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ABSTRACT

Simulations are widely used to evaluate public health interventions, yet they often fail to quantify how
interventions in one region indirectly affect others—a phenomenon known as spillover. This omission can
lead to incorrect policy evaluations and misattributed effects. We propose a post-simulation framework for
estimating causal spillover in spatial epidemic networks. Our method introduces a directional graph neural
network (Dir-GNN) estimator that learns homophily-aware representations and estimates counterfactual
outcomes under hypothetical neighbor treatments. Applied to a semi-synthetic setup built on PatchSim—a
metapopulation SEIR simulator with realistic inter-county mobility—our estimator recovers spillover effects
and corrects attribution errors inherent in standard evaluation. Experiments show that accounting for spillover
improves treatment estimation and policy reliability.

1 INTRODUCTION

Epidemic simulations are widely used for evaluating public health interventions by modeling disease spread
under various policy scenarios (Qian et al. 2025; Nitzsche and Simm 2024; Moon et al. 2024; Bhattacharya
et al. 2023). These models enable counterfactual simulations of interventions such as lockdowns, travel
restrictions, and vaccinations, helping policymakers assess potential impacts before implementation.

However, simulations do not quantify spillover—the indirect effects on untreated regions. (Kaminsky
et al. 2019; Liu et al. 2024). This limitation presents a fundamental challenge: Simulations report total
infection counts but do not explain why changes occur in untreated regions. Post-simulation analysis helps
separate direct effects from spillover for better policy evaluation.

For example, suppose a vaccination campaign in one region is followed by a decline in infections
in a neighboring region. Standard simulations cannot determine whether this decline is due to true
spillover effects—where the intervention indirectly benefits nearby areas—or other factors such as natural
epidemic decline, local behavioral changes, or demographic similarities between regions. Misinterpreting
simulation outputs may lead to ineffective policy expansion or misallocation of resources. To address this,
we introduce a spillover-aware simulation analysis framework that extends the decision-making utility of
epidemic simulations. Instead of modifying the underlying simulation models, our approach integrates
causal spillover estimation as an analytical layer to extract indirect effects from simulation outputs. This
allows policymakers to: i). Quantify spillover effects: Separating indirect intervention impacts from direct
effects and natural epidemic trends. ii). Improve policy evaluation: Providing a structured assessment
of whether interventions should be localized, expanded, or coordinated across regions. iii). Enhance
simulation-based decision support: Transforming traditional simulations into tools that explicitly account
for indirect intervention effects.

By embedding spillover estimation into simulation workflows, our framework ensures that epidemic
models predict disease dynamics and support more robust, data-driven decision-making. However, spillover
estimation in epidemic simulations is particularly challenging due to: i). Confounding in spatial networks:
Neighboring regions exhibit similar infection trends due to shared demographics, mobility structures, and
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healthcare resources (Feng et al. 2021; Shalizi and Thomas 2011). Failing to account for these factors
may lead to biased estimates of spillover effects. ii). Dynamic population movement: Unlike static
social networks, epidemic networks evolve as disease transmission and mobility patterns change. Existing
spillover estimation methods assume static networks, limiting their applicability to epidemic models.

This paper introduces a simulation-aware framework for estimating causal spillover effects in epidemic
networks. Our key contributions are:

• We formalize the problem of causal spillover estimation in the context of epidemic simulations and
show how neglecting spillover can mislead policy evaluations.

• We propose a directional GNN-based estimator that jointly models treatment and outcomes, lever-
aging homophily-aware node representations to adjust for unobserved confounding.

• We integrate our framework with PatchSim, a metapopulation SEIR simulator using real population
and mobility data, and validate it on semi-synthetic intervention scenarios. Our experiments
demonstrate that spillover-aware evaluation improves policy attribution, recovering true indirect
effects that would otherwise be masked in standard simulation outputs.

By bridging the gap between epidemic forecasting and policy evaluation, our approach ensures that
policymakers obtain unbiased estimates of intervention effectiveness, improving public health strategies.

2 RELATED WORK

Our work connects to three key areas: simulation-based epidemic policy evaluation, causal inference in
networked settings, and spillover estimation in spatial networks.

