
Proceedings of the 2025 Winter Simulation Conference

E. Azar, A. Djanatliev, A. Harper, C. Kogler, V. Ramamohan, A. Anagnostou, and S. J. E. Taylor, eds.

A METHOD FOR FMI AND DEVS FOR CO-SIMULATION

Ritvik Joshi1, James Nutaro2, Gabriel Wainer1, Bernard Zeigler3, and Doohwan Kim3

1Dept. of Systems and Computer Eng., Carleton University, Ottawa, ON, CANADA
2Computational Sciences & Eng. Division, Oak Ridge National Lab., Oak Ridge, TN, USA

3RTSync Corp., Chandler, AZ, USA

ABSTRACT

The need for standardized exchange of dynamic models led to the Functional Mockup Interface (FMI),
which facilitates model exchange and co-simulation across multiple tools. Integration of this standard with
modeling and simulation formalism enhances interoperability and provides opportunities for collaboration.
This research presents an approach for the integration of FMI and Discrete Event System Specification
(DEVS). DEVS provides the modularity required for seamlessly integrating the shared model. We proposed
a framework for exporting and co-simulating DEVS models as well as for importing and co-simulating

continuous-time models using the FMI standard. We present a case study that shows the use of this
framework to simulate the steering system of an Unmanned Ground Vehicle (UGV).

1 INTRODUCTION

Developing modern complex systems often requires integrating expertise from multiple disciplines.
Modeling and simulation (M&S) can support such collaboration; however, challenges arise as experts from
different disciplines rely on diverse tools and modeling methods. Model sharing can bridge the gap between

these approaches, ensuring access to the same information and consistency across multiple groups. With
this goal, the Functional Mockup Interface (FMI) standardizes methods for sharing models (Blochwitz et
al. 2011). The standard provides methods for model exchange and co-simulation. It streamlines the process
of integrating multiple system components using different tools.

One of the model-sharing methods described in the standard is called co-simulation, and it allows the
interaction of multiple independent models developed using different modeling methods. It permits a shared

model to run independently with other models and synchronize only at specific points. This is useful for
simulating models with different formalisms. The ability of FMI co-simulation to handle interactions
between diverse models aligns with the flexibility of the Discrete Event Systems Specification (DEVS)
(Zeigler et al. 2000), a well-known M&S formalism. DEVS models are modular and hierarchical, and can
also be integrated with other formalisms for developing hybrid systems.

Integrating DEVS with FMI enables DEVS models to interact with continuous-time models, facilitating

the connection between discrete and continuous dynamics without requiring redefinition of the continuous-
time models developed in non-DEVS tools. A DEVS-based simulator can import models and use them to
perform integrated simulations. The export and import capabilities also enable sharing DEVS models,
promoting collaboration between DEVS tools and encouraging reusability. Nevertheless, existing DEVS
tools need to be improved to achieve the interoperability essential for developing complex engineering
systems. The tools do not provide standardized methods to synchronize the import and export operations

during model sharing (like FMI), and the export capability of DEVS models is underexplored, which limits
their potential for integration with other simulation frameworks and tools.

This research addresses this gap by defining a framework that exports and imports strategies for DEVS
models with synchronization between the two. This was achieved by creating an importer for the Cadmium
tool (Cárdenas and Wainer 2022) and an exporter for the MS4Me tool (Seo et al. 2013). The framework

979-8-3315-8726-0/25/$31.00 ©2025 IEEE 2181

Joshi, Nutaro, Zeigler, Wainer, and Kim

also bridged tools like MATLAB-Simulink and Open-Modelica with the DEVS-based tool Cadmium with
the help of continuous time solvers. These solvers performed the task of simulating the Functional Mockup
Unit (FMU) of continuous-time models on the DEVS-based simulator. The framework provides flexibility

with the use of tools for exporting continuous-time models by taking advantage of a standardized interface
for integrating FMUs. This research shows an approach for utilizing the DEVS framework for tool
integration using FMI, contributing to the broader adoption of FMI-based co-simulation techniques.

We defined the mechanisms for these interactions; we show the use of these methods in the M&S of
steering control for an Unmanned Ground Vehicle, integrating FMI and DEVS. Subsystems are developed
in different DEVS-based tools and shared to enable co-simulation. A continuous time model is combined

with a DEVS model through FMI co-simulation. The tools include MS4Me, a DEVS-based tool, for the
navigation system. The block was independently tested and exported as a co-simulation FMU. A
continuous-time PID controller model was built using MATLAB (Simulink), and its response and
parameter tuning were performed before exporting it as a co-simulation FMU. The remaining components
were developed in Cadmium, another DEVS tool. Cadmium acted as the host simulator for the co-
simulation of the system, coordinating the integration of these two components through the FMI.

