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ABSTRACT

The integration of Agent-Based Simulation (ABS) and Reinforcement Learning (RL) has emerged as a
promising and effective approach for supporting decision-making in medical and hospital settings. This
study proposes a novel framework that combines an Agent-Based Simulation with a Double Deep Q-Network
(DDQN) Reinforcement Learning model to optimize task scheduling of healthcare professionals responsible
for elderly patient care. Simulations were conducted over a 365-day period involving 250 patients, each
managed by a healthcare coordinator who schedules appointments. Patients autonomously decide whether
to attend appointments and adhere to medical recommendations. Results show the effectiveness of the RL
model in minimizing health risks, with 84.8% of patients maintaining or improving their initial health risk
levels, while only 15.2% experienced an increase.

1 INTRODUCTION

The healthcare systems worldwide face increasing challenges in providing efficient and high-quality care
for the elderly population, particularly in primary healthcare settings (Jones and Dolsten 2024). The
growing number of elderly patients with chronic conditions, such as hypertension, diabetes, and kidney
disease, demands optimized patient management strategies to reduce clinical risks and avoid unnecessary
hospitalizations (Beil et al. 2021). Traditional patient management approaches, which rely on manual
task assignments and heuristic decision-making by healthcare professionals, often lead to inefficiencies,
increased workloads, and a higher likelihood of errors (Rodziewicz et al. 2025). Consequently, there is
a critical need for intelligent decision-support systems that can enhance patient care management (Alves
et al. 2024; Kumar et al. 2018).

One of the major difficulties in addressing this problem is the dynamic and complex nature of healthcare
environments. The need for personalized care, the variability in patient conditions, and resource constraints
make it challenging to design a universally effective system. Simulation-based approaches have been
widely used to model and analyze healthcare workflows, but their effectiveness is limited when it comes
to optimizing real-time decision-making processes (Ruiz et al. 2024; Kasaie et al. 2018; Pepino et al.
2015; Almagooshi 2015). On the other hand, Reinforcement Learning (RL) has emerged as a promising
technique for enhancing decision-making by learning optimal policies through trial and error, enabling
adaptive responses to real-time changes in patient status, task urgency, and resource availability (Jayaraman
et al. 2024; Ali 2022).

Previous studies have explored the use of RL in healthcare applications, demonstrating its potential in
optimizing treatment strategies, patient scheduling, and clinical decision-making (Yu et al. 2021). However,
the integration of RL within agent-based simulations to directly improve the task scheduling processes for
healthcare professionals in primary healthcare centers has not been widely investigated, particularly to reduce
the health risk of elder patients (Abdellatif et al. 2023; Allen and Monks 2020), mainly due to the challenges
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in ethical, regulatory, and practical implementation of Al in clinical settings. Most existing approaches
focus on either theoretical models or specific medical interventions without addressing the operational
challenges of managing healthcare workflows dynamically (Ali 2022). This leads to the research question:
Can Reinforcement Learning (RL) integrated into Agent-based Simulations (ABS) effectively optimize
task scheduling for healthcare professionals to reduce clinical risk in elderly patients within primary care
settings?

In this paper, we propose an RL-based approach that integrates a Double Deep Q-Network (DDQN)
model (Van Hasselt et al. 2016) with an agent-based simulation to optimize task recommendation for
healthcare professionals managing elderly patients. The proposed system learns optimal task scheduling
strategies by interacting with a simulated environment that mimics real-world healthcare scenarios. This
allows the model to dynamically adapt to changing patient conditions, prioritize critical cases, and reduce
the overall clinical risk of patients. By leveraging RL, we aim to enhance the efficiency of healthcare
providers while improving patient outcomes. The experimental results show that our RL-based system
significantly improves task scheduling and allows to minimize the health risk of elderly patients. The use
of DDQN enables adaptive decision-making, leading to a reduction in missed appointments and improving
the prioritization of high-risk patients.