2.1 Simulation-Based Epidemic Policy Evaluation

Epidemic simulations are widely used to model disease spread and assess intervention strategies. Com-
partmental metapopulation models (Venkatramanan et al. 2021; Kermack and McKendrick 1927; Chen
et al. 2024) simulate aggregate-level dynamics, while agent-based models (ABMs) (Chen et al. 2024;
Robertson et al. 2025; Bhattacharya et al. 2021; Hoops et al. 2021; Chen et al. 2024) capture individual
mobility and behavior. These models enable counterfactual analysis but do not explicitly quantify spillover
effects, making it difficult to assess whether interventions indirectly influence untreated regions (Lawson
and Rotejanaprasert 2023; He et al. 2024).

Spillover effects are significant for evaluating localized interventions (e.g., regional travel restrictions or
vaccination campaigns). If simulations only report total infection counts without estimating indirect effects,
policymakers cannot determine whether observed reductions in untreated regions result from spillover or
external epidemic trends. Our work addresses this gap by integrating spillover estimation into simulation
analysis, providing structured methods to separate direct and indirect intervention effects.

2.2 Causal Inference in Networked Settings

Traditional causal inference methods assume independent treatment assignments, which fails in networked
environments where interventions affect neighboring units (Manski 2013; Aronow and Samii 2017). Several
methods have been developed to estimate spillover effects in networks, including inverse probability weight-
ing (IPW) (Lee et al. 2023; Buchanan et al. 2024) and network-based counterfactual approaches (Zhang
et al. 2024; McFowland and Shalizi 2021; Chang et al. 2023). Additionally, graph neural networks (GNNs)
have been explored for causal effect estimation (Ma and Tresp 2020; Huang et al. 2024).

However, these methods are typically designed for static social networks and do not integrate with
dynamic epidemic simulations. Unlike economic or social networks, where relationships are fixed, epidemic
networks evolve with disease transmission and mobility patterns. Our approach bridges this gap by adapting
graph-based spillover estimation to simulation-based forecasting.

2695



Chou, Chen, and Marathe

2.3 Spillover Estimation in Spatial Networks

Spillover estimation has been widely studied in social and economic networks (Benjamin-Chung et al.
2017; Toulis and Kao 2013; Eckles et al. 2016; Fatemi and Zheleva 2020a; Laffers and Mellace 2020;
van der Laan 2014; Ogburn et al. 2024; Tchetgen et al. 2021; Fatemi and Zheleva 2020b; Hoshino and
Yanagi 2024), but its application to epidemiological simulations remains limited. While existing methods
adjust for confounding in spatial networks (Veitch et al. 2019; Sridhar et al. 2022; Tec et al. 2024;
Papadogeorgou and Samanta 2024; Jiang et al. 2023), they do not account for dynamic disease spread and
intervention spillover.

Our work builds on these foundations by introducing a spillover-aware framework tailored for epidemic
simulations. Rather than treating spillover as a separate problem, we extend spillover estimation into
simulation workflows, enhancing their ability to provide policy-relevant insights post-simulation. Different
from previous work, our approach: i). Extends simulation analysis by incorporating structured spillover
estimation into forecasting models. ii). Bridges causal inference and simulation by adapting spillover
estimators for dynamic epidemic settings. iii). Improves simulation-based decision support by providing
policymakers with more interpretable intervention evaluations.

By enhancing simulation-based policy evaluation with spillover estimation, our framework ensures that
epidemic simulations go beyond forecasting to directly inform data-driven public health strategies.

3 PROBLEM FORMULATION

Epidemic simulations provide a way to model disease spread under different intervention scenarios. However,
standard simulations output total infection counts without explicitly separating direct effects, the reduction
in infections due to an intervention in a treated region, and spillover effects, the indirect decrease in
infections in untreated regions due to treatments in other regions. Furthermore, we should also note that
there also exists confounding effects that similar infection trends across regions due to shared population
characteristics (homophily) rather than true intervention spillover.

This limitation makes it difficult to assess whether observed infection declines outside the treated
regions are due to true spillover effects, external factors, or inherent similarities between regions.