2 BACKGROUND

Unmanned Ground Vehicles (UGV) operate on the ground and do not have an onboard operator (Hebert et
al. 2012), running autonomously or controlled remotely. They are engineered for environments where
human presence is risky or impractical. UGVs perform a wide range of applications: civil engineering for
labor-intensive, costly and dangerous tasks (Hu and Assaad 2023); construction, hazardous material
handling, waste management, etc. Agricultural Unmanned Ground Vehicles (Farella et al. 2024) improve

perform tasks like monitoring, harvesting and transportation. UGVs are also used in mining applications
(Cherukuri and Shashank 2018), border patrol, surveillance and combat.
 Extensive research and development are being conducted for UGVs, in areas like mobility, localization,
path planning, and navigation (Ragothaman et al. 2021; Chen et al. 2022). M&S provides a controlled and
flexible environment for evaluation, and it allows developers to analyze system response for control actions.
Simulating the systems in impractical conditions for real world testing helps in making the design safe,

reliable and robust. Engineering projects involving multiple disciplines are often distributed among vendors
or research teams. Model sharing and model-based system engineering can help build such complex multi-
disciplinary applications by integrating smaller sub-systems (from different domains and developed with
different tools). Reusing these subsystem models can save significant effort and integrated M&S refines
the system's performance (Inzillo and Carlos 2017) (Zhang et al. 2010).
 Understanding the importance of model sharing, M&S tool developers made several attempts to create

proprietary interfaces for exchanging models (Blochwitz et al. 2011). Standardization of these efforts was
achieved by the development of a standard model interface called FMI (Functional Mockup Interface)
(Blochwitz et al. 2011) for tool-independent exchange models and co-simulation. The standard includes a
model description schema, model packaging format, M&S methods, and application programming
interfaces (APIs). Model sharing is done through a Functional Mockup Unit (FMU), a container for a model,
built as an executable package containing the model description, its behavior, and all the associated data.

 The standard proposes one API for model exchange and one for co-simulation. FMI for co-simulation
tries to couple two or more models built in separate tools for a joint simulation (Functional Mockup
Interface Standard 2014). The co-simulation is performed by packaging the model as an FMU along with
the solver that simulates the model. These packaged models are interconnected, and a co-simulation
algorithm is responsible for synchronization and data exchange between models. The communication
between the models is restricted to discrete communication points and the model performs numerical

integration independently between the two points by their respective solver (Gomes et al. 2018).
 Discrete Event System Specification (DEVS) (Zeigler et al. 2000) is a well-established M&S formalism
that allows modeling system where inputs and outputs can be represented as a sequence of events. DEVS
uses atomic models to describe the system’s behavior and coupled models that describe a composition of

2182

Joshi, Nutaro, Zeigler, Wainer, and Kim

other DEVS models. Cadmium (Cárdenas and Wainer 2022) and MS4Me (Seo et al. 2013) are the tools
used in this research. Cadmium is a header-only C++17 multi-platform library. MS4Me is developed by
MS4 Systems that allows users to define the system's overall structure using a sequence diagram, which

converts into a template DEVS model in Java. A System Entity Structure document is generated from the
sequence diagram to represent coupled models and state diagrams represent atomic models.
 We want to explore the co-simulation of hybrid and continuous models; for instance, a PID controller
(Astrom 1995) combined with DEVS models. The classical PID is popular for UGV control because of its
robustness, simplicity for design and integration, and performance (rise time, settling time, and stability).
Automatic and manual tuning methods exist in tools like MATLAB(Simulink) (Wang 2020).

 Continuous models describe systems as a function of time where time is a continuous value, and
represent real-world processes using the continuous dynamic of the systems; thus, they need to be simulated
on digital computers by discretizing continuous signals. This is achieved by using solvers that often rely on
numerical methods (Cellier and Kofman 2006), e.g. Euler’s, Runge-Kutta and others. An alternative for the
M&S of continuous time models in DEVS is the use of the Quantized State System (QSS) method (Kofman
and Junco 2001), which is based on the concept of state quantization (Zeigler and Lee 1998). These methods

perform an event-based discretization of the continuous time equations with a pre-defined threshold called
a quantum. The mechanism responsible for this event detection is called a quantizer, which defines a
threshold and monitors the inputs to detect an event based on the input value and logical conditions to
decide whether a significant change has occurred. Multiple well-established QSS methods are available,
and each method differs in accuracy and efficiency, such as second order QSS (QSS2) (Kofman, 2002).
 Recent research has proposed approaches to integrate FMI with DEVS for M&S of cyber-physical

systems. (Müller and Widl 2013) proposed a generic scheme for integrating continuous subsystems into a
discrete event system with the help of FMI. A formal way to link the discrepancy between the semantics of
heterogeneous modeling formalisms and FMI was examined by (Tripakis 2015). A different approach was
introduced by (Camus et al. 2018), which proposed a Multi-agent Environment for Complex-SYstem CO-
simulation that employed DEVS wrapping to integrate different co-simulation models. Building on this,
(Lin 2021) presented a method for simulating four-variable models using the Java-based DEVS-Suite (Kim

et al. 2009) and the models developed using OpenModelica. More recent advancements in this domain are
in the work of (Vanommeslaeghe et al. 2024) and (Vanommeslaeghe Van Acker et al. 2020), who proposed
a method for integrating DEVS with FMI for simulating embedded platforms. The framework is based on
the generic architecture proposed by (Müller and Widl 2013). In our architecture, we are trying to use the
concept of QSS to make the next prediction and determine the time for the next prediction.