The content of this paper is organized as follows. Section 2 presents related work. Section 3 describes
our case study. Section 4 presents our proposed agent-based simulation model and how we integrate it
with a DDQN model. Section 5 presents the experimental results, and Section 6 concludes.

2 RELATED WORK

Recent literature reflects increasing interest in the application of ABS and RL to enhance healthcare systems.
These studies range from the development of personalized treatments and chronic disease management to
the optimization of treatment regimens and overall healthcare processes.

From a simulation perspective, ABS has proven to be a powerful tool for analyzing complex interactions
within healthcare and elder care systems. The study by (Li et al. 2016) examines the interactions among
patients, caregivers, and the environment in the context of chronic diseases such as diabetes, obesity, and heart
disease, emphasizing both the clinical implications and societal relevance of the findings. In the context of
aging populations, research such as that by (Biising et al. 2020) demonstrates the potential of ABS to model
doctor—patient interactions in rural settings, as well as the barriers older adults face in adopting medical
appointment scheduling technologies—factors that frequently place them at a disadvantage compared to
the broader population. Another ABS study, presented by (Prédhumeau and Manley 2025), utilizes data
from COVID-19 vaccination campaigns and hospital records to evaluate the impact of vaccination delays
on ICU occupancy and mortality rates. Collectively, these studies highlight the versatility and practical
value of ABS for addressing complex challenges in contemporary healthcare systems.

Conversely, RL has demonstrated considerable potential to enhance clinical decision-making and the
management of complex treatments within healthcare systems. In this context, (Abdellatif et al. 2023)
presents an exhaustive review of over 150 RL applications, highlighting techniques aimed at developing
personalized treatments and improving chronic disease care. Similarly, in the specific case of (Shortreed
et al. 2011), RL is employed to improve prevention and treatment strategies for chronic conditions,
promoting data-driven approaches to personalized medicine. Meanwhile, (Yu et al. 2021) investigates
various applications of RL in healthcare, focusing on three core areas: edge intelligence, smart core
networks, and dynamic therapeutic regimens. The study analyzes how RL can optimize diverse processes,
ranging from treatment administration to the coordination of complex healthcare systems. Taken together,
these contributions illustrate RL’s potential as a powerful tool for supporting complex decision-making in
healthcare environments.

Evidence from specific applications has validated the use of real-world data and DRL in healthcare. (Liu
et al. 2019) employs DQN to design therapeutic sequences aimed at the prevention and treatment of graft-
versus-host disease (GVHD).(Gottesman et al. 2019) addresses key challenges, including observational
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bias in medical records, through the application of RL in clinical decision-making. Within the domain of
mental health, (Xue et al. 2022) applies RL techniques to develop personalized interventions for patients
with mental disorders, adapting treatment plans based on individual responses. These studies underscore
the versatility and applicability of RL in supporting a wide range of clinical and healthcare-related tasks.

There are studies that have validated the integration of ABS and RL. For instance, (Lazebnik 2023)
employs simulated environments and applies DRL to address the problem of hospital resource allocation,
demonstrating superior performance compared to human decision-making. However, the study emphasizes
that more realistic simulations are required to ensure clinical applicability. Similarly, (Abdullah et al. 2023)
introduces an innovative approach that combines DRL with blockchain technology for task scheduling in
healthcare systems, utilizing simulation as a testing framework. This solution addresses critical challenges
related to security, scheduling, and operational costs in cloud-based healthcare environments, while fulfilling
privacy and efficiency requirements in distributed networks. These studies underscore the feasibility and
potential of integrating both techniques to achieve improved outcomes in healthcare contexts.

Our proposal differs from the reviewed studies in its practical and specific approach. While prior studies
have focused on the use of RL to optimize disease treatments, our work focuses on implementing a DDQN
model in a simulator of primary healthcare centers focused on elderly patients with chronic diseases. This
includes medical treatment scheduling and clinical risk classification.