3.1 Simulated Epidemic Network

We represent the epidemic system as a graph G(V,E), where nodes correspond to spatial regions (e.g.,
counties), and edges encode spatial connectivity based on mobility patterns. Each node vi has: i). A
treatment assignment Ti (e.g., whether an intervention was applied). ii). A simulated infection counts Yi,
representing the number of infections in the region vi at a given timestamp. iii). Covariates Xi, such as
population density or healthcare capacity. iv). Unobserved confounders Ci, factors influence both Ti and
Yi simultaneously. Simulations evolve, updating Yi based on transmission dynamics. However, they do
not explicitly separate spillover effects from confounding effects due to homophily, potentially leading to
biased policy conclusions.

3.2 Spillover Effect Estimation in Simulation Outputs

We adopt a structured spillover-aware estimation approach based on the potential outcomes framework (Rubin
2005) to quantify spillover effects. Rather than modifying the simulation process itself, we analyze simulation
outputs to separate direct and spillover effects.

Following the potential outcomes framework, we define the expected infection count at each node as
E[Yi|Ti,T ∗i ,G,Xi,X∗i ,Ci]. T ∗i summarizes the treatment assignments of neighboring regions, X∗i represents
the aggregation of covariates of neighbors, Ci represents unobserved confounders, which may introduce
bias by making similar regions appear to have spillover effects even when none exist, and E[·] represents
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the expected (average) infection count under given treatment conditions, accounting for randomness in
disease transmission.

3.3 Decomposing Simulation Outputs into Direct and Spillover Effects

To distinguish direct and spillover effects in simulation outcomes, we decompose the observed infection
count Yi as: Yi = ψi,D +ψi,S, where ψi,D represents the direct effect of an intervention on vi, and ψi,S
represents the spillover effect from interventions in neighboring regions.

We estimate the Average Spillover Effect (ASE) across all nodes to quantify the network-wide impact
of spillovers in the simulation: ψS =

1
n ∑

n
i=1 ψi,S.

3.4 Neighboring Treatment Influence Representation

To account for the effects of interventions in neighboring regions, we define T ∗i in two ways: i). Mean
Aggregation: T ∗i = 1

|Ni| ∑ j∈Ni Tj, summarizing mean of treatments of neighbors. ii). Vector Representa-
tion: T ∗i = (Tj1 ,Tj2 , . . . ,Tj|Ni |

), retaining full neighbor-level treatment information. In our work, we adopt
the vector representation to enable more flexible modeling of heterogeneous spillover effects.

3.5 Estimating Spillover Effects from Simulated Data

In practice, we estimate the Average Spillover Effect (ASE) ψS as:

ψS =
1
n

n

∑
i=1

(E[Yi | Ti,T ∗i = 1,G,Xi,X∗i ,Ci]−E[Yi | Ti,T ∗i = 0,G,Xi,X∗i ,Ci]) , (1)

where T ∗i = 1 indicates scenarios where neighbors are treated, and T ∗i = 0 represents untreated neighbor
scenarios. The term Ci accounts for potential confounding biases due to homophily. Since Ci is unobserved,
directly applying Eq. 1 is infeasible.

In the following section, we describe disentangling spillover from homophily in Section 4. By
incorporating structured spillover estimation into simulation analysis, we provide policymakers with a
clearer understanding of intervention effects, ensuring proper attribution of observed infection reductions.

4 SPILLOVER ESTIMATION IN SIMULATION-BASED POLICY ANALYSIS

4.1 Challenges in Estimating Spillover Effects

While simulations provide infection counts, comparing treated and untreated regions may not accurately
isolate spillover effects due to two key challenges: i) Confounding: Similar infection patterns across
neighboring regions may arise from external factors (e.g., climate, socioeconomic conditions) rather than
true spillover, leading to biased estimates. ii) Indirect Spillover: Effects may extend beyond direct
neighbors through multi-hop interactions. Capturing such higher-order effects requires models beyond
standard simulation approaches.

If these challenges are not properly addressed, observed changes in untreated regions may be incorrectly
attributed to spillover effects rather than underlying homophily or other external factors. By distinguishing
between direct and indirect spillover effects while accounting for confounding biases, we can provide more
accurate and actionable insights for policy evaluation.