3 DEVS-FMI INTEGRATION

We defined a framework that will allow the sharing of continuous time models using scripting languages
like Modelica or MATLAB with the help of FMI standards. The framework has an interface in the form of
an importer that will allow integrated M&S of shared models using a DEVS-based simulator (like
Cadmium). Discrete event models developed using other DEVS-based M&S tools (Like MS4Me) can also
be shared using the FMI co-simulation to be incorporated into the simulation. For simulating the UGV
steering control model, we have used the Cadmium (Cárdenas and Wainer 2022) tool to develop an interface

that will import or use the shared models and perform a discrete event M&S. The Figure 1 below shows a
high-level overview of the framework with the help of a block diagram.

The diagram shows blocks for the DEVS-based tool MS4Me and Modelica-based models in Open-
Modelica, used to create continuous system models. Open-Modelica supports FMI 2.0 for Model-exchange
and co-simulation. The co-simulation FMU exported by the tool is also used by the next block. This co-
simulation FMU consists of a model and a solver to simulate such model. Instead, the MS4Me block

represents the definition of DEVS models, which is done using a graphical interface, and then converting
the model to Java. The block FMU4-MS4Me (detailed in DEVS model Export) is an interface we defined,
which is used to export the DEVS model using FMI to generate the co-simulation FMU illustrated in the
next block. This FMU contains the DEVS model and the DEVS simulator as the solver. Then, the block on

2183

Joshi, Nutaro, Zeigler, Wainer, and Kim

the right represents Cadmium and all its sub-components. The FMU wrapper or importer is responsible for
dealing with the FMU. For co-simulation FMU, this block will act as a wrapper that will create a model
instance in Cadmium and communicate with the model using APIs provided by the FMI library. The DEVS

models and Modelica model shown inside the Cadmium block are the FMUs of models created by their
respective tools. The continuous time models shared through this process will be simulated with the help
of solvers designed in Cadmium. This framework enables the import of multiple FMUs from various tools,
allowing them to be connected in any configuration to meet specific model requirements.

Figure 1: Block diagram for High-level overview of co-simulation in Cadmium.

The FMU importer imports and integrates the model and the FMU4-MS4Me block; these were defined

to allow a streamlined way of model sharing. We also defined QSS and Runge-Kutta solvers for continuous
models imported to Cadmium. We include the blocks MS4Me and Open-Modelica because these are the
tools used for experimentation, but the architecture is generic: any M&S tool capable of exporting an FMU
can be used instead of Open-Modelica without modifications. MS4Me can be changed by other DEVS
tools, but it would require the FMI export functionality we provide in the FMU4-MS4Me. The continuous
time solvers are also generic and allow integration for model simulation even if the exporting tool changes.

The framework is scalable as multiple sub-systems can be imported for integrated M&S.

3.1 FMI co-simulation

The co-simulation FMU has its solver, which helps execute independently after instantiation. The design
requires a strategy to communicate with the instance to get the values of required variables of the model.
The functionality was defined following the state machine for co-simulation outlined in (Functional
Mockup Interface Standard). By referring to the calling state machine in the standard, the process for the

co-simulation FMU follows a sequence of steps – instantiation, configuration, model execution, and
termination. Instantiation and configuration use the same APIs as the instantiation and configuration stages
in Model exchange with different parameters. In the instantiation function, an instance of co-simulation
FMU is created in the atomic model. Information such as model name and model files are provided in the
function parameters. The configuration then initializes the variables and sets the initial condition.

The FMU is executed inside the atomic model and updating state variables. The co-simulation FMU

can interact with the model only on communication points. It needs the current simulation time and the time
for the next communication point to perform variable integration. After receiving the next communication
point, FMU integrates the continuous time variables using the solver inside FMU and updates the values.
Once the step is completed, the variable values can be accessed and utilized for further computation.

Figure 2 shows a block diagram of the FMI co-simulation defined in Cadmium. The coordination of
co-simulation FMUs depends on the co-simulation algorithm. Here, the Cadmium M&S algorithm acts as

the co-simulation algorithm. The FMI wrapper block shown in Figure 2, links a leader simulation algorithm
and a follower FMU. This is achieved with the help of the APIs developed in the FMU wrapper that can be
called inside the atomic models.