3 CASE STUDY

Case management in healthcare has become a key tool for supporting patients with high clinical or social
risk, offering personalized and effective care based on objective assessments customized to the context
of each patient (Hudon et al. 2015). It is a continuous process that involves planning, monitoring, and
coordinating care for people with complex or chronic needs (Herndndez-Zambrano et al. 2019), the duration
depending on the condition of the patient and can extend over weeks, months, or even years (Miller et al.
2024).

In this model, the case manager, whether a nurse, physician, or social worker, plays a key role in the
coordination of services between different levels of care and between specialists (Katz and Flarey 2024),
improving clinical outcomes and reducing costs in the management of chronic diseases (Klaehn and Jaschke
2022). Their role emphasizes patient participation and empathetic communication, fostering adherence to
treatment, satisfaction with care, and mobilizes the necessary resources to support patient well-being (Katz
and Flarey 2024; Carr 2007).

The main challenge is maintaining patient stability and prevent deterioration, as significantly improving
their clinical and social conditions is often difficult. This requires a case management framework that ensures
balanced resource allocation and timely interventions. Studies have identified specific characteristics of
primary care case management that are associated with positive outcomes in patients who frequently use
healthcare services (Hudon et al. 2019). However, the implementation of such programs faces barriers that
must be understood to ensure their success (Hacker et al. 2020).

In this scenario, the integration of DRL agents becomes a key element. DRL systems optimize resource
allocation by balancing attention between high-risk and low-risk patients, supporting informed decision-
making without compromising system stability. Research shows promising results in reducing mortality
and improving fairness in resource distribution (Li et al. 2024).

The integration of case management with artificial intelligence seeks not only to prevent health decline
but also to maintain patient stability and help to improve resource distribution in high-demand healthcare
settings.
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4 SIMULATION MODEL
4.1 Simulation overview

An Agent-Based Simulation (ABS) model is implemented to represent the dynamics of a hospital where
a total of M case managers supervise P patients. The simulation runs for D virtual days.

Each case manager is randomly assigned N = P/M non-transferable patients. The simulation begins
with each manager setting the initial state configuration for their assigned patients. Then, the manager must
select one of their patients to allocate medical appointment hours and perform actions aimed at preventing
the deterioration of the patient’s health status; this process is repeated indefinitely. Patient selection is
determined by a DRL agent, and it is assumed that all manager actions are executed effectively.

As an ABS model, managers interact with patients by assigning medical hours and providing the
necessary recommendations to help maintain stable health conditions. Moreover, patients may or may not
attend their assigned appointments, where the attendance probability for any given patient is denoted as
Py ~ Ny (U, 0), where A, is the truncated normal distribution on the interval [a,b] (Burkardt 2023),

with mean y = # and standard deviation ¢ = ‘a;m. The actions of managers and patients are governed

by mutually assigned events controlled by a central monitor synchronization program. The simulation
incorporates availability constraints for both managers and patients, taking into account their working
hours, rest periods, and scheduled tasks.

4.2 Risk Model

Each patient p is associated with two types of risk: clinical (Rc = Rc(p,t)) and social (Rg = Rs(p,t)),
both derived from a continuous risk function R = R(p,), which models a risk level for a given patient p
and time ¢. This function is computed based on two components: a baseline risk Ry = Iéo(p,t)) and an
evolution score (S = S(p,t)).

The baseline risk is modeled as Ry ~ B(c,8), where B denotes the Beta distribution (Gupta and
Nadarajah 2004). Parameters o and 3 depend on the patient’s age and the number of chronic diseases
he/she has. As age increases, the probability of being assigned a high risk also increases. Similarly, a
higher number of chronic diseases increments the likelihood of a high risk level.

The risk evolution score is determined by three factors: patient attendance or absence to scheduled
appointments (S4), manager attention or inattention (Sw ), and random events that affect patient well-being
(Sr). In this way, the total evolution score is defined as S = S4 + Sw + Sg. Patients at higher risk are more
likely to receive negative scores, especially if they are unattended for extended periods.