4.2 Why Adjusting for Confounding is Necessary

To calculate ψS from Eq. 1, we introduce a confounder-adjusted spillover estimator ψS,−C for approximation,
and ψS,−C corrects for unobserved confounding by leveraging homophily representations (λ ) extracted from
the simulation graph and covariates. Since both the graph structure G and node covariates X contribute
to homophily, we define a learned representation λ that serves as a sufficient proxy for both G and X .
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This adjustment assumes that the representation λi is a sufficient summary of both observed covariates and
network-induced confounding effects, thereby making Ci redundant in the estimation process.

Since Ci is unobserved, we use λi, learned from G and X , as a confounding proxy. Thus, we have:

ψS,−C =
1
n

n

∑
i=1

E[Yi|Ti,T ∗i ,λi,λ
∗
i ,G], (2)

where Eq. 2 allows us to adjust for hidden biases by leveraging the network structure, and λi is referred to
as a confounder-adjusted representation since it accounts for both observed and unobserved confounding
effects through homophily. This relies on the homophily assumption that connected nodes with similar
attributes tend to exhibit similar unobserved characteristics, a phenomenon widely observed in networked
systems(Mcpherson et al. 2001).

4.3 How Confounder Adjustment Works in Spillover Estimation

To estimate ψS,−C, we replace the raw infection counts in the simulation with a potential outcome function
m(·), which takes (T,G,X) as input. Since we assume λ captures sufficient information given (G,X), we
can express ψS,−C as:

ψS,−C =
1
n

n

∑
i=1

(E[m(Ti,T ∗i ,λi,λ
∗
i )]−E[m(Ti,0,λi,λ

∗
i )]) . (3)

The directed nature of the Dir-GNN captures the asymmetric mobility patterns critical for spillover
estimation, ensuring that the learned representation remains robust to confounding biases. Eq. 3 approximates
ψS using λ from (G,X). Next, we describe how to estimate ψS from simulations.

5 ESTIMATION PROCEDURE

To empirically estimate ψS,−C, we compute:

ψ̃ :=
1
n

n

∑
i=1

(m(Ti,T ∗i ,λi,λ
∗
i )−m(Ti,0,λi,λ

∗
i )). (4)

Here, m(·) models the expected infection count under different intervention scenarios. Since direct
measurement of the true spillover effect is infeasible, we rely on m(·) to infer the expected infection
count, making it possible to estimate spillover effects using the learned representations. λi is a learned
representation that adjusts for unobserved confounding, and ψ̃ serves as an empirical estimate of spillover
effects.

We estimate m and λ using observed simulation outputs (T,X ,Y ) and the epidemic network G, where
λ is obtained through the Dir-GNN framework to account for confounding effects. This approach enables
us to separate spillover from confounding, providing more accurate and interpretable policy evaluations.

5.1 Graph-Based Representation Learning for Confounder Adjustment

Spillover effects in simulation outputs are influenced by unobserved confounders Ci, which may bias
estimates. While direct measurement of Ci is infeasible, prior research (Mcpherson et al. 2001) suggests
that confounding effects are embedded in the network structure (homophily). We use this property to learn
a confounder-adjusted representation λi.

To extract λ , we employ a Directed Graph Neural Network (Dir-GNN), which captures directional and
weighted epidemic transmission patterns:

λ̃ = Dir-GNN(G,X), (5)

where Dir-GNN generates node embeddings that approximate unobserved confounders.
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5.2 Directed Graph Neural Network for Mobility-Aware Spillover Estimation

Epidemic transmission follows population movement, making directionality crucial for estimating spillover.
Existing methods often assume undirected graphs (Cristali and Veitch 2022; Ma et al. 2021), which fail
to model directed disease spread. To incorporate mobility-aware transmission, we modify the Dir-GCN
framework (Rossi et al. 2023).

We define message-passing matrices for in- and out-neighbors:

M→ = D
− 1

2→ AD
− 1

2← , (M→)i j =
wi jAi j√
d→i d←j

, (6)

where wi j represents the normalized mobility intensity from region i to j. Also, d→i and d←j denote the
out-degree of node i and the in-degree of j, respectively. Node embeddings are updated as:

λ
k = σ(M→λ

k−1W→k−1 +MT
→λ

k−1W←k−1). (7)

This ensures that λ̃ encodes confounding patterns embedded in the simulation network.