2184

Joshi, Nutaro, Zeigler, Wainer, and Kim

Figure 2: Block diagram of FMI co-simulation in Cadmium.

These APIs facilitate the instantiation and configuration of FMUs, while also managing communication

with the FMU to synchronize steps and exchange variable values. The class designed to define these APIs

is the same as the FMI importer, as seen in the following code snippet.

template <typename S> class FMI: public Atomic<S> {

public:

 FMI (const std::string& id, S initialState, const char* modelname, const char* guid,

 const char* resource_path, const char* so_file_name, double start_time);

 virtual void internalTransition(S& s) const = 0;

 virtual void externalTransition(S& s, double e) const = 0;

 virtual void output(const S& s) const = 0;

 virtual double timeAdvance(const S& s) const = 0;

 virtual void initialize(S& s);

 double get_real(int k) const;

 void set_real(int k, double val) const;

 int get_int(int k) const;

 void set_int(int k, int val) const;

 bool get_bool(int k) const;

 void set_bool(int k, bool val) const;

void do_step(double CurrentTime, double h) const;

}

The FMU instance is created with the help of fmi2Instantiate() by passing the modelname, guid,
resource_path, and so_file_name provided in the model. Model variables are initialized using initialize().

The internalTransition, externalTransition, output, and timeAdvance functions inherit from the atomic class
and define the atomic model. All getter and setter functions exchange variables based on their respective
data types. The do_step() function is used to communicate with the FMU to provide the current execution
time and the next communication point for it to perform numerical integration and update variables.

The FMU instantiation and function calls inside the atomic model enable the FMU to connect with the
simulation algorithm. The do_step() function is called by the model's internal transition function, where the

time advance value is used as the next communication point. After the successful execution of the step, the
FMU model output and variable values are read using the getter functions, which are then used for further
calculations inside the model. These values are then passed through the output ports of the atomic model.
The input received via the input port of the atomic model through the external transition function is shared
with the FMU. In this way, the FMU is mapped in the atomic model to integrate with the DEVS framework.
The DEVS model exported as an FMU is also co-simulated with other DEVS models using this process. In

addition, a variable containing the time of the next event is shared as a model variable during the export of
the model. This is used to set the time advance of the atomic model communicating with the FMU. As a
result, the step function is invoked for each event in the DEVS model within the FMU, as seen in Figure 3.

The Root-coordinator communicates with the Top-coordinator, which receives the t value from the
simulator and the coordinator. The value t is the time for the next event. The solver inside the FMU is also
sending the t value to the coordinator with the help of the communicating atomic model. We know the root

coordinator is responsible for advancing the global simulation time and it advances the time to the lowest
time value to simulate the next event.

2185

Joshi, Nutaro, Zeigler, Wainer, and Kim

Figure 3: Conceptual representation of FMI co-simulation with abstract simulator.

Setting the time advance value with the above strategy treats the entire DEVS model within FMU as

one atomic model. It allows the simulation of all the events of the co-simulating model in the correct
sequence according to the global simulation time.

3.2 DEVS model Export

Co-simulation in Cadmium was developed to incorporate models from other simulation tools such as
OpenModelica. The complementary method for exporting DEVS models as co-simulation FMUs was
developed using MS4Me GUI, and converted to Java code. To package this Java model as an FMU, we
used FMU4J (Hatledal et al. 2018), a package designed for handling FMUs within the Java Virtual Machine
(JVM) environment. This was used to achieve cross-platform compatibility, using FMUs with Java and

ensuring interoperability between Java and other programming languages.
 Figure 4 shows a UML diagram of the environment defined for exporting the DEVS model as an FMU.
FMU4-MS4Me uses the FMU4J library and its functionality to package the models into FMUs. We
extended this capability to export DEVS models developed using MS4Me. We designed the functionality
by specifying how to define generic DEVS functionality and a second one for model-specific design. The
DevsFMU and Application model classes, shown in Figure 4, were defined using the libraries FMU4J and

ms4systems. The DEVS model package shown in Figure 4 is the model code automatically generated by
MS4Me. DevsFMU implements generic DEVS M&S functionality, using Fmi2Helper, which is defined in
the FMU4J and supports FMU export. DevsFMU defines objects of the model and simulator class as its
class variables. The model class (CoupledModelImpl) is used to describe the model. The simulator class
(SimulationImpl) contains all the functions required to simulate the model. Both are defined in MS4Me.
DevsFMU overrides some of the Fmi2Helper functions: the registerVariables function to set and update

timeRemaining, which defines the time to the next event (using setupExperiment to start the simulation).
The simulation functions are called by the do_step function, which calls for injectInput from MS4Me if it
needs to send inputs (otherwise, it calls the simulateIterations to perform the next iteration).

