected value formula. Assuming a unit bet of $1.00 this yields

E = (1−P(s))− (R(s)−1)P(s).

Direct calculation shows that the house edge for the American roulette with these parameters is always
0.0526, regardless of the value of s for the placement strategy.
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Wager Strategy (w): There are a number of websites available today for gamblers to either play the
actual games, or to read and practice betting strategies on their own (Hoofe 2025; Grindu 2025; Coyle
2023). These sites provide in-depth breakdown of various wager strategies and explain the dynamics of the
game, encouraging players to choose a single strategy and use it throughout the game. Naturally any player
may change his/her mind and change strategies at any given round of the game. However we follow here
the model where a gambler chooses a wager strategy at the start of the game and uses it all the time, unless
the digital twin intervenes with a different recommendation (see below). We consider the most popular
five wager strategies, described below.

1. All-In-One: The player wagers the entire bankroll.
2. Martingale: The player defines an initial wager as a fraction of the bankroll. After a loss, the player

doubles the amount (if possible). After a win, the player resets the wager amount to the initial one.
3. Fibonacci: The initial wager is $1. After a loss, the wager amount is the following number to the

previous amount in the Fibonacci sequence (if possible). After a win, the wager chosen moves
back two places in the Fibonacci sequence (if possible).

4. D’Alembert: The player chooses an initial amount (called the “unit”). After a loss, the wager is
increased by one unit (if possible). After a win, the wager is decreased by one unit (if possible).

5. Flat: The player always stakes the same initial amount regardless of previous outcomes (if possible).

Our pilot study used Monte Carlo simulations of the game to establish that aggressive strategies (All-in,
and Martingale, with “Single-number”) yield a 0% win rate. Martingale with a “Dozen” bet achieves a
16.67% win rate and gameplay length averaged 30.33 rounds, while Fibonacci improves the win rate (20%)
and gameplay length (average 53.27 rounds). D’Alembert performs best with a 50% win rate and average
gameplay length of 94.7 rounds, while Flat ensures the longest gameplay length with a comparable win
rate. These results justify the order in which we have labeled the strategies.

The effective house edge, considering various wager strategies, can be estimated using the approximation

E =
1(

∑
N
k=1Yk

) N

∑
k=1

(Yk −Wk),

where Yk are the consecutive wager amounts, Wk the consecutive winnings paid out to players, using a
maximum of N rounds for the simulations. In our pilot simulation, high-risk strategies inflate the house
edge to 44.93%, while low-risk players maintain a near-theoretical 5.26%, emphasizing the importance of
balanced strategies.

Stopping Criterion (τ): The game consists of playing successive rounds until the stoping criterion is
met (see description below).

2.2 Markov Model

The stochastic model corresponds to a Markov decision process that describes the bankroll (wealth) of the
player. The bankroll Xn denotes the wealth of the gambler at the start of round n. The possible actions
are the wager amount Yn and the placement Zn at round n. The initial wealth or capital of the player X0 is
known. The transition probabilities are now defined as:

pi j(y,s)
def
= P(Xn+1 = j |Xn = i,Yn = y,Zn = s)

and they can be calculated from the description of the game as follows. Given a wager amount y and a
placement strategy s with corresponding payout ratio R(s), it follows that

Xn+1 =

{
(Xn − y)+R(s)y w.p. P(s)
Xn − y w.p. 1−P(s),
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where the notation “w.p.” means “with probability”. In addition, the wager amount is related to the previous
one. We add a binary indicator In = 1{win} for the outcome of the n-th round. Call F(i) the i-th Fibonacci
number. In the case of this wager strategy (w = 3), Yn = F(kn) for some known integer kn. This yields

Ỹn+1 =



Xn+1 w = 1
2Yn (1− In)+Y0 In w = 2
F(kn +1)(1− In)+F(kn −2) In w = 3
(Yn +Y0)(1− In)+(Yn −Y0) In w = 4
Y0 w = 5

and then the actual wager must satisfy:

Yn+1 = min(Ỹn+1,Xn+1)

We assume no borrowing is allowed, so if the player has no more money then the game is over.
Because by design the probability of winning any round is smaller that 0.5 the main bankroll process {Xn}
is a super-martingale: E[Xn+1 |Xn]≤ Xn. In addition, the gambler is ruined when Xn = 0, so the bankroll
converges to zero w.p.1 (eventual ruin is certain). This is our motivation to introduce a stopping time when
the gambler cashes the bankroll. The game consists of the consecutive rounds (spins) that yield the process
{ξn}, until the game ends. Specifically:

ξn
def
= (Xn,Yn,Zn, In).

The default stopping time is
τ = min(n ≤ N : Xn = 0), (1)

where N is the maximum fixed amount of rounds for one player. That is, either the gambler “ruins” losing
all the bankroll, or the game ends after N rounds and the player cashes out the amount XN .

Definition. The expected loss incurred by the player is defined by:

L = E[X0 −XN ]. (2)

and it is usually positive.

3 DIGITAL TWIN

A digital twin is proposed in order to provide recommendations to the player. We are currently developing
a GUI as an interface that allows players to place bets and follow the normal evolution of roulette playing
over a sequence of rounds. The digital twin is therefore “hidden” within a gambling app. The digital twin
is capable of performing parallel simulations, given the current state ξn, assuming a given gambler profile.

Simulations then help to estimate the expected loss and assess more favorable outcomes under changes
in the player’s behavior. To alleviate the possibility of bankruptcy we endow the digital twin with the
capability of pre-empting actions by by requiring periodic pauses during which the digital twin offers
recommendations to the gambler. In addition to recommending specific actions, we seek (in future work) to
design recommendation strategies that will attempt to modify behavior in order to control adverse addictive
conduct. Figure 2 shows the main page of the GUI. After the initial page asks the player for general
information, this main page shows the player the amount already lost (Casino profit), the current bankroll
and the current strategy with corresponding wager amount. The player may change the strategy and the
wager amount if desired, however the GUI presents the suggestion using the same strategy. Then the player
places the token in the corresponding place that he/she wants to choose (illustrated on the placement zone
labeled 2nd 12 in Figure 2). Naturally the GUI does not accept a placement that is not in agreement with
the chosen placement strategy.
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Figure 2: Main page of the American Roulette GUI.

3.1 Recommendations: Early Exit Rule

Although the expected loss is always positive, people are willing to spend money on entertainment, whether
it’s watching movies, going out for a meal, or playing tennis. Our goal is to suggest a healthy gaming
environment that ensures players enjoy the experience as entertainment, without being financially ruined.
Recommendations include: evaluating an early exit (cash out), changing the wager amount, or changing
the placement. We address here the early exit recommendation. Barberis (2012) presents an exhaustive
search numerical solution to assess exit strategies, using a binary tree. Blavatskyy (2024) mentions that “the
design of optimal quitting strategy is non-trivial due to problems of [...] computational complexity.” In this
section we provide analysis of the exit strategies that will reach the desired exit condition. For two of the
wager strategies we provide analytical solutions, and we propose simulation methods to find the optimal
exit strategy for other wager schemes. Our approach has considerably less computational complexity than
exhaustive search.

Instead of (1), the digital twin will use an early exit strategy:

τ
def
= min(n ≤ N : Xn ∈ {0,K(s,w)X0}), (3)

where K(s,w)> 0 is a factor depending on the strategy. That is, if the bankroll attains K(s,w) times the
initial value, the player is encouraged to quit the game and cash out. In particular, for w = 1 and w = 5 we
can use stochastic models (Ross 2014; Taylor and Karlin 1998) to estimate the expected loss under this
new stopping criterion. We seek to calculate a boundary K(s,w) for each strategy, such that the expected
loss is limited to a “reasonable” amount. As mentioned in (Schnytzer and Westreich 2010), some gamblers
view this as an “entrance fee” that they are happy to pay in order to have fun.
Theorem 1 Consider the placement strategy s with payout ratio R = R(s) and win probability P(s), under
the wager strategy w = 1 of “all-in”. Let