5.3 Joint Learning of Treatment and Outcome Models

To estimate ψ̃ , we simultaneously learn: i). Treatment Model: Predicts Ti to approximate unobserved
confounders. ii.) Outcome Model: Predicts Yi to estimate spillover effects. Correspondingly, the learning
objective is:

L(λ ,γ) =
1
n

n

∑
i=1

(Yi−m(Ti,T ∗i ,λi,λ
∗
i ;γ))2 +

1
n

n

∑
i=1

[Ti log pi +(1−Ti) log(1− pi)]+ ε∥Θ∥2. (8)

Where the first term minimizes the mean squared error (MSE) for outcome prediction, the second term
applies cross-entropy loss for treatment prediction, ensuring that confounder embeddings correctly predict
Ti, and the third term is L2 regularization to prevent overfitting. In this loss, pi is the predicted probability
of treatment for node i, and Θ includes all learnable parameters in both outcome and treatment models.

5.4 Final Estimation of Spillover Effects

After training the model by minimizing:

λ̃ , γ̃ = argmin
λ ,γ

E[L(λ ,γ)|G,X ], (9)

we define:
m̃(Ti,T ∗i , λ̃i, λ̃

∗
i ) = m(Ti,T ∗i ,λi,λ

∗
i ; γ̃). (10)

Finally, we estimate the spillover effect as:

ψ̃ =
1
n

n

∑
i=1

(m̃(Ti,T ∗i , λ̃i, λ̃
∗
i )− m̃(Ti,0, λ̃i, λ̃

∗
i )). (11)

This provides an empirical estimate of causal spillover effects in simulation-based policy analysis.

6 SPILLOVER ESTIMATION AND SIMULATION-BASED POLICY DESIGN

While our framework operates as a post-simulation analysis tool, its output has direct implications for how
simulation results are interpreted and used in policy planning. By quantifying spillover effects, we offer a
layer of insight that traditional simulation outputs cannot provide, enabling more informed decision-making
in the following ways:
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• Interpreting Networked Intervention Effects: Our estimator separates direct and spillover effects,
improving intervention attribution. This decomposition enables policymakers to avoid misattributing
effects and to better understand how interventions propagate through a mobility network.

• Guiding Intervention Scope: When spillover effects are large, this indicates that local interventions
produce meaningful indirect benefits—supporting the case for regionally coordinated policies.
Conversely, minimal spillover suggests that targeted, node-specific interventions may be sufficient.

• Improving Policy Attribution in Simulations: Epidemic simulations are often used to evaluate
hypothetical interventions. However, without spillover-aware analysis, these evaluations may con-
flate direct and indirect effects. Our framework adds interpretability by clarifying the true drivers
of observed benefits within the simulated environment.

• Supporting Resource Prioritization: By quantifying both direct and spillover effects, our method
allows policymakers to identify nodes that not only benefit from intervention but also produce large
positive externalities for others. This supports more efficient resource allocation across the network.

7 EXPERIMENT

We present the simulation and experimental setup in the context of epidemiology, where we aim to evaluate
not only the ability of our estimator to capture spillover effects, but also how accounting for spillover
alters the evaluation of policy effectiveness. Our central hypothesis is that spillover effects meaningfully
influence intervention outcomes, and ignoring them can lead to misleading policy conclusions.

7.1 Metapopulation Simulation

Metapopulation models are widely used in epidemiology to capture spatial heterogeneity in disease dynamics,
balancing individual-based and population-based approaches. A notable implementation is PatchSim (Venka-
tramanan et al. 2021), which uses the SEIR framework to generate population counts for each node at
different timestamps. The publicly available PatchSim code serves as the foundation for our simulation
setup:

• Duration: The simulation runs for 100 timestamps.
• Nodes: We model 133 Virginia counties, each with realistic population sizes.
• Confounder and Treatment: Following (Ma et al. 2023), we simulate unobserved confounders as

Ci ∼N (0,µI), where µ = 20. Treatment assignment follows BI(·), a sigmoid function, to convert
the input to a probability and then samples the output using the Bernoulli distribution. Specifically,
it takes both self-node and neighboring nodes into consideration:

Ti = BI(θ T
t,xXi +θ

T
t,ciCi +θ

T
t,c jC j + εt), (12)

where θt,x ∈ Rdx , θt,ci,θt,c j ∈ Rdc are parameters drawn from N (0,0.52), and εt is the random
Gaussian noise εt ∼N (0,0.012). Covariates Xi come from (Zhang et al. 2023), which include 23
features related to demographics and economic indicators.