DevsFMU provides functions to simulate the DEVS model. To instantiate the model and add model-
specific functionalities, we created a new class that extends DevsFMU and configures the variables
according to the model's requirements. The model variable is assigned an instance of the DEVS model, and

the Simulator is initialized with the simulator design object, which configures the simulation using the
model and assigns it a specific name, along with the relevant options. The class for application model also
redefines a few functions of its parent class. The registerVariables function calls the superclass function
that updates timeRemaining and registers other variables to be shared. The registration involves declaring
the names of the variables being shared, mapping them to the actual state variable inside the model, and
setting its properties like causality (input/output), variability (discrete/continuous), etc. The do_step

function maps the FMU's input to the model's input to inject an input and then calls the do_step function of
the superclass, which terminates the simulation by evaluating the end-of-simulation condition.

2186

Joshi, Nutaro, Zeigler, Wainer, and Kim

Figure 4: Design of DEVS model export.

3.3 Solvers

If a shared model is a continuous-time model, it needs to be simulated with the help of a continuous-time
solver, like QSS. We defined first-order and second-order QSS solvers for state variable quantization and
the numerical integration of the quantized variables. The QSS solver design in Cadmium determines the
quantized state and calculates the time advance based on the quantum size and the derivative of the state

variable. This is achieved by defining a function that takes the value of the state variable, its derivative, and
the quantum size into account to calculate the value of the time advance (next step for integration). A
constant quantum size is defined for discretizing state variables using uniform quantization. Hysteresis was
also included in the design to prevent infinite events in a given fixed time (Joshi et al. 2024). A second-
order QSS2 was designed as shown in (Kofman, 2002). The derivative value, quantum size, and variable
value are supplied to the function, which calculates the value of sigma. The imported continuous time model

shares the variables with the atomic model. The solvers can also be integrated with co-simulation operations
to reduce the number of simulation instances. The co-simulation FMU includes a solver that performs
numerical integration of the variables based on the specified time. This integration is performed only when
the co-simulation algorithm tasks the FMU with doing so. The frequency of performing these integration
operations can be limited using the quantizer. The atomic model co-simulating with the FMU reads the
current value of the continuous-time variable. It calculates the derivative of the variable using its last value

and time since the last read. It then calls the quantizer function to calculate the time for the next step (time
advance), based on the specified quantum size and the function's derivative. The atomic model shares this
value with the co-simulation FMU as the next communication point. After this calculated time, the model
requests the FMU to complete the integration of values. It then re-reads the values of the continuous-time
variables. The process is divided into two parts: Cadmium handles the quantization, while the FMU is
responsible for performing the integration, with continuous-time variables being re-evaluated at each step.

4 MODELING THE STEERING CONTROL OF UGV

After discussing the framework used for the M&S, let us discuss the design of the steering control system
for an Unmanned Ground Vehicle. Here, we considered a servo-controlled steering system that adjusts to
the specified input angle. This steering system is connected to the four-wheeled base of the vehicle. For a
mathematical model in this control operation, we referred to a paper (Haytham et al. 2014), where the author

2187

Joshi, Nutaro, Zeigler, Wainer, and Kim

conducted experiments to get the real-world values of coefficients and constants. The steering control
system is controlled using a navigation system that sends values of velocity and angle. A PID controller is
used to rotate the vehicle to the desired angle. The navigation system is developed using MS4Me, and the

PID controller is designed and tuned using MATLAB (Simulink). We built a DEVS-based M&S of the
Steering Control System in Cadmium, integrating the models developed in MS4Me and MATLAB through
FMUs. The design makes use of the framework that we discussed earlier.

Figure 5: Steering Control System in Cadmium.

 Figure 5 shows a block diagram with the design of the Steering Control system. We developed this with
the help of three tools: Cadmium, MS4Me, and MATLAB. The Navigator system is created in MS4Me
using DEVS formalism. This system consists of three atomic models. One determines the path, while the
other two process the path data for transmission to the steering control system. The vehicle velocity block
sends the value to the vehicle base, and the vehicle angle sends the value of the desired angle to the input
of the PID controller. This model is then converted to a co-simulation FMU and subsequently shared with

the Cadmium model, where the Navigator atomic model communicates with the FMU for M&S.
 The continuous-time PID controller model is developed using MATLAB. This model has an error as
its input and gives a control signal based on the error value. Figure 5 shows a PID controller model
developed using the PID blocks, which receive the error signal from another block that calculates the error
value using reference and feedback. This block in MATLAB is exported as a co-simulation FMU, as
MATLAB inherently supports FMU export. This FMU is shared with the Cadmium model, where the PID

controller atomic model communicates with the FMU for M&S.
 The Cadmium block shows all the components developed. Each block represents an atomic model. The
navigator model communicates with the FMU and sends the desired values of angle and velocity. The PID
controller receives this angle value and uses it as a reference while it receives the actual robot orientation
as feedback. The PID controller model uses these values to communicate with the FMU and obtain the
control signal. This control signal is sent to the steering angle calculator, which calculates the new steering

angle and sends it to the next block. The next model represents the connection between the base and the
steering, and it calculates the angle of the wheels relative to the vehicle based on the input steering angle.
These angles are sent to the vehicle base model, which calculates the vehicle's orientation using the wheel’s
angles and the velocity of the wheels provided by the navigator. The current orientation of the vehicle is
sent as feedback to the PID controller, which uses it as feedback for deciding the next control action.