N(k) = min(n : Rn ≥ k) ,

and consider the modified stopping criterion τ = min(Xn ∈ {0,k X0}). Then the expected loss of the game
is given by

L(k) = X0 −X0

(
RN(k) P(s)N(k)

)
. (4)
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Proof. Under this wager strategy Yn = Xn, so each round either results in ruin, or it provides a gain
of RXn. Notice that from the definition of N(k) the game ends at time τ ≤ N(k). If the player succeeds
n consecutive winning rounds, then Xn = Rn X0. Thus, it is necessary to have exactly N(k) consecutive
winning rounds in order not to bankrupt. This event happens with probability P(s)N(k), which yields the
result.

Theorem 2 Consider the placement strategy s with payout ratio R = R(s) and win probability P = P(s),
under the wager strategy w = 5 with a “flat” bet of $1. For the exit condition B, define the modified
stopping criterion :

τ = min(n : Xn ∈ {0,B+1}). (5)

Define the coefficients:

c0(0) = 0, c1(0) = 0,

c0(B) = 0, c1(B) = 1,

c0(i) = i, c1(i) = 0 i > B.

Then vi = E[Xτ |X0 = i] satisfies:

vi = c0(i)+ vB c1(i), 0 ≤ i ≤ B+R, (6)

where the tuple c(i) satisfies the recursion:

c(i) =
c(i+1)−Pc(i+R)

1−P
; 0 < i < B. (7)

Finally, vB = Pc0(1)−c0(1)
c1(R)−Pc1(1)

.

Proof. Using the definition of the stopping time τ in (5), we obtain the following boundary conditions:
v0 = 0; and vi = i, for i > B, which establishes (6) for those indices. Given this wager strategy, each spin
either decreases the bankroll by 1, which happens w.p. (1−P), or it increases it by R−1, w.p. P, which
yields the following recursion, using first step analysis (see Chapter III of Taylor and Karlin (1998)):

vi = E[Xτ |X0 = i+(R−1)] P+E[Xτ |X0 = i−1](1−P); i = 1, . . . ,B.

This yields:
vi = P× vi+(R−1)+(1−P)× vi−1; i = 1, . . . ,B. (8)

The proof now follows applying mathematical induction, where the induction hypothesis is (6), which
is satisfied by the base case when i ≥ B. From (8) it now follows that for 1 < i < B:

vi−1 =
vi −Pvi+(R−1)

1−P
=

c0(i)+ vB c1(i)−P(c0(i+R−1)+ vB c1(i+R−1))
1−P

,

which establishes (6) for all i = 0, . . . ,B+R. Simple algebra now verifies (7). The end of the proof uses
the boundary condition v0 =, so that

v1 = (1−P)v0 +PvR = PvR =⇒ c0(1)+ vB c1(1) = P(c0(R)+ vB c1(R)),

which yields vB = Pc0(1)−c0(1)
c1(R)−Pc1(1)

, as claimed.
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Algorithm 1 Calculation of vi as a function of B, using Theorem 2.
Read input parameters s,B.
P = P(s),R = R(s)
Initialize:
for (i = B+1 to B+R−1) do

c1(i) = 0, c0(i) = i
c1(0) = c0(0) = 0; c1(B) = 1, c0(B) = 0.
Calculate coefficients:
for (i = B−1 down to i = 1) do

c(i) = c(i+1)−P×c(i+R)
1−P

vB = P×c0(R)−c0(1)
(c1(1)−P×c1(R))

for (i = 1 to B) do
v(i) = c1(i)× vB + c0(i)

return v

Using the above theorems it is possible to evaluate numerically the bounds K(1,s) and K(5,s) quickly.
Table 1 shows the results for the expected loss as a function of k = K(1,s). Table 2 provides the results
for the expected loss for w = 5 as a function of k, using Algorithm 1 with B+1 = kX0. Figure 3 shows
the results of 10,000 replications of the simulation using (3) with N = 100. The plot illustrates the form
of the expected loss as a function of the early exit rule for s = 2.