The risk function is defined as R = min(max(0,Ry — vS, 1), where v is a parameter that controls the
influence of the score on the final risk. Furthermore, the following classification is established: R< %
corresponds to low risk (Rc|Rs = Rrow), % <R< % represents medium risk (Rc|Rs = Ryepium), and R > %
indicates high risk (Rc|Rs = RyiGh)-

The score associated with the attendance to scheduled appointments is modeled as S4 = 0Ny, where
Na = Nagtendances — Nabsences Tepresents the adherence value to the clinical or social treatment and 0 is the
improvement factor for adherence to appointments at the health center.

The score related to lack of attention is defined as Sy = f(W,,;) + facc(f), where f(W,;) < 0 represents
a penalty function based on waiting time, and fy..(t) < 0 corresponds to an accumulation function that
aggregates the penalty over time. Intuitively, f(W, ) penalizes the system when a patient waits longer than
a certain threshold, and f,..(7) captures the long-term effects of prolonged inattention by accumulating a
portion of the penalty over time, even if the patient eventually receives care.

The penalty function for inattention is modeled as f(W,) = —& (R) min(0, W, ; — Wyin(R)), where W,
is the patient’s waiting time since their last appointment, & (R) is a monotonically increasing function that
amplifies the impact of waiting time according to the risk level, and W, (R) is a waiting time threshold
beyond which the penalty is activated. The accumulation function is defined recursively as: f,..(0) =0,
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and face(t) = K (face(Tp) +max(0, f(W,,)+ y)), where 7, is the last time the patient p had attention in
the past; y > 0 and x € [0, 1] are parameters that regulate the persistence of the penalty.
The random score associated with sudden events that increase risk is modeled as:

X ~U(a,b) with probability ¢
S R <
0 with probability (1—¢)

where U denotes the uniform distribution and [a,b] is the range of possible values. This score is updated
at the end of each simulation day and captures unexpected events that can negatively affect the patient’s
well-being. The use of a probabilistic assignment allows the model to introduce stochastic fluctuations in
risk, simulating real-life scenarios such as acute health deterioration or sudden social crises that are not
directly related to care quality.

Four types of appointments can be scheduled, grouped into two dimensions: clinical (medical appoint-
ments and diagnostic tests) and social (social appointments and psychological sessions). Each type has
a scheduling probability Ps, independent of the others. Appointments are only assigned to patients with
medium or high levels of clinical or social risk. Attendance at these appointments reduces the probability
the patient reaches high risk. However, all patients remain susceptible to spontaneous increases in clinical
or social risk due to adverse events.

4.3 Integration of simulation and DRL

The DRL agent is integrated into a recommendation system that suggests the next patient to be attended
based on the current state known by the simulated healthcare center. Case managers constantly consult this
system and perform their tasks exactly as instructed. During the simulation, case managers do not spend
their time calculating patient risk or deciding who should be attended in the next iteration.

The integration of the DRL agent with the simulator is achieved through an intermediary API, which
enables real-time information exchange between both systems. This API provides the necessary mechanisms
for the simulator to send the current state of the environment, receive a recommended action, and subsequently
report the resulting transitions from that action.

The recommendation system service is implemented as a multithreaded program segmented into three
main components: DRL Model Serving, responsible for generating actions based on the received state of
the simulation; DRL Data Gathering, responsible for collecting environment transitions; and DRL Model
Training, where the deep learning model parameters are updated based on accumulated experience.

Figure 1 illustrates the interaction between the simulator and the DRL service. Communication follows a
request-response structure, in which the simulator reports the environment state, the DRL service determines
the best action, and this action is executed by the simulator. Subsequently, the resulting transitions are sent
for storage and later used to train the model. This modular architecture allows the simulation process to
be decoupled from model training, facilitating the scalability and optimization of DRL.