Now, let us have a look at the M&S setup and results. To simulate this model, we first simulated it with

a fixed angle and velocity and then developed a list of commands using the Navigator model. Here, we will
see examples of both steps. We will see two examples of fixed-angle simulation with a target angle of 5
degrees and a target angle of 25 degrees. In both scenarios, the initial angle is set to 0. The Navigator model

2188

Joshi, Nutaro, Zeigler, Wainer, and Kim

sets the target angle and velocity of the vehicle at the start of the simulation (t=0). The PID controller model
starts the rotation upon receiving the target angle. The results of this simulation with Euler’s method and
QSS solver are shown in the figure below. Euler’s method was implemented within the PID controller

model using its standard formulation to evaluate the behavior under fixed-step integration.

Figure 6: Simulation Results of fixed target angle.

Figure 6 shows the response of the vehicle orientation angle with the simulation time. The change of angle
starts at time = 0 as soon as the target is set. The target angle 5 is simulated with velocity (v=10) and angle
25 is simulated with velocity (v=45). The controller reaches a steady state at approximately 2.5 s for the 5-
degree angle and at 2 s for the 25-degree angle. The results of both the solvers are almost identical, with
just a gap of 0.07 s to reach the steady state value.
 In the second step, we developed a list of commands for the vehicle in the path planner of the Navigator

model, and the model executes the steps as we discussed in the Navigator model description. The list of
commands is listed in the table below.

Table 1: Commands for vehicle simulation
Command/step Angle (relative) Distance Output Angle (relative) Output Velocity Execution time

1 25 400 25 40 10

2 55 600 80 40 15

3 -40 400 40 40 10

4 50 500 90 40 12.5

5 -10 500 80 40 12.5

6 40 250 120 40 6.25

 In the table, the positive angle is a clockwise turn, and the negative value is an anticlockwise turn.

These steps are designed in the Navigator model, and the output angle and velocity are sent to the PID
controller atomic model and the vehicle base atomic model. The vehicle rotates and stays in that state until
the next command is received. The steps are executed using Euler’s method and QSS solvers. The value of
the orientation angle of the vehicle through the simulation time is plotted in the figure below. This plot is
generated using the simulation results stored in the .csv file, which are automatically generated by the
Cadmium tool as simulation output.

 Figures 7 shows the results of the steps listed in Table 1. The vehicle orientation plot shown in Figure
7-A is obtained from a simulation using the QSS solver with a quantum size of 0.001. For comparison, the
same model was simulated using Euler’s method, and the result is shown in Figure 7-B. Both simulations
produced identical results. The initial value of vehicle orientation is 0. The first command is received at 10
s to achieve a 25-degree angle. The next command is sent after the calculated command execution time (10
s for command 1). At 20 s, the path planner sends the command to rotate 55 degrees, which is converted to

an absolute value of 80 degrees and sent to the PID controller model. It then rotates the vehicle and stays
in the same orientation until it receives the next command at 35 s to rotate 40 degrees anticlockwise.

2189

Joshi, Nutaro, Zeigler, Wainer, and Kim

Figure 7: Simulation result showing vehicle orientation.

 The vehicle orientation then changes to an absolute value of 40 degrees. At 45 s the next command to

rotate 50 degrees clockwise sets the new target value as 90 degrees with a calculated execution time of 12.5
s. So, after 12.5 s the new command to rotate 10 degrees anticlockwise sets the target angle of 80 degrees.
The vehicle stays at the orientation angle of 80 degrees until it receives the last command to rotate 40
degrees clockwise, creating an absolute angle of 120 degrees for a time of 6.25 s. After this command, the
model repeats this set by doing the first command to rotate 25 degrees again.

5 CONCLUSION

Model sharing plays a vital role in the development of multifaceted systems by providing a means of
information exchange. While reducing redundancy, it promotes collaborative problem-solving across
industries. The Functional Mockup Interface (FMI) helps in collaboration by standardizing model sharing
and making integration easier and more effective. Integrating this standard with M&S techniques like
Discrete Event System Specification (DEVS) can further enhance collaborative efforts.
 We introduced a framework for integrating the Functional Mockup Interface with the DEVS

framework and used it to simulate a robotic application. To achieve this, we created an interface in
Cadmium that follows the FMI standard for model import and integration. To simulate continuous-time
models shared via FMU, we developed continuous-time solvers. We also designed an approach for
exporting DEVS models as a co-simulation FMU. These exported models were integrated into Cadmium
using the import interface. A time synchronization mechanism was established between the exported FMU
and the model. The framework can communicate with multiple FMUs to perform integrated simulations.