• Graph Construction: Edges are generated based on confounder similarity, where dis is the Euclidean
distance function, thus we can simulate a county-county graph based on the latent confounding
between nodes, and we selected scale to be 0.1:

P(Ai j = 1) = e−
dis(ci,c j)

scale , scale = 0.1. (13)

• Treatment Mechanism: The treated counties are assumed to have a reduced (halved in our
simulation) exposure rate, resulting in fewer infections. The treatment is considered effective
during a specific time interval, after which it is discontinued and the exposure rate is restored.

• Initial Cases: We assign each county 10 initial cases as ”seed” cases.
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• Commuting on Graphs: We model county-level mobility by assuming that 95% of a county’s
population remains local, while the remaining 5% is evenly distributed to its neighbors. Due to
population size differences, the number of commuters between counties i→ j and j→ i varies,
leading to asymmetric edge weights. This 95%/5% split is a simplified assumption and can be
adjusted as needed.

• Other Parameters: We set the exposure, infection, and recovery rates to 0.65, 0.67, and 0.4,
respectively, to create a realistic epidemic scenario for meaningful spillover analysis. These values
are illustrative and can be adjusted for customized settings.

7.2 Spillover Estimation and Metrics

Following the prior evaluation strategies in semi-synthetic causal studies (Ma et al. 2023), we simulate 50
randomized treatment settings and evaluate across multiple timestamps. To estimate spillover, we consider
counterfactual outcomes where neighboring treatments are removed. The average spillover effect is:

ψS =
1
n

n

∑
i=1

(Yi,c−Yi,a), (14)

where Yi,a is the factual outcome for node i, and Yi,c is the counterfactual outcome where its neighbors are
untreated. The estimated counterfactual outcome is produced by our model:

Ỹi,c = m̃(ti,0, λ̃i, λ̃
∗
i ), Ỹc =

1
n

n

∑
i=1

Ỹi,c.

We evaluate spillover estimation quality using the following metrics: Spillover Estimation Ratio
(SER): SER(i) = (Ỹi,c−Yi,a)·1[Ỹi,c>Yi,a]

Yi,c−Yi,a
.. We report ASER = 1

n ∑
n
i=1 SER(i), where values closer to 1 indicate

accurate estimation. Values less than 1 suggest underestimation, while values greater than 1 indicate
overestimation.

Additionally, we also design another metric Coverage Rate (CR): CR = ∑
N
i ((Ỹi,c−Yi,a)>0)∧((Yi,c−Yi,a)>0)

N ,
measuring the proportion of counties with consistent spillover sign between ground truth and prediction.

7.3 Results and Interpretation

Table 1 summarizes model performance. We observe that spillover effects are most accurately captured
between +15 and +30 timestamps post-treatment, as indicated by ASER and CR values. Performance drops
slightly at later timestamps, which can be attributed to diffusion saturation, a state where the majority of
susceptible individuals have already been exposed or infected, limiting the further spread of the intervention’s
effect. This saturation effect makes it harder to differentiate spillover from natural epidemic decline, leading
to a slight overestimation.

Table 1: Experiment Performance Table
Evaluation Timestamp

Treatment Period Metrics +1 +10 +15 +20 +30 +40
0-5 ASER 0.24±0.11 0.79±0.18 0.95±0.09 1.12±0.18 1.32±0.21 1.77±0.37

CR 0.31±0.14 0.53±0.09 0.94±0.04 0.91±0.07 0.83±0.11 0.76±0.20
0-10 ASER 0.22±0.12 0.91±0.13 1.01±0.09 1.02±0.13 1.30±0.18 2.12±0.35

CR 0.29±0.15 0.89±0.09 0.97±0.03 0.89±0.09 0.85±0.13 0.62±0.27
0-15 ASER 0.61±0.19 0.92±0.09 0.94±0.16 1.02±0.10 1.02±0.05 1.89±0.23