Table 1: Expected loss of theorem 1 (w = 1), for X0 = 100.

k 2.00 3.00 4.00 5.00 6.00

s=1 5.2631 5.2631 5.2631 5.2631 5.2631
s=2 5.2631 5.2631 10.2493 10.2493 10.2493
s=3 5.2631 10.2493 10.2493 14.9730 14.9730

Table 2: Expected loss of theorem 2 (w = 5), for X0 = 100.

k 1.1 1.2 1.3 1.4 1.5

s=1 3.8259 4.8918 6.4442 8.1816 9.5478
s=2 36.413 59.2803 74.091 83.6072 89.679
s=3 61.646 85.4111 94.4893 97.9307 99.227

The initial page of the GUI prompts the player to fill out info such as initial amount of money, chosen
strategy, and if there is a reasonable loss that the player is ready to accept (see Figure 2). With this, the
digital twin creates the first simulations to calculate the corresponding exit rule K(s,w). Because the loss
is monotone non decreasing, search for the value can be achieved fast using binary search. For w = 1 or
w = 5 the values of the loss function L(k) can be calculated very efficiently for each of the values of k
used during the search. For other strategies analytic solutions are elusive and we recur to simulations in
order to estimate the corresponding bounds. These simulations have been designed using common random
numbers combined with stochastic binary search in order to find the value of k that attains the desired
expected loss. Such search method follows the ideas developed in Chakraborty, Das, and Magdon-Ismail
(2011) and Vázquez-Abad and Fenn (2016).
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Figure 3: The simulation result for s = 2 with 95% confidence intervals.

4 MODELING BEHAVIOR

In the previous section we developed the “optimal” exit strategy that ensures a certain acceptable level for
the expected loss. However, addictive behavior may cause the player not to follow the recommendations
of the digital twin. This requires another level of learning in order to adjust the recommendations to the
“most likely option” to be accepted. That is, the model becomes a model of optimization (to decrease
losses) under constraints (psychological profile).

The psychology of gambling has been described in various scholarly treaties, and it encompasses a
variety of different mindsets. People gamble for different reasons: enjoyment, excitement, socializing, to
impress the crowd, etc. Depending on the person, he/she may be more (or less) likely to exit the game
when the digital twin prompts the recommendation. Note that, in this research, we only address those who
gamble for entertainment. We do not address pathological gamblers: we believe that those who are deeply
affected should seek professional treatment, rather than computer-guided apps, no matter how “intelligent”
they are. People who show high addictive behavior will not be very likely to accept an early exit, for
example.

Most individuals who see gambling as an entertaining diversion will be more likely to accept the digital
twin’s recommendations. Acceptance of a suggested reduced wager or a lower risk placement may have
higher probability of acceptance by a casual gambler than by the more addictive ones. The digital twin
initially calculates the early exit strategy and proposes this as a recommendation. If the player does not
accept it, then the digital twin conducts fast simulations considering alternative recommendations. As well,
the estimated user profile is updated.

Hales, Clark, and Winstanley (2023) discusses reasons why people keep gambling. Among these, we
will consider:

• Some people believe that they can actually beat the odds and win money. A key goal of the digital
twin will be to convince players that a) their initially planned exiting strategy will lead to loss, and
b) the alternative strategy can still involve play (“staying in the game”), while mitigating losses.
This approach directly addresses what is known as the “gambler’s fallacy” (Kong, Granic, Lambert,
and Teo 2020; Rao and Hastie 2023), whereby players mistakenly believe their past gambling
outcomes have implications for future outcomes.

• People may keep gambling even after losses because they crave special attention and other rewards
that they receive from other people. To address this, another goal of the digital twin will be to

2903



Vázquez-Abad, Young, and Bernabel

convince players to reframe their external perceptions of others’ expectations of their performance
(i.e., social incentives, see Russell, Langham, and Hing (2018)).