 For model simulation, the model sub-components were created using MATLAB and MS4Me. These
were exported and integrated with the sub-components developed in Cadmium through the integration
framework. This integration enables the advantages offered by DEVS-based simulation without restricting
model development to DEVS-specific tools, which allows the use of domain-specific tools that best align
with the requirements of the application. In future work, exported models will be shared with tools that use
different formalisms to enhance interoperability and improve the flexibility of model sharing and reuse.

REFERENCES

Astrom, Karl J. 1995. "PID controllers: theory, design, and tuning." The international society of measurement and control.
Blochwitz, Torsten, Martin Otter, Martin Arnold, Constanze Bausch, Christoph Clauß, Hilding Elmqvist, Andreas Junghanns,

Jakob Mauss, Manuel Monteiro, and Thomas Neidhold. 2011. "The functional mockup interface for tool independent

exchange of simulation models." Proceedings of the 8th international Modelica conference. Dresden: Linköping University

Press.

n.d. Cadmium V2: an object-oriented C++ M&S platform for the PDEVS formalism. Accessed August 24, 2024.

https://github.com/SimulationEverywhere/cadmium_v2.

Camus, Benjamin, Thomas Paris, Julien Vaubourg, Yannick Presse, Christine Bourjot, Laurent Ciarletta, and Vincent Chevrier.

2018. "Co-simulation of cyber-physical systems using a DEVS wrapping strategy in the MECSYCO middleware." Simulation

94 (12): 1099-1127.

2190

Joshi, Nutaro, Zeigler, Wainer, and Kim

Cárdenas, Román, and Gabriel Wainer. 2022. "Asymmetric Cell-DEVS models with the Cadmium simulator." Simulation

Modelling Practice and Theory 121.

Cellier, François E, and Ernesto Kofman. 2006. Continuous system simulation. Springer Science & Business Media.

Chen, Dechao, Wang Zhixiong, Zhou Guanchen, and Li Shuai. 2022. "Path planning and energy efficiency of heterogeneous mobile

robots using cuckoo–beetle swarm search algorithms with applications in UGV obstacle avoidance." Sustainability 14 15137.

Cherukuri, AKHIL, and Neti ADITYA SHASHANK. 2018. "Unmanned ground vehicle for military purpose." International

Journal of Pure and Applied Mathematics 19 (12): 13189-13193.

Farella, Alessia, Francesco Paciolla, Tommaso Quartarella, and Simone Pascuzzi. 2024. "Agricultural unmanned ground vehicle

(UGV): a brief overview." International Symposium on Farm Machinery and Processes Management in Sustainable

Agriculture. Springer. 137-146.

n.d. Functional Mockup Interface Standard. Modelica Association. Accessed July 9, 2024. https://fmi-

standard.org/assets/releases/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf.

Gomes, Cláudio, Casper Thule, David Broman, Peter Gorm Larsen, and Hans Vangheluwe. 2018. "Co-simulation: a survey." ACM

Computing Surveys (CSUR) 51 (3): 1-33.

Hatledal, Lars Ivar, Houxiang Zhang, Arne Styve, and Geir Hovland. 2018. "Fmi4j: A software package for working with functional

mock-up units on the java virtual machine." The 59th Conference on Simulation and Modelling (SIMS 59).

Haytham, A, Yehia Z Elhalwagy, Amr Wassal, and NM Darwish. 2014. "Modeling and simulation of four-wheel steering

unmanned ground vehicles using a PID controller." 2014 international conference on engineering and technology (ICET).

IEEE.

Hebert, Martial H, Charles E Thorpe, and Anthony Stentz. 2012. Intelligent unmanned ground vehicles: autonomous navigation

research at Carnegie Mellon. Vol. 388. Springer Science & Business Media.

Hu, Xi, and Rayan H Assaad. 2023. "The use of unmanned ground vehicles and unmanned aerial vehicles in the civil infrastructure

sector: Applications, robotic platforms, sensors, and algorithms." Expert Systems with Applications (Elsevier) 120897.

Inzillo, Marco, and Kavka Carlos. 2017. "Multi-disciplinary Optimization with Standard Co-simulation Interfaces." ICSOFT. 453-

458.

Joshi, Ritvik, James Nutaro, Bernard P Zeigler, Gabriel Wainer, and Kim Doohwan. 2024. "Functional Mock-up Interface Based

Simulation of Continuous Time System in CADMIUM." Annual Simulation Conference (ANNSIM’24). American University,

DC, USA.

Kim, Sungung, Hessam S Sarjoughian, and Vignesh Elamvazhuthi. 2009. "DEVS-suite: a simulator supporting visual

experimentation design and behavior monitoring." SpringSim 9: 1-7.