To reduce the latency caused by packet transmission through the server and its impact on exhaustive
testing, a shared memory scheme with semaphores has been implemented. This approach minimizes
communication latency between the simulator and the recommendation service, and is adopted as a first
solution exclusively for model calibration.

4.4 Deep Reinforcement Learning Agent

The problem is modeled as a Markov Decision Process (MDP) (Li 2023), since the simulator provides
full observability of patient states and does not rely on patient features involving uncertainty. In addition,
the use of model-free DRL techniques (Li 2023) is proposed, allowing training without knowledge of
the transition probabilities. This implies that only the set of states, actions, and reward function must be
defined.
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Figure 1: Interaction between the DRL Service and the Simulator

Since every manager is modeled independently from others, and the model is fed with experience
coming from all managers, we use the tuple m, ¢ to describe that a variable corresponds to manager m
and is instantiated at time ¢. Thus, the state s,,; € RN ¢ corresponds to the concatenation between all N
patients’ feature vectors of size ¢ from manager m at time ¢. The next state for manager m, given a state
Smy 1s denoted sy, 4 1.

The action a,,; € [0,N] represents the index of the patient to be attended at that moment for manager
m. This action is subsequently mapped to the id of the patient within the corresponding case manager’s
group, i.e. p can be obtained as a function of m and a,,.

The reward ry,; is defined as

Tme = Rp,t + kWp,t - .LLRp,tJrl (D

where W, ; < W, is the waiting time of the selected patient since their last appointment, R,; is a
function that combines clinical and social risks, calculated as

Rp7,:Rc+R5+T”Rc—Rs| 2)

and R, is the average combined risk of all N patients in the next state. Wy, A, U, and 1 are
hyperparameters that control the influence of each term on the reward.

In equation (1), to prevent the DRL agent from obtaining excessive rewards by indefinitely causing
patient attention to delay, the waiting time W), is truncated by a maximum value W,,,. This design
encourages the agent to prioritize timely interventions while balancing global risk in the system. In
equation 2, the term 1|R¢ — Rs| is added to emphasize cases where there is a significant imbalance between
clinical and social risks. This design results in a risk function that is more sensitive to extremes, assigning
higher combined risk when either R¢c or Ry approaches 1 even while the other remains low.

4.5 DDQN Approach

For the decision-making process of the DRL agent, a DDQN is employed, an enhanced variant of DQN
that mitigates the overestimation of action values (Li 2023). In this context, the action values are directly
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correlated with the urgency of each patient, enabling the agent to prioritize cases requiring more immediate
attention. The adopted DDQN variant includes the use of Target Networks, which reduce the variance in
action value estimation, and a Replay Buffer, which breaks the temporal correlation between successive
samples (Li 2023).

As an exploration strategy, an e-greedy scheme is adopted, in which the agent selects a random action
with probability € and an optimal action with probability 1 — €. The exploration rate € decays over time
according to the function £(¢) = &é},,, ay’ where & is the initial exploration probability and €;.¢4y is a decay
factor that governs the transition from exploration to exploitation of the learned policy. Both values are
tunable hyperparameters.

To prevent the same patient from being selected multiple times on the same day, the action masking
technique is applied (Huang and Ontafién 2022). This technique involves applying a restriction mask to
the output neural network by assigning infinitely negative values to the action values corresponding to
already selected patients. This ensures that a greedy policy with respect to the action values will never
select restricted actions. The mask is applied both to the value-based selection and to randomly chosen
actions within the e€-greedy scheme.

The neural network architecture used in the DDQN is based on convolutional neural networks (CNNs),
as illustrated in Figure 2. The input state is represented by the matrix s,,, € R¥*¢, over which k filters of
size (1 x ¢) are applied to capture relevant information at the individual patient level. An activation function
o is then employed to introduce non-linearity into the representation. Finally, a second convolutional layer
processes the output to estimate the action values before applying the action mask.