CR 0.51±0.08 0.95±0.03 0.97±0.03 0.94±0.03 0.95±0.05 0.71±0.16

7.4 Policy Evaluation and Attribution Effects

Conventional policy evaluations often assess intervention effectiveness by measuring infection reduction
in treated regions alone, implicitly assuming no spillover. However, in epidemic settings with inter-region
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Table 2: Comparison between Baseline Methods

Treatment Evaluation Timestamp
0-5 +10 +15 +20 +30 +40

Method ASER CR ASER CR ASER CR ASER CR ASER CR
Ours 0.79 53% 0.95 94% 1.12 91% 1.32 83% 1.77 76%
PIE 0.62 56% 0.94 88% 1.54 81% 1.78 74% 2.46 60%

PSM 0.23 19% 0.48 61% 0.62 64% 0.51 51% 0.41 32%
CEVAE 0.42 39% 0.49 66% 0.56 73% 1.69 79% 2.94 51%
DNDC 1.71 31% 1.39 73% 1.53 79% 1.80 69% 2.84 45%

Netdeconf 0.58 49% 1.10 91% 1.40 75% 1.99 70% 3.01 53%
LR-Net 0.39 27% 0.47 27% 0.48 25% 0.41 29% 0.40 28%

mobility, interventions frequently yield benefits beyond directly treated nodes. Ignoring this spillover can
result in incorrect causal attribution and misleading estimates of policy impact.

To illustrate this, consider a simplified example. Suppose node i would experience 200 infections if
left untreated. If only node i is treated while its neighbors remain untreated, the infection count drops to
100. However, if both node i and its neighbors are treated, the observed outcome is 30. Of 170 cases
prevented, 100 are direct, and 70 are due to spillover, yet simulations credit all to direct intervention. A
traditional evaluation that ignores this distinction would falsely credit the full reduction to node i’s treatment,
overestimating its effectiveness.

This misattribution is not hypothetical—it appears in our simulation as well. Under the treatment
window [0,5] and evaluation timestamp +15, the average factual outcome for treated nodes is 446, while
our model estimates that the counterfactual outcome—had neighboring treatments been removed—would
be 637. This yields an average spillover effect of 191 infections per node. Without this decomposition,
policy evaluations would risk drawing incorrect conclusions about which nodes are most responsive to
treatment, potentially leading to ineffective or inefficient intervention strategies.

Our estimator enables this causal decomposition, providing a more accurate attribution of treatment
outcomes. Spillover-aware evaluation is thus essential for designing scalable and effective public health
policies, particularly in networked and spatially connected systems like epidemics.

7.5 Comparison with Baselines

We compare our method with several representative spillover estimation methods: PIE (Cristali and Veitch
2022): Relational ERM-based estimator for peer effects on undirected networks. DNDC (Ma et al. 2021)
and NetDeconf : Learns latent confounders via historical and structural data. CEVAE (Louizos et al.
2017), Propensity Score Models (PSM), Linear Regression on Network Features (LR-Net): Standard
causal estimation baselines.

All models are evaluated on the same treatment window (0–5 timestamps) and tested at multiple future
timestamps. As shown in Table 2, our model consistently achieves the most accurate spillover estimates
across both ASER and CR, particularly at +15 and +30. While PIE performs comparably at +10, its design
for undirected graphs limits its consistency.

Baselines such as CEVAE and PSM underperform in our setup because they assume static treatment-
response relationships or unconfounded treatment assignment. These assumptions break down in epidemic
simulations where dynamic mobility and interference violate standard ignorability.

8 CONCLUSION

We introduce a simulation-centered framework for estimating causal spillover effects in spatial epidemic
networks. Built on top of PatchSim, a metapopulation SEIR (Susceptible–Exposed–Infectious–Recovered)
simulator with county-level mobility, our approach applies a directional GNN-based estimator to distinguish
direct effects from spillover while adjusting for homophily and latent confounding. Experiments on semi-
synthetic simulations demonstrate that our estimator accurately recovers counterfactual outcomes and yields
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more reliable attribution of treatment impact. Critically, we show that standard simulation outputs can
mislead policy evaluations when spillover is ignored. By enabling post-simulation causal analysis, our
framework bridges the gap between epidemic simulation and causal inference, offering a more interpretable
and policy-relevant perspective on intervention effectiveness.
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