Kofman, Ernesto. 2002. "A second-order approximation for DEVS simulation of continuous systems." Simulation 78 (2): 76-89.

Kofman, Ernesto, and Sergio Junco. 2001. "Quantized-state systems: a DEVS Approach for continuous system simulation."

Transactions of The Society for Modeling and Simulation International 18 (3): 123-132.

Lin, Xuanli. 2021. Co-simulation of Cyber-Physical Systems Using DEVS and Functional Mockup Units. Arizona State University.

Lindholm, Tim, Frank Yellin, Gilad Bracha, and Alex Buckley. 2013. The Java virtual machine specification. Addison-wesley.

Müller, Wolfgang, and Edmund Widl. 2013. "Linking FMI-based components with discrete event systems." 2013 IEEE

International Systems Conference (SysCon). Orlando, FL: IEEE. 676-680.

Ragothaman, Sonya, Maaref Mahdi, and Kassas Zaher M. 2021. "Autonomous ground vehicle path planning in urban environments

using GNSS and cellular signals reliability maps: Models and algorithms." IEEE Transactions on Aerospace and Electronic

Systems. 1562-1580.

Seo, Chungman, Bernard P Zeigler, Robert Coop, and Doohwan Kim. 2013. "DEVS modeling and simulation methodology with

MS4 Me software tool." SpringSim (TMS-DEVS) 33.

Tripakis, Stavros. 2015. "Bridging the semantic gap between heterogeneous modeling formalisms and FMI." 2015 International

Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS). IEEE. 60-69.

Vanommeslaeghe, Yon, Bert Van Acker, Joachim Denil, and De Meulenaere Paul. 2020. "A co-simulation approach for the

evaluation of multi-core embedded platforms in cyber-physical systems." Proceedings of the 2020 Summer Simulation

Conference. ACM. 1-12.

—. 2024. "Integrating DEVS and FMI 3.0 for the Simulated Deployment of Embedded Applications." 2024 Annual Modeling and

Simulation Conference (ANNSIM). Washington DC: IEEE. 1-13.

Wang, Liuping. 2020. PID control system design and automatic tuning using MATLAB/Simulink. John Wiley & Sons.

Zeigler, Bernard P, and Jong Sik Lee. 1998. "Theory of quantized systems: formal basis for DEVS/HLA distributed simulation

environment." Enabling Technology for Simulation Science II. SPIE. 49-58.

Zeigler, Bernard P, Herbert Praehofer, and Tag Gon Kim. 2000. Theory of Modeling and Simulation. Academic press.

Zhang, Heming, Wang Hongwei, Chen David, and Zacharewicz Gregory. 2010. "A model-driven approach to multidisciplinary

collaborative simulation for virtual product development." Advanced Engineering Informatics 24. 167-179.

2191

Joshi, Nutaro, Zeigler, Wainer, and Kim

AUTHOR BIOGRAPHIES

RITVIK JOSHI is a Systems Software Developer at BlackBerry QNX. He completed his M.A.Sc. at the
Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada. His research

interests include robotics, embedded systems, real-time systems, modeling, and simulation. His email
address is ritvikjoshi@cmail.carleton.ca.

JAMES NUTARO is Group Lead for the Computational Systems Engineering & Cybernetics Group at
Oak Ridge National Laboratory. He holds a Ph.D. in Computer Engineering from the University of Arizona.
His research interests discrete event systems, systems modeling and simulation, and hybrid dynamic

systems. His email address is nutarojj@ornl.gov.

BERNARD ZEIGLER is Professor Emeritus of Electrical and Computer Engineering at the University of
Arizona (USA) and Chief Scientist of RTSync Corp. (USA). Dr. Zeigler is a Fellow of IEEE and SCS and
received the INFORMS Lifetime Achievement Award. He is a co-director of the Arizona Center of
Integrative Modeling and Simulation. His email address is zeigler@rtsync.com.

GABRIEL A. WAINER is Professor in the Department of Systems and Computer Engineering at Carleton
University (Ottawa, ON, Canada). He is the head of the Advanced Real-Time Simulation lab, located at
Carleton University's Centre for Advanced Simulation and Visualization (V-Sim). He is an ACM
Distinguished Speaker and a Fellow of SCS. His email address is gwainer@sce.carleton.ca.

DOOHWAN KIM is the founder and president of RTSync Corp., which specializes in Predictive Analytics
and Model-Based System Engineering based on DEVS M&S. He received his Ph.D. degree from the
University of Arizona in 1996. His email address is dhkim@rtsync.com.

2192

mailto:ritvikjoshi@cmail.carleton.ca
mailto:nutarojj@ornl.gov
mailto:zeigler@rtsync.com
mailto:gwainer@sce.carleton.ca
mailto:dhkim@rtsync.com

	181-con170s3-file1-aa