State Spm, Conv.

layer Action
Q-values mask

PatientState, Activation — —
q:l_a:_ function q:.la:_

PatientState; 7 o) ] | I
1| L LT /

PatientStatey . ] . J
Y

Urgency

Figure 2: DDQN model architcture

5 EXPERIMENTS
5.1 Environment setup

The experiments are carried out with a total of P =250 patients and M = 5 case managers over a continuous
simulation period of D = 365 days. The probability that patients attend their scheduled appointments is
modeled as Py ~ A [a,b](U,0), with a = 0.46 and b = 0.62 (u and o defined in Section 4.1). These
parameters should be adjusted for each healthcare center based on historical patient attendance data. The
simulation parameters used in Section 4.2 are: v =0.04, 6 = 1.0, k =0.9, yw =0.5, { =0.005, P; = 0.6.
The distribution % (a,b) for Sg is defined in the interval [a = —10,b = —5]. For simplicity, the functions
& (x) and Wy,(x) are modeled using the categorical risk representation as follows: &(Row) = 0.025,
& (Ruepium) = 0.09, E(Ruigr) = 0.025 and Win(Rrow) = 10, Wein(Ruepium) = 7, Wanin(RuicH) = 5.
The parameters used in Section 4.4 are A = 0.1, u = 1.0, 1 = 0.25, and W,,,, = 720.

The features used to represent the state of each patient are: age (categorical variable with 3 classes),
attended clinical hours (can take negative values), attended social hours, waiting time since the last
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appointment, and number of chronic diseases. All numerical variables are normalized considering their
respective maximum values (and minimums for those that may be negative). Based on this, the state size
for each patient is ¢ =7 for the experiments in this work.

In the following subsections, the clinical risk (R¢) and the social risk (Ryg) of the patients are represented
numerically to facilitate visualization. Each risk category is assigned a specific value: Ryow = 10,
Ryepium = 20, and Ryjgy = 30. In addition, all models are compared using the same random seed,
which is generated at random before the beginning of the experiments. This process is repeated five times,
averaging the results obtained for the patient’s improvement rate, risk evolution, waiting time evolution,
and average waiting time per average risk.

5.2 Results

5.2.1 Analysis of the behavior of the proposed approach

The results presented for the policy learned by the DRL agent (Figure 3) indicate that patients with higher
risk are treated more frequently than those with lower risk. Although the frequency of care is not fixed for
a given risk level, the reward function is shown to effectively associate risk with urgency of care, resulting
in a policy capable of determining urgency without requiring risk as an explicit input.
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Figure 3: Visualization the patients health risk levels. The light green boxes indicate that the DRL agent
selects a patient on the day specified on the x-axis. Upon selecting a given patient, their perceived risk
will be updated in the following day.

Figure 4 illustrates the number of scheduled hours per patient (represented by their average combined
risk R, ;) over a simulated episode of 365 days, using only the policy learned by the DDQN agent. The
figure shows an increase in the number of hours assigned for patients with higher risk levels, particularly
those in the extreme category (high clinical and social risk), while healthier patients receive a lower number
of hours. A low number of assigned hours does not necessarily imply that patients are not being constantly
monitored by the case manager.

5.2.2 Evaluation of the proposed ABS-DRL approach

The results obtained from the simulation using the proposed DRL agent are compared against two baseline
models. One baseline consists of randomly selecting patients, while the other aims to attend patients
uniformly, which corresponds to the simulator’s preliminary strategy. The latter method is equivalent to
selecting the patient with the longest waiting time, making it a greedy algorithm with respect to W, ;.
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Figure 4: Scheduling of hours according to average risk for DDQN model

Table 1 summarizes the evolution of patients clinical and social risk levels (R,;), computed as the
difference between their initial risk R, o and final risk R, 7 at the end of the simulation period. Values are
averaged over five independent simulation runs. The DRL model clearly outperforms both baselines, with
50% of patients showing risk reduction, compared to 43.6% and 35.2% in the greedy and random policies,
respectively. Additionally, the DRL model results in the lowest proportion of patients experiencing risk
increases (15.2%), whereas the random baseline yields the highest (24.0%).