• Finally, after losing, some players may believe that they have no choice but to keep playing in
order to recover their financial loss. This pattern, known as the “sunk cost fallacy,” will require
the digital twin to convince players to reframe their internal perceptions by pulling back the lens
to confront the implications of their losses (Doerflinger, Martiny-Huenger, and Gollwitzer 2023).

Based on this model, the digital twin recommendations follow two guidelines:

• The actual recommendation rank: (a) strong (early exit), (b) moderate (change placement strategy),
or (c) mild (decrease wager amount or change the wager strategy).

• The message that is sent along with the recommendation. These messages will be based on long-
standing psychological research (Priester and Petty 1995) on the factors that make them more likely
to influence individuals, particularly when they come from a source that has either credibility (i.e.,
seen as trustworthy and knowledgeable), attractiveness (i.e., through adherence to a social norm)
or power (i.e., able to administer rewards or punishments based on message adherence (Kelman
1958)). For the digital twin, this will involve describing its recommendations as coming from a
source that reflects either (a) credibility (by sending the player results from the simulation scenarios
and perhaps statistical data to support the recommendation), (b) a social norm (by sending the player
messages that will reinforce social recognition from other players for more responsible behavior),
or (c) reward/punishment (by sending the player warnings about mounting debt and information
about the difficulty of paying off debt).

We propose to model categories of player’s profiles that have labels A, denoting their level of “addiction”
(as measured by the Problem Gambling Severity Index, described in the next paragraph) and M, denoting
the type of message that they will respond positively to. Given a category (A,M), the probability of
acceptance of a recommendation/message pair is used by the digital twin in order to minimize loss, subject
to the estimated category of player. The digital twin keeps an estimate of the probability of acceptance of
the pair of recommendation and message that it will send. When the player responds by either accepting
or rejecting recommendations, the digital twin will update its estimated guess of the player’s profile.

Some empirical pre-testing will be needed to gauge the effectiveness of the messages presented by the
digital twin, particularly to ensure they psychologically have the intended impact of credibility, normative
influence, and power. An experimental design would first ask participants to complete the Problem
Gambling Severity Index (Ferris and Wynne 2001) to identify the degree of any gambling addiction issues.
Participants would then be randomly assigned to conditions varying in the amount of gambling losses
incurred over multiple trials, with the digital twin triggered to intervene after a set level of gambling losses.
This experimental approach will help to identify a ground truth benchmark to estimate the acceptance
probabilities given the degree of losses incurred. A unique psychological contribution of this proposed study
(apart from the use of the digital twin) will be examining the interaction between level of addictiveness and
gambling loss, on one hand, and type and source of persuasive message to see where each has maximum
impact. Because this goal will require much experimentation and additional sources of support, it falls
outside the scope of this first paper, which focuses on producing the simulation engine and corresponding
GUI that will enable the app to interact with the players.

5 SIMULATION ENGINE

The main simulation engine for each round is simply a Bernoulli trial, given the strategy. The Markov
process {ξn} is simulated to estimate the final bankroll. Because simulations are used by the digital twin,
various scenarios must be considered in order to estimate future options for the recommendations. To
achieve efficiency in the comparison, we use common random numbers and parallel computations. This
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Figure 4: Activity diagram of the American Roulette.

way the digital twin, with an estimated probability of acceptance from the player’s estimated profile, can
adapt consecutive recommendations/messages. Figure 4 shows the workflow of the simulation engine.

6 CONCLUDING REMARKS

This research presents the development of a simulation engine to empower a digital twin to help mitigate
addictive behavior. The benchmark model used is that of American roulette games, but the main concepts
can be adapted to other games or addictions. In future we plan to conduct controlled psychological
experiments to determine the appropriate model for the player’s profiles and test the effectiveness of the
proposed digital twin. At that time the digital twin should learn the player’s profile. We will compare three
methods for learning the category: (a) multi-armed bandits (reinforcement learning), (b) recommender
systems methods, and (c) classifier methods.
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