These findings suggest that the DRL agent is able to learn a policy that allocates resources more effectively,
resulting in improved overall outcomes. The observed deltas, especially in the “Risk Decreases” and “Risk
Increases” categories, highlight the added value of a learning-based strategy over static or heuristic-driven
alternatives, enhancing both clinical and operational performance within the simulated environment.

Table 1: Average patient risk evolution (R, ;) across 5 runs, comparing the proposed DRL model against
baseline approaches.

Model

Risk Decreases

Risk Unchanged

Risk Increases

Proposed Model

125 (50%)

87 (34.8%)

38 (15.2%)

Greedy Baseline

109 (43.6%) [-6.4pp]

93 (37.2%) [+2.4pp]

48 (19.2%) [+4.0pp]

Random Baseline

88 (35.2%) [-14.8pp]

102 (40.8%) [+6.0pp]

60 (24.0%) [+8.8pp]

Figure 5 compares the proposed model with the two baselines based on three evaluation criteria. Plot
(I) shows the daily evolution of the average combined risk (R, ;) per patient. Plot (II) shows the average
waiting time in days for each patient with respect to their risk level (R, ), where the behavior observed in
the policy shown in Figure 3 can be appreciated. Finally, plot (III) illustrates the average time patients have
been waiting since their last appointment. Patients who have been waiting for extended periods significantly
affect the arithmetic mean.

5.2.3 Runtime Analysis

Figure 6 shows the simulation runtime as a function of different parameter combinations (N, D, and P). The
plot on the left displays how runtime evolves with the total number of patients (P), keeping the simulation
period fixed (D = 365) and varying the case manager workload (N). A nonlinear increase in runtime is
observed as P grows, with significantly higher runtimes when the workload per manager is lower (i.e.,
smaller N). The plot on the right illustrates the effect of increasing the simulation duration (D), with a fixed
number of patients (P = 300) and again varying N. In this case, runtime grows approximately linearly with
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Figure 5: Comparison of the Model with Different Baselines.

D, and it is again evident that a lower workload per manager (smaller N) results in longer computation
times.
Runtime as a function of P and N (D = 365) Runtime as a function of D and N (P =300)
175 -

150 1
125 1
100 1
75 1

Runtime (s)
Runtime (s)

50 1
25 1

200 400 600 800 1000 180 540 900 1260 1620
Number of patients (P) Simulation days (D)

Figure 6: Simulation runtime using different values for the number of patients (P), number of days (D),
and case manager workload (number of patients per manager, N).

6 CONCLUSIONS

This study shows the effectiveness of combining Agent-Based Simulation with Reinforcement Learning to
support decision-making in primary healthcare systems. By modeling the appointment management process
handled by case managers, the approach provided valuable insights into the dynamics and complexities
of patient-caregiver interactions. The integration of a DDQN model allowed the simulation to optimize
the scheduling of healthcare tasks while adapting to patient behavior, such as appointment attendance and
adherence to medical advice.

The results suggest that this combination ABS-DDQN not only reduces patients health risks over time
but also supports the efficient use of limited human resources in healthcare settings. The model proved
capable of capturing the emergent behaviors of agents in a complex environment, making it a promising
tool for evaluating and designing health interventions in realistic, data-driven scenarios.

As future work we plan to incorporate more granular patient data, such as comorbidities or behavioral
profiles, could improve the realism and predictive power of the model. This would allow the system
to better personalize the decision-making process for each patient and increase the model’s capacity to
simulate heterogeneous populations. Additionally, we plan to explore the integration of real-time data
sources through database of health records, enabling the development of adaptive and dynamic simulations
that reflect changes in patient status or resource availability.